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ABSTRACT

Recent and future parallel clusters and supercomputers use SMPs
and multi-core processors as basic nodes, providing a huge amount
of parallel resources. These systems often have hierarchically struc-
tured interconnection networks combining computing resources at
different levels, starting with the interconnect within multi-core
processors up to the interconnection network combining nodes of
the cluster or supercomputer. The challenge for the programmer
is that these computing resources should be utilized efficiently by
exploiting the available degree of parallelism of the application pro-
grams and by structuring the application in a way which is sensitive
to the heterogeneous interconnect.

In this article, we present an approach to structure the computations
of an application as parallel tasks which can interact with other par-
allel tasks in communication phases. In particular, we consider how
these parallel tasks can be mapped onto the computing resources
provided by parallel clusters or supercomputers. We show that the
scalability can be significantly improved by a suitable task-based
organization and a corresponding structuring of the communica-
tion within tasks as well as between tasks. We evaluate the impact
of different mappings of tasks to cores for different application pro-
grams on a variety of parallel machines.

Categories and Subject Descriptors
D1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming; D4.8 [Performance]: Measurements; D4.1

[Operating Systems]: Process Management—Scheduling; E.1 [Data

structures]: Graphs and networks

General Terms
Algorithms, Performance, Measurement

1. INTRODUCTION

Recent and future parallel machines for high performance comput-
ing offer a very large number of parallel processing units. The im-
mense increase in parallelism of these architectures is caused by
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multi-core and many-core processors used for HPC systems. Today
most parallel machines are equipped with dual or quad-core proces-
sors; within a few years a single processor is expected to provide
10s or 100s of execution cores. For the application program, the ar-
chitectural development towards multi-core systems poses the chal-
lenge of providing and programming application codes with a very
large degree of potential parallelism. The degree of parallelism
within a parallel application code depends on both, the character-
istics of the problem to be solved but also on the parallel program-
ming model used for designing and coding the parallel application.
In this article, we propose to use the model of hierarchical multi-
processor tasks (M-tasks) for developing application programs for
such large parallel systems.

The M-task programming model can be used to structure parallel
programs in a flexible way by expressing the available degree of
parallelism in the form of M-tasks. This can, for example, be used
to combine the benefits of task and data parallelism by using data
parallelism within the M-tasks and by expressing the task paral-
lelism as interactions between the M-tasks. An M-task program is
subdivided into a set of M-tasks each working on a different part
of the application. A coordination structure describes how the M-
tasks cooperate with each other and which dependencies have to
be considered for a correct execution. In particular, the coordina-
tion structure also identifies which M-tasks can be executed concur-
rently to each other because there are no dependencies. The M-task
structure can be hierarchical and stops with basic M-tasks. These
are not further subdivided and are implemented using an SPMD
programming style, e.g. by employing MPI or OpenMP, and can
run on an arbitrary number of processors or cores. The coordina-
tion specification is completely application-specific and is indepen-
dent from the hardware or interconnection structure of the target
platform. This decouples the specification of parallelism from the
actual parallel execution on a specific parallel platform and allows a
change of the parallel execution without changing the specification
of parallelism. For a specific target platform, the M-tasks should
be mapped such that the computational work is balanced and the
resulting communication overhead is at a minimum. This mapping
is done in a separate step which uses the coordination specifica-
tion as input. The advantage of this approach is that it allows us to
increase the available degree of parallelism by defining a suitable
M-task structure and to restrict communication within M-tasks to
subsets of the available processors. Thus, the communication over-
head can be reduced and scalability can be increased.

Many-task computing (MTC)[13] is a new research direction en-
compassing support for running parallel applications consisting of



many loosely coupled tasks on HPC platforms. In the M-task pro-
gramming model, the tasks can be tightly coupled using a message
passing paradigm, e.g. MPI, for data exchanges between the tasks,
or loosely coupled as it is supported for grid-like environments by
the TGrid[7] system. The number of tasks in an M-task program
usually depends on the characteristics of the parallel algorithm and
the communication behavior of the target execution platform. The
number of tasks may be very large, e.g. for executing numerical
algorithms with a large number of time steps on tightly coupled
parallel machines, or quite small, e.g. for executing multiphysics
applications on grid environments. Thus, the M-task programming
model can be considered as a suggestion for the implementation of
many-task applications.

An M-task application program and its coordination specification
offer several possibilities for a parallel execution, differing in the
order in which the M-tasks of a program are executed and the sub-
sets of processors or cores assigned to each M-task for execution.
This is selected in a separate scheduling and mapping step. On
different parallel architectures different versions of the M-task pro-
gram might be the most efficient and scalable ones. To find an
optimal M-task program version is an NP-complete problem which
is usually solved by scheduling heuristics or approximation algo-
rithms. Most of those existing M-task scheduling algorithms are
defined for homogeneous systems or distributed grid-like systems.
Several strategies for mapping M-task applications on heteroge-
neous multi-core platforms have been presented in [5]. In this ar-
ticle, we extend this approach and propose a combined schedul-
ing and mapping algorithm which is aware of the heterogeneity of
multi-core systems. In particular, the contribution of this article
includes:

e to propose the M-task programming model as a suitable pro-
gramming model for large multi-core systems which can in-
crease the potential parallelism due to a mixture of task and
data parallelism;

e to suggest a combined scheduling and mapping algorithm
for M-task programs which extends existing scheduling ap-
proaches for the use in multi-core systems and reduces the
computational effort due to a reduced search space;

e to investigate different mapping strategies for several bench-
marks from the area of solvers for ordinary differential equa-
tion (ODEs) on multi-core SMP systems. One-step ODE
solvers are important in scientific computing but have by
their nature a limited degree of parallelism and thus it is
important to provide suitable parallel implementations. We
also consider solvers for partial differential equations (PDEs)
from the NAS parallel benchmark suite.

The investigations on dual-core and quad-core systems show that
the application performance is significantly impacted by both, the
selected execution scheme and the applied mapping strategy. Ad-
ditionally, we show that the performance of ODE solvers with an
M-task organization can be improved by exploiting special com-
munication patterns for the interaction of M-tasks based on an or-
thogonal arrangement of the processes executing the M-tasks.

The rest of the paper is organized as follows. Section 2 gives a short
description of the M-task programming model. Section 3 describes
scheduling algorithms and mapping strategies for M-tasks. Sec-
tion 4 presents a detailed experimental evaluation of the mapping

strategies for different recent parallel systems. Section 5 discusses
related work and Section 6 concludes the paper.

2. M-TASK PROGRAMMING

The M-task programming model is a programming style to code
parallel programs in a mixed task and data parallel way using co-
operating parallel tasks, which are called M-tasks. An M-task is a
piece of parallel program code that can be executed in parallel on a
subset (group) of processors and that can cooperate with other M-
tasks. Thus, an M-task program is built up from a set of M-tasks
cooperating with each other. The coordination between M-tasks
can be based on control or data dependencies. M-tasks have a set
of input parameters and produce a set of output parameters; both
are visible to other M-tasks. A data dependence between M-tasks
M, and Mo arises if M produces output data required as an in-
put for Ma. A data dependence may lead to a data re-distribution
operation if M-task M; provides its output data in a different dis-
tribution or on a different set of processors than it is expected by
M-task M. Depending on the execution platform and the size of
the data, such a data re-distribution may be expensive. Therefore,
the selection of the processors executing the M-tasks is important
and may have a large influence on the total execution time.

Data dependencies or control dependencies emerge from the struc-
ture of the application and lead to precedence relations between
M-tasks. Due to the precedence relation between M-tasks, M-task
programs can be represented by a graph structure Gy = (V) E),
where the set of nodes V' consists of the M-tasks of a program and
edges e € F connect different M-tasks M, and Ms if there is a
precedence relation between M and M>. A precedence relation
can be a data or control dependence from M; to M>. Examples
for such graph structures are the macro dataflow graphs used in
the PARADIGM compiler[2] or the SP-graphs used in the TwoL
model[16]. Figure 1 shows an example for an M-task graph with
ten M-tasks.

There may exist several parallel execution orders for a given M-
task graph that differ in the scheduling and mapping of M-tasks to
a subset of processors or cores of the parallel computing system.
Precedence relations restrict the possible execution order of the M-
tasks. If M-tasks M7 and M> are connected by a precedence rela-
tion the execution of M must have been finished and all required
data re-distribution operations must have been carried out before
the execution of M> can be started. For independent M-tasks a
concurrent execution on disjoint subsets of the available processors
as well as an execution one after another are possible.

For the parallel execution of an M-task program represented by an
M-task graph G on a heterogeneous parallel platform there exist
several execution schemes differing in

i) the number of cores assigned to each M-task;

ii) the execution order for independent M-tasks, i.e. for M-tasks
M, ..., My €V that are not connected by a path in G r;

iii) the assignment of specific processors (or processor cores) of
the execution platform to specific M-tasks (mapping).

Different execution schemes lead to different communication pat-
terns between the processes of an M-task application and, thus, lead
to different execution times. In particular, different communication
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Figure 1: Example for an M-task graph consisting of a set of
ten M-tasks {1, ...,10}.

times may result for the communication within the M-tasks as well
as for the re-distribution operations between cooperating M-tasks.
An efficient execution scheme can be selected by suitable mapping
and scheduling strategies as discussed in the next section.

3. SCHEDULING AND MAPPING

Executing an M-task program on a heterogeneous multi-core ma-
chine requires several steps: scheduling the execution order of the
M-tasks, determining the number of cores assigned to each M-task
and mapping the M-tasks to specific cores. If the cores assigned to
an M-task do not have a shared address space, the data distributions
of the input and output parameters also has to be fixed. In the fol-
lowing, we concentrate on the scheduling and mapping decisions.

3.1 Cost model for M-tasks

The scheduling decision has to be based on a cost model for the
execution of the M-tasks. The costs 1" of a single M-task M de-
pend on the computational work Teomp(M, 1) of M, the number
of cores used for the execution of M, and the mapping pattern de-
scribing the interconnection of the cores used for the execution.
This can be expressed by

T(M7 q, mp) = Tcomp(M, 1)/q + Tcomm(M7 q, mp)

for g cores and mapping pattern mp, assuming a linear speedup
for the computational part of the M-task. If the cores do not have
a shared address space, there is an internal communication time
Teomm (M,q,mp) of M which depends on ¢ and the mapping
pattern of the cores. In this case, re-distribution costs Tre (M1,
Mo, g1, g2, mp1, mp2) between cooperating M-tasks My and Ms
may also occur. These depend on the number g; of cores executing
M;, i = 1,2, and the mapping pattern mp; used for M;.

3.2 Scheduling

The scheduling step determines the execution order of the M-tasks
within a task graph. In particular, the scheduling step decides for a
set of independent M-tasks whether they are executed concurrently
to each other using disjoint groups of execution cores or whether
a sequential execution is used, employing all available execution
cores for each M-task one after another. It might also be beneficial
to use a fixed set of groups of execution cores assigning indepen-
dent M-tasks to these groups such that each group executes several
M-tasks one after another.

We use a layer-based scheduling algorithm which partitions the M-
task graph into layers of independent M-tasks and schedules the
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Figure 2: Partitioning of the M-task graph from Figure 1 into
five layers {W1,..., Ws}.

layers one after another[15]. There are several possibilities to par-
tition an M-task graph into layers. The greatest flexibility for the
scheduling decision is achieved by using as few layers as possible.
This can be reached by a greedy algorithm that runs top-down over
the M-task graph and puts as many nodes as possible in the current
layer. Figure 2 illustrates this step for an example graph.

The layers of an M-task graph are scheduled one after another.
Within a layer, the M-tasks can be scheduled in an arbitrary way,
i.e., the set of execution cores can be partitioned into an arbitrary
number g of subsets of cores where each subset is responsible for
the execution of a subset of M-tasks of the layer. To simplify the al-
gorithm, we make two assumptions: (a) the number of subsets and
their size is constant during the execution of the M-tasks of one
layer; (b) we use homogeneous symbolic cores to build the subsets.
Symbolic cores are later mapped to physical cores of a heteroge-
neous architecture in the mapping step. The costs for an M-task
M on a set of p homogeneous cores is denoted as Tsyms(M, p)
and includes communication costs for a default mapping pattern.
Assumption (a) is reasonable because a reorganization of the group
structure during the execution of the M-tasks of one layer is usually
quite expensive. Assumption (b) is an abstraction which allows the
separation of scheduling and mapping; the separate mapping step
is described later.

The scheduling algorithm considers several reasonable numbers of
subsets for a layer. For the actual mapping, we modify a greedy
linear-time scheduling algorithm for uniprocessor tasks without de-
pendencies [17] with a proven suboptimality bound of 4/3. This
suboptimality bound does not hold for M-task layers, but it shows
good results in practice. Algorithm 1 sketches the key ideas of the
scheduling step.

The scheduling algorithm determines for each layer the optimal
number of subsets of symbolic cores to be used for the execution of
the M-tasks of the layer. The created subsets have equal size. The
execution time for a layer W can sometimes be reduced by adjust-
ing the number of cores of the subsets to the accumulated compu-
tational work of the M-tasks assigned to the subset (G; which can
be defined as

Tseq(Gl): Z TCO"LP(Mi71)
M;eM,;

where M, is the set of M-tasks assigned to subset GG;. Assuming
malleable M-tasks with linear speedup, the subset size of a layer W
can be adapted to the computational work by assigning g; symbolic



Algorithm 1: Scheduling of the layers of the M-task graph.

begin
foreach (layer W = {M,..., My} ) do
let P(W) be the set of symbolic cores for layer W
let p(W) = |P(W)] be the number of symbolic cores;
Tonin = 321y oy (Ma, (W)
foreach (g € (set of divisors of k)) do
partition P(W) into g subsets G = {G1, ..., Gy}
of size pg = p(W)/g;
sort { M1, ..., My} such that
Tsymb(Mlypg) > .2 Tsymb(Mk7pg);
for(j=1,...,k)do
assign M to G; with the smallest accumulated
L execution time;

Tact(g) = max accumulated execution time of G;
1<j<g

if (Tact (g) < fmzn) then
|_ Tmzn = act(g);

end

cores to subset (G; with

g1 = round <% p(W)) .

j=1
For a distributed address space, re-distributions between neighbor-
ing layers also can be taken into consideration to further improve
the subset selection. Such re-distributions may be necessary for co-
operating M-tasks that exchange data and that are executed on dif-
ferent sets of cores. In this case, the subsets should be selected such
that the re-distribution costs are minimized. This is often achieved
by using subsets of the same size for neighboring layers and assign-
ing M-tasks that are exchanging data to the corresponding subsets.

3.3 Architecture Model

For heterogeneous systems, the specific selection of execution cores
used for the M-tasks can have a large influence on the resulting
communication and execution time, since different communication
costs for internal M-task communication and re-distributions be-
tween M-tasks may result. In this article, we focus on multi-core
systems as a special form of a heterogeneous platform. We assume
cores of the same type but with different interconnections between
(i) cores of the same processor, (ii) processors of the same node,
and (iii) nodes of a partition of the entire machine.

The architecture can be represented in a tree-structure with cores
C as leaves, processors P as intermediate nodes being a parent
for cores, computing nodes N as intermediate nodes combining
processors, and partitions or the entire machine A as root node.
Figure 3 shows an illustration. For a unique identification of the
leaf nodes k of the architecture tree, we use the label I(k) = n.p.c
consisting of the node id n, the processor id p and the core id c.

3.4 Mapping

An architecture-aware mapping of an M-task program to a multi-
core system is a mapping F' from a graph structure Gy to a tree
structure A describing the architecture, i.e., F' : Gy — A. Since
the graph corresponding to an M-task program represents the en-
tire execution and control flow of the program, there has to be a
mapping from the graph to the execution platform for each point
of the execution time. The graph structure is partitioned into layers

Figure 3: Illustration of a tree representing the architecture of
a hierarchical multi-core SMP cluster.

layer

symbolic
groups
symbolic
cores

mapping function F

physical
cores

processors

nodes

multi-core
platform

Figure 4: Illustration of the mapping function from symbolic
to physical cores.

by the scheduling algorithm such that for each layer a set of groups
of symbolic cores is used where each group may execute several
M-tasks one after another. The number g; of symbolic cores of
each group G} is fixed by the scheduling algorithm and the execu-
tions performed by a group GG; are independent from the executions
performed by G;, i # j with i,5 = 1,..., g for groups of the
same layer. The mapping F' is defined for each group partitioning
G = {G1,...,Gg4} of the symbolic cores of each layer W of the
input M-task graph. The result of the mapping for the groups of
one layer are disjoint sets of physical cores, i.e.

F:{G,...,Gg} —2°

where C denotes the set of physical cores; F' maps a symbolic group
G; to a physical group F'(G;) = C; with F(G;) N F(G;) = ( for
i # j. Moreover |G;| = |F(Gs)|, i.e., each symbolic group is
mapped to a physical group of the same size. Figure 4 shows an
illustration of the mapping function.

In the following, we propose several mappings mainly differing in
the strategies how symbolic cores are mapped to physical cores of
the parallel machine. Since the underlying programming model
like MPI or OpenMP also influences performance and communica-
tion times, the specific choice of the mapping function also has to
take this into consideration. For each proposed mapping, we define
a sequence of physical cores

81,82, ...8|C|-
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Figure 5: Example for a consecutive mapping of a group par-
titioning into four symbolic groups G1, ..., G4 each including
four symbolic cores on a platform with four nodes consisting of
two dual-core processors. The edges symbolize communication
within M-tasks.

Each physical core appears exactly once in this sequence. The map-
ping function F' assigns the symbolic cores of a group Gi,i =

1,...,g, to consecutive physical cores in this sequence, i.e.
i—1
F(Gi) = {3j73j+1: o Sira -1 |G =14 |Gk|} -
k=1

Consecutive mapping: For this mapping, symbolic cores are mapped

consecutively to physical cores to obtain a node-oriented use of the
physical cores. If a group of symbolic cores is larger than the num-
ber of physical cores per node of the architecture, several nodes are
used such that each node is used only for one group. Otherwise,
more than one group may be mapped to one node. This mapping
tries to minimize the number of groups that are mapped to each
node of the architecture. Figure 5 shows an example. This mapping
should be beneficial if communication within nodes is faster than
communication between nodes for the specific target architecture
and intra M-task communication outweighs inter M-task commu-
nication. Furthermore, it enables the use of OpenMP threads for
processes mapped to the same node.

In this mapping, the physical cores are ordered such that cores of
the same node are adjacent. For example, the sequence of physical
cores for a platform with N nodes each consisting of P processors
with C' cores is given by

1.1.1,...1.1.C,12.1,...,1.P.C,2.1.1, ... N.P.C.

Scattered mapping: For this mapping, the physical cores for a spe-
cific group of symbolic cores are selected such that corresponding
cores of different nodes are used, see Figure 6 for an illustration.
If a group contains less symbolic cores than nodes, one physical
core of each node is used for the mapping. This ensures an equal
participation of the nodes in the communication performed during
the execution of the M-tasks of the group. This mapping should be
beneficial if data re-distribution operations between M-tasks out-
weigh intra M-task communication.

For a platform with NV identical nodes each consisting of P proces-

P NP NTP 0PN

| [ | | [ | |
(o E—Co—F—) |
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o

Figure 6: Example for a scattered mapping of symbolic groups
G, ..., G4 with four symbolic cores each on a multi-core plat-
form consisting of four identical nodes each equipped with two
dual-core processors.

sors with C' cores the sequence of physical cores is defined as

1.1.1,...,N.1.1,1.1.2,...,N.1.C, 1.2.1, ... N.P.C.

Mixed mapping: Consecutive and scattered mapping strategies
can also be mixed. A parameter d denoting the number of consec-
utive physical cores of a node used to execute an M-task is used to
describe these mappings. If the number of symbolic cores assigned
to an M-task is greater d multiple nodes are used for the execution.
Choosing d = 1 leads to the scattered mapping. For platforms
with identical nodes consisting of P processors with C' cores each
a value of d = P * C corresponds to the consecutive mapping.
Therefore, the mixed mapping can be considered the most general
case and can be used to adapt to the ratio of intra M-task communi-
cation and data re-distribution operations. Figure 7 illustrates this
mapping strategy.

4. EXPERIMENTS

In this section, we describe the experimental results obtained by
applying the scheduling and mapping algorithms to different appli-
cation programs.

4.1 Hardware description

For the benchmark tests, a variety of platforms is used. The Chem-
nitz High Performance Linux (CHiC) cluster is built up of 530
nodes consisting of two AMD Opteron 2218 dual-core processors
with a clock rate of 2.6 GHz. The peak performance of a single
core is 5.2 GFlops/s. The nodes are interconnected by an SDR in-
finiband network. For the benchmark tests, the MVAPICH 1.0 MPI
library and the Pathscale Compiler 3.1 are used.

The SGI Altix system consists of 19 partitions. The benchmarks
are executed inside a partition containing 128 nodes, each one equip-
ped with two Intel Itanium2 Montecito dual-core processors. The
processors are clocked at 1.6 GHz and achieve a peak performance
of 6.4 GFlops/s per core. Each node has two links to the NUMA-
link 4 interconnection network with a bidirectional bandwidth of
6.4 GByte/s per link. The employed MPI library is SGI MPT 1.16
and the Intel Compiler 11.0 is used.
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Figure 7: Example for a mixed mapping with d = 2 of symbolic
groups GG1, ..., G4 each consisting of four symbolic cores on a
platform with four identical nodes each comprising two dual-
core processors.

G4

The JuRoPA cluster consists of 2208 nodes with 2 Intel Xeon
X5570 "’Nehalem"” quad-core processors each. The processors run
at 2.93 GHz leading to a peak performance of 11.72 GFlops/s. A
QDR infiniband network connects the nodes. The software con-
figuration includes the ParaStation MPI library v5.0 and the Intel
Compiler 11.0.

4.2 Benchmark description

The numerical solution of systems of ordinary differential equa-
tions (ODEs) is often based on time-stepping methods that execute
a large number of time steps one after another. The computation
of a single time step can be based on the evaluation of a fixed
number of independent stage vectors and can be represented by
an M-task Graph. Coarse grained parallelism is provided between
the computations of different stage vectors and fine grained paral-
lelism can be used for a single stage vector by a distributed com-
putation of the components of the ODE system. Examples for ex-
plicit solution methods are the Iterated Runge-Kutta(IRK) methods
and the Parallel Adams Bashforth (PAB) methods; implicit solvers
are Parallel Adams-Moulton(PAM) and Diagonal-Implicitly Iter-
ated Runge-Kutta (DIIRK) methods. The combination of the PAB
and PAM methods in a predictor-corrector scheme results in an im-
plicit ODE solver (PABM)[18].

For the benchmarks, three different program versions of these solvers
are used. The data parallel version computes the stage vectors one
after another using all available processors. This corresponds to
a partitioning of the symbolic cores of a layer into a single sub-
set in the scheduling algorithm and, thus, leads to many global
global communication operations. The standard task parallel ver-
sion computes the stage vectors in parallel on disjoint subsets of
the processors. This corresponds to a partitioning of the symbolic
cores into the maximum number of subsets. The task parallel ver-
sion restricts the communication operations required for the stage
vector computations to subsets of the processors, but introduces
additional global communication to exchange intermediate results
between the processor groups. The task parallel orthogonal ver-
sion optimizes the data re-distribution operations by using concur-
rent multi-broadcast operations on groups of processors and, thus,

avoids the global communication of the standard task parallel ver-
sion.

The ODE systems for the benchmarks include a sparse system that
results from the spatial discretization of the 2D Brusselator equa-
tion (BRUSS2D)[6] and a dense system that arises from a Galerkin
approximation of a Schrodinger-Poisson system (SCHROED)[14].
The evaluation of a single component requires a fixed number of
operations for the sparse system and a linear number of operations
for the dense system, respectively.

Another class of applications that can benefit from the M-task pro-
gramming model are solvers for flow equations that operate on a
set of meshes (also called zones). Within each time step, the com-
putation of the solution is performed independently for each zone.
At the end of a time step, a border exchange between overlapping
zones is required. The NAS parallel benchmark multi-zone ver-
sion (NPB-MZ) provides solvers for discretized versions of the un-
steady, compressible Navier-Stokes equations that operate on mul-
tiple zones[19]. The fine grain parallelism within the zones is ex-
ploited using shared memory OpenMP programming; the coarse
grain parallelism between the zones is realized using message pass-
ing with MPI. Therefore, each zone can only be computed within
a shared memory environment, e. g. a node of a multi-core clus-
ter. For the purpose of this article we consider modified versions
of the SP-MZ and BT-MZ benchmarks that use MPI for both levels
of parallelism and, thus, do not restrict the scheduling and mapping
decisions. Each zone is represented by an M-task leading to z inde-
pendent M-tasks for z zones. Point-to-point communication is used
for both, communication within M-tasks and the border exchanges
between M-tasks.

4.3 Benchmark results

The measured execution times for the IRK method on the JuRoPA
and CHIC clusters for the sparse system are shown in the left col-
umn of Figure 8. The mapping stategies are only shown for the
fastest program version, which is the task parallel implementation
with orthogonal communication in all cases. The CHiC cluster con-
tains 4 cores per node and, thus, a consecutive, a scattered, and a
mixed (d = 2) mapping are considered. A node of the JuRoPA
cluster contains 8 cores and, thus, a mixed (d = 4) mapping is also
possible. A standard task parallel implementation leads to slower
execution times compared to pure data parallelism on both plat-
forms. This can be attributed to the additional communication op-
erations required to exchange intermediate results between proces-
sor groups. Utilizing an orthogonal communication scheme leads
to much lower runtimes. The lowest execution times are achieved
by a consecutive mapping and, on the JuRoPA cluster, by a mixed
(d = 4) mapping. A scattered mapping is clearly outperformed
by the other mappings. These observations are confirmed by the
speedup results for the dense system on the JuRoPA cluster that are
shown in Figure 8(top right). Compared to the sparse system, the
differences between the program versions are smaller because the
amount of computation is higher and less time is spent in commu-
nication.

Compared to the IRK method, the DIIRK method includes much
more communication within the M-tasks that can be restricted to
processors groups by a task parallel execution scheme. Therefore,
the task parallel and the task parallel orthogonal versions achieve
much lower execution times compared to pure data parallelism as
it is shown in Figure 8(bottom right) for 512 cores of the CHiC
cluster. As for the IRK method, the lowest execution times are
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Figure 8: Benchmark results for the IRK and DIIRK (bottom right) methods with s = 4 stage vectors on the JuRoPA cluster (top
row) and the CHiC cluster (bottom row) using the sparse system (left) and the dense system (right).

achieved by a consecutive mapping.

The top row of Figure 9 shows the measured execution for a single
time step of the PAB method. A standard task parallel implemen-
tation is not competitive for this method, because the amount of
communication within M-tasks is too small and additional global
communication is introduced. For the orthogonal program version,
communication within M-tasks and communication between pro-
cessor groups is equally important. Therefore, the mixed mapping
strategies with d = 2 and d = 4 achieve the lowest execution times
on the CHiC cluster and on the JuRoPA cluster, respectively.

Compared to the PAB method, the PABM method includes more
computation and communication within the M-tasks. Therefore, a
placement of the processes executing the same M-task on the same
cluster node is desirable. The obtained speedup values for the dense
system on the CHiC cluster that are shown in Figure 9(bottom left)
confirm this observation. For a high number of processor cores

the consecutive mapping of the task parallel orthogonal execution
scheme is clearly superior to the other program versions. The scal-
ability of the data parallel version is limited to 512 processor cores
because of the high amount of global collective communication.
The runtimes of the sparse system on the JuRoPA cluster that are
presented in Figure 9(bottom right) show a similar behaviour, i.e.
the consecutive mapping leads to the lowest runtimes and data par-
allelism is outperformed by all task parallel versions.

The total GFlops per second reported by the SP-MZ benchmark are
shown in Figure 10 for the CHiC cluster (top left) and the SGI Altix
(top right). The presented results compare different scheduling de-
cisions for a fixed number of cores, i.e. different selections for the
number of created symbolic processor groups, for the benchmark
classes C' and D with 256 and 1024 equal sized zones. The ob-
tained results show that an exploitation of the maximum degree of
available task parallelism, i.e. building 1024 groups for class D and
256 groups for class C, does not lead to the highest performance.
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Figure 9: Benchmark results for the PAB (top) and PABM (bottom) methods with X' = 8 stage vectors on the CHiC cluster (left)

and the JuRoPA cluster (right).

On the CHiC cluster, the best execution scheme is using 64 parallel
groups, assigning 16 neighboring zones to each group and using
a scattered mapping. For the SGI Altix, the program version with
128 parallel groups leads to the highest performance values. Again,
a scattered mapping strategy outperforms the other program ver-
sions. The program versions with a low number of groups are not
competitive because each M-task is executed by many processor
cores leading to a high communication and synchronisation over-
head within the groups.

The zones of the BT-MZ benchmark incorporate different amounts
of computation and, thus, the assignment of M-task to processor
groups and load balancing between processor groups becomes an
important task. The achieved GFlops/s rates for a varying number
of parallel groups are shown in Figure 10 for class C' with 256
zones on the CHiC cluster (bottom left) and for class D with 1024
zones on the SGI Altix (bottom right). The highest performance on
the CHiC cluster is obtained by the execution schemes with 32 and
128 processor groups. For the SGI Altix, the creation of 32 and

64 processor groups leads to the best results. On both platforms,
the scattered mapping outperforms the other mapping strategies.
The performance of the execution schemes with many processor
groups is degraded by load imbalances introduced by an uneven
assignment of the workload.

5. RELATED WORK

Related work comes from M-task scheduling and from mapping
parallel applications onto computing ressources. The scheduling
of M-task applications on homogeneous target platforms has been
investigated by many research groups, see e. g. [20, 12, 3] for
a comparison of different scheduling algorithms. The benchmark
results presented in this paper show that for multi-core clusters the
mapping of processes to cores has a huge influence on the obtained
performance. Therefore, the presented combination of scheduling
and mapping is a step forward towards a better exploitation of the
performance of such platforms.
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An overview of M-task scheduling algorithms for heterogeneous
target platforms is given in [10]. These approaches are targeted
towards large cluster-of-clusters systems and restrict the execution
of an M-task to a single homogeneous sub-cluster. Our benchmark
results show that M-tasks have to be executed across multiple nodes
of multi-core clusters to obtain high speedups. Therefore, these
heterogeneous scheduling algorithms are not suitable for multi-core
clusters. In contrast, our approach can determine a suitable task
layout for these clusters.

Mapping techniques for parallel applications try to increase appli-
cation performance by placing processes with high communication
requirements on physical computing units that are connected by a
high speed interconnect. Both, the communication requirements
of the considered application and the communication performance
of the target platform, can be represented by undirected, weighted
graphs. An optimized process placement can be computed by map-
ping the application graph onto the platform graph and taking into

account the assigned weight values. Mixed task and data parallel
applications and dependencies between processes are not explicitly
taken into account by these approaches.

Multi-core target platforms have been considered in [9]. This ap-
proach uses a special graph library for solving the mapping prob-
lem. MPIPP[4] is a toolset consisting of components that can ob-
tain the communication profile of an MPI application, determine
the network topology of SMP clusters and compute optimized pro-
cess placements based on a heuristic mapping algorithm. The map-
ping of task parallel applications on large platforms with different
network topologies is examined in [1]. First, graph partitioning is
used to assign heavily communicating tasks to the same physical
processing unit. In the second step, the computed graph partitions
are mapped to the target platform by a heuristic that tries to re-
duce the number of network hops between communicating tasks.
A random search technique is used in [11] to map the processes
of data parallel applications on target platforms with switch-based



networks.

The mapping of a set of independent tasks each consisting of a fixed
number of threads on multi-core platforms has been studied in [8].
The presented algorithm takes the communication requirements be-
tween the tasks into account and ensures that threads belonging to
the same task are allocated to the same cluster node.

6. CONCLUSION

We have presented a combined scheduling and mapping algorithm
for M-task programs on multi-core systems. The scheduling algo-
rithm creates layers of independent M-tasks, partitions the proces-
sors into groups of symbolic cores, assigns the M-task of a layer to
these groups and adjusts the group sizes according to the computa-
tional work. Several strategies are proposed for the mapping step
that assigns each symbolic core to a different physical core. These
strategies include a consecutive mapping of processes of the same
M-task to the same cluster node to increase intra M-task communi-
cation performance and a scattered mapping that assigns processes
of different M-tasks to the same cluster node to improve data ex-
changes between M-tasks.

Benchmark tests with several large applications from scientific com-
puting show that the M-task approach is a suitable programming
model for multi-core clusters, but significant differences in the per-
formance of different mappings can occur. The best mapping de-
pends on both, the communication requirements of the applica-
tions and the communication performance of the target platform.
For solvers for ordinary differential equations a consecutive place-
ment of the processes of the same M-task onto the same cluster
node leads to the best results in most cases. Special orthogonal
communication patterns can be used to further increase application
performance. The multi-zone benchmarks from the NAS parallel
benchmark suite require both, the careful selection of an appropri-
ate number of processor groups and the selection of the suitable
mapping strategy. The best performance in the presented measure-
ments was obtained by selecting a medium number of processor
groups and using a scattered placement of the processes.
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