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Abstract

The use of multiprocessor tasks (M-tasks) has been shown to be successful for
mixed task and data parallel implementations of algorithmsfrom scientific com-
puting. The approach often leads to an increase of scalability compared to a pure
data parallel implementation, but restricts the data exchange between M-tasks to
the beginning or the end of their execution, expressing dataor control dependen-
cies between M-tasks.

In this article, we propose an extension of the M-task model to communicating
M-tasks (CM-tasks) which allows communication between M-tasks during their
execution. In particular, we present and discuss the CM-task programming model,
programming support for designing CM-task programs, and experimental results.
Internally, a CM-task comprises communication and computation phases. The
communication between different CM-tasks can exploit optimized communication
patterns for the data exchange between CM-tasks, e.g., by using orthogonal real-
izations of the communication. This can be used to further increase the scalability
of many applications, including time-stepping methods which use a similar task
structure for each time step. This is demonstrated for solution methods for ordi-
nary differential equations.

1 Introduction

The implementation of modular programs on parallel platforms can be supported by
multiprocessor task programming (M-task programming). Each M-task represents a
part of a program which can be executed in parallel by an arbitrary number of proces-
sors. The entire program consists of a set of M-tasks; a coordination structure specifies
how the M-tasks of one specific program cooperate with each other and which de-
pendencies have to be considered for the execution. For the coordination of M-tasks
different parallel programming models have been proposed [13, 14, 15, 21]. A coordi-
nation structure in form of SP-graphs (serial parallel graphs) has been used in the TwoL
model [15]. Using M-tasks often leads to a better scalability compared to a pure data
parallel implementation due to a decrease of the communication overhead. Executing
M-tasks concurrently on smaller subsets of processors reduces the internal overhead



for collective communication of the M-tasks, thus reducingthe overall communication
overhead.

An M-task can use data produced by another M-task, leading todependencies be-
tween M-tasks that have to be considered for their execution. A dependency between
two M-tasks may require communication to achieve a data re-distribution such that a
data structure is reordered at the end of one M-taskA to be available in a data distribu-
tion expected by another M-taskB before the execution ofB starts. This restricts the
data exchange between M-tasks to the beginning or the end of their execution.

In this article, we extend the standard M-task model as used in the TwoL model to
the model of communicating M-tasks (CM-tasks) which allowsa more complex graph
structure and an additional kind of communication between M-tasks. The extension
includes modified M-tasks which have the ability to communicate with other M-tasks
during their execution. This new feature can capture the behavior of applications from
scientific computing or numerical analysis in which modulesexchange information
during their execution. Examples are modules with internaliterations exchanging data
with other modules after each iteration step. The CM-task model can also benefit
from specific communication patterns. For example, it is possible to organize the com-
munication phases between CM-tasks in an orthogonal fashion, thus enabling a more
efficient realization of array-based applications on many execution platforms.

The CM-task programming model requires new scheduling and load balancing al-
gorithms to achieve an efficient execution. The scheduling has to ensure that CM-tasks
which communicate with each other are executed concurrently to each other on disjoint
sets of processors. The scheduling has to be based on a cost model which also takes the
internal computations and the external communications between CM-tasks into con-
sideration. To support the programming in the CM-task modelwe have designed a
transformation framework including a specification mechanism for CM-task programs
and transformation steps which create an executable parallel program.

In the following, we present the parallel programming modelof CM-tasks in Sec-
tion 2 and discuss the programming support in Section 3. As example applications, we
consider parallel Adams methods [16] which are solvers for systems of ordinary dif-
ferential equations (ODEs) with potential method parallelism and show experimental
results in Section 4. Section 5 discusses related work and Section 6 concludes.

2 Programming model of CM-tasks

The CM-task programming model exhibits two levels of parallelism: an upper level
that captures the coarse-grain task structure of the application and a lower level that
expresses parallelism within the tasks of the upper level. ACM-task program consists
of a collection of CM-tasks which form the tasks of the upper level. Each CM-task is
implemented in a way that allows its execution on an arbitrary number of processors.
A CM-task can be a parallel module performing parallel computations (basic CM-task)
or can have an internal structure activating other CM-tasks(composed CM-task). The
internal parallelism of basic CM-tasks is realized by an SPMD programming approach;
message passing may be used for distributed memory platforms while an implementa-
tion based on Pthreads or OpenMP may be advantageous on clusters with large SMP



nodes. But within one CM-task program, the same SPMD model for the basic CM-
tasks is used. In this article, we assume that CM-tasks are based on message passing
using MPI and have an internal data distribution for each of their input and output vari-
ables. On the upper level, the CM-tasks of the same parallel program can cooperate
with each other in two different ways:
1) P-relation: CM-tasksA andB have a precedence relation (P-relation) if CM-task

B requires input data from CM-taskA before it can start its execution. This relation
is not symmetric and is denoted byAδP B.

2) C-relation: CM-tasksA andB have a communication relation (C-relation) ifA
andB have to exchange data during their execution to be able to continue their
execution correctly. This relation is symmetric and is denoted byAδCB.
In contrast, previous programming models based on M-tasks allow only P-relations

between the tasks. The P- and C-relations determine some constraints on the potential
execution order of CM-tasks:
• If there is a P-relation between two CM-tasksA andB, they have to be executed

one after another. IfB expects its input data in another data distribution as it is
produced byA, a re-distribution operation has to be used to make the data available
in the distribution expected. This re-distribution has to capture the situation that the
processor sets executingA andB are not identical and may even be disjoint.

• If two CM-tasksA andB have a C-relation, both tasks have to be executed concur-
rently to realize the specified data exchange during their execution. Therefore,A
andB are executed on disjoint sets of processors and cannot be executed one after
another.

• Due to the constraints on CM-tasks with C-relations to be executed at the same time
and for CM-tasks with P-relation to be executed one after another, there cannot be
both a P-relation and a C-relation between two CM-tasks.

• If there is no P-relation and no C-relation between two CM-tasksA andB, they
can be executed concurrently to each other but also one afteranother.
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Figure 1: M-task graph (left) with P-
relations and CM-task graph (right) with P-
and C-relations.

A CM-task program can be rep-
resented as a CM-task graphG =
(V, E) where the set of nodesV =
{A1, . . . , An} represent the CM-tasks.
The edges are composed of two setsE =
Ec ∪ Ep with Ec ∩ Ep = ∅; Ep con-
tains directed edges and represents the P-
relations between CM-tasks;Ec contains
bidirectional edges and represents the C-
relations between CM-tasks.

Figure 1 illustrates an M-task graph
(left) and a CM-task graph (right) for a
typical task graph structure occurring in
time stepping methods, e.g. for the so-
lution of ODEs. The M-task graph cap-

tures two time steps where M-tasksM2, M3, andM4 perform independent computa-
tions within one time step and the tasksM6, M7, andM8 perform analogous computa-



tions for the next time step. In between,M5 combines the results, e.g. for error control
or information exchange. In the M-task model (with P-relations only),M2 andM6

cannot be combined because the result ofM2 is used byM5. In the CM-task model,
such combinations are possible, see Figure 1 (right). The CM-tasksCM2, CM3, and
CM4 are used to perform the independent computations within a series of time steps
and to combine the results at the end of each time step. Data exchanges with other
program parts are captured by C-relations.

The CM-task graph of a CM-task program illustrates constraints on the execution
order. Different execution orders are possible, but will usually result in different ex-
ecution times. The goal is to find a schedule and mapping for the CM-tasks of one
program which fulfills the constraints given by the CM-task graph and leads to a mini-
mum execution time on a given parallel execution platform.

3 Programming Support

To support the development of CM-task programs, a specification language, a cost
model, and a transformation framework with support tools have been developed.

3.1 Specification language

The specification language is used to describe the upper-level of CM-task programs by
giving a list of CM-task declarations. The dependencies (P-relations) and interactions
(C-relations) between CM-tasks are expressed by variableswhich carry the information
to be communicated. For a P-relation between CM-tasksA andB, specific variables
are produced byA as output data and are required byB as input data. For a C-relation
between CM-tasksA andB, specific variables are exchanged betweenA andB or are
sent fromA to B (or fromB to A) during the execution ofA andB.

A CM-task specification of an application consists of data type declarations, data
distribution type declarations, declarations of CM-taskssupplied by the user (basic
CM-tasks), and definitions of CM-task graphs (composed CM-tasks). As data types
we consider scalars and multi-dimensional array structures. For the data distribution,
arbitrary block-cyclic and replicated distributions overmulti-dimensional processor
meshes are available. The specification contains only the interface definition of the
CM-tasks. The implementation of the basic CM-tasks are provided separately by the
programmer using the corresponding data distribution.

The declaration of a basic CM-task starts with the keywordcmtask followed by a
unique name and two parameter lists: an input/output parameter list in round brackets
for variables that are communicated over the P-relations atthe beginning or the end of
the CM-task and a communication parameter list in square brackets for variables that
are exchanged during the execution of the CM-task. Each parameter has a name and a
data type. The input/output parameters additionally have an access type (in, out, inout)
and array variables have a data distribution type. An estimation of the execution time
based on the cost model, see Subsection 3.2, can also be specified.

Composed CM-tasks are defined by using the keywordcmgraph followed by the
name and the input/output parameter list similar to the parameters for basic CM-tasks.



Listing 1: Specification program for the PAB method.

c o n s t K=8, n=320000;

t y p e vector = ar ray [n] o f doub le;
d i s t r i b vector :replic = [REPLIC (p)];

cmtask pab stage (stage:int :in , xs ,xe ,h: doub le:inout ,
yps:vector :inout:replic )[ xchg:vector ] wi th run t ime
n/p∗ T eval +(2∗K+1)∗n/p∗ T op + T mb (p, n/p);

cmmain pab (xs ,xe ,h: doub le:in, yps:vector [K]: inout:replic ) {
var vecxchg : vector ;

p a r f o r (i = 0:K−1) {
pab stage (i, xs , xe, h, yps[i])[ vecxchg ]; } }

One composed CM-task is defined as the main entrance point of the CM-task pro-
gram; this CM-task is denoted by using the keywordcmmain instead ofcmgraph.
The body of composed CM-tasks may include the declaration oflocal variables using
the keywordvar. Loops and conditional statements are available to define the inter-
nal task structure of composed CM-tasks. Different types ofloop structures are sup-
ported: sequentialfor andwhile-loops can be used to define the sequential execution
of CM-tasks. Parallelparfor -loops can be used to activate a set of CM-tasks that are
executed concurrently on disjoint subsets of processors. The iteration space of thefor
andparfor -loops has to be known at compile time (constant loop bounds)whereas the
while-loop contains an estimation of executed iterations. Conditionals are expressed
by using the keywordif and may contain an optionalelsebranch.

The activation of a CM-task is specified by giving the name of the CM-task, an
input/output parameter list (for the P-relations), and a communication parameter list
(for the C-relations). The P-relations and C-relations of aCM-task graph are defined
implicitly by using variable names in the parameter lists. The transformation steps
of the framework annotate additional information to the composed CM-task definitions
including the explicit specification of the relations, scheduling and load balancing deci-
sions, and information about necessary data re-distribution operations; see Subsection
3.3 for more details.

Example As an example for scientific applications that can benefit from the CM-task
programming model we consider parallel Adams methods whichare solution methods
for ordinary differential equations (ODEs). These methodshave been developed for
a parallel implementation in [20] and include the explicit parallel Adams-Bashforth
(PAB) methods as well as the implicit parallel Adams-Moulton (PAM) methods. Com-
bining the PAB method with the PAM method in a predictor-corrector scheme results
in an implicit ODE solver (PABM) with fixed point iteration using the PAB method as
predictor. In [16], a detailed description of a parallel implementation is given.

Both, the PAB and PABM methods compute a fixed numberK of stage vectors
in each time step which are then combined to compute the final solution vector of the
time step. In the M-task model, the stage vectors of one time step can be computed by
separate M-tasks which are executed concurrently by disjoint sets of processors. This
has the advantage that the internal communication of the M-tasks (which is dominated
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Figure 2: Orthogonal communication be-
tween CM-tasks: Processor subsets Ci

with C1 = {1, 2, 3}, C2 = {4, 5, 6} and C3 =

{7, 8, 9} are used for executing CM-task
CMi, i = 1, 2, 3. Orthogonal communica-
tion for communication between CM-tasks
is performed within the subsets {1, 4, 7},
{2, 5, 8}, and {3, 6, 9}.

by a gather operation, e.g. MPIAllgatherv()) is restricted to a subset of the processors.
At the end of each time step, global communication is required to construct the solution
vector of the time step. Forx time steps, the total number of M-tasks isx · K. Using
the CM-task model, it is now possible to define CM-tasks such that one CM-task is
responsible for the computation of the corresponding stagevectors in allx consecutive
time steps, i.e. a total number ofK CM-tasks is used, independently from the number
of time steps. This enables the use of orthogonal communication between the CM-tasks
at the end of each time step to construct the solution vector of the time step. For many
array-based algorithms from scientific computing with potential CM-task parallelism,
this can reduce the communication overhead tremendously.

The term orthogonal communication denotes a communicationpattern for proces-
sors arranged in a two-dimensional mesh structure and divided in two different ways
into subsets of processors with corresponding communicators. The first division into
subsets of processorsC1, . . . , CK is used to execute CM-tasksCM1, . . . , CMK in
parallel, each one executing one CM-task. The internal communication of CM-task
CMi is executed within subsetCi, i = 1, . . .K. The second division into subsets
results by building new subsets across the subsetsC1, . . . , CK ; these orthogonal sets
of processors contain one processor of each of the subsetsC1, . . . , CK and are used
for the communication between concurrently running CM-tasks, see Figure 2 for an
illustration. In the example, the second communicator is used for the data exchange
after each time step using a multi-broadcast operation and includes all processors with
the same rank within the first communicator.

Listing 1 shows the specification program for the PAB method with K = 8 stage
vectors for an ODE of sizen = 320000. For the replicated storage of the stage vec-
tors a data typevector and a distribution typereplic (for replicated distribution)
are declared. The CM-task that computes the stage vectors iscalledpab stage and
requires the stage numberstage, the starting timexs, the ending timexe, and the
step sizeh as an input. The parameteryps inputs the initial stage vector and outputs
the final result after all time steps have been computed. The communication parameter
xchg is used to exchange information with the CM-tasks computingthe other stage
vectors after each time step. The cost information providedis discussed in Subsection
3.2. The composed CM-taskpab is the main part of the application. It consists of a
parallel loop that createsK independent CM-taskspab stage. Because all loop iter-
ations access the same local variablevecxchg, there is an implicit C-relation between
each pair of iterations.



3.2 Cost model

The specification language is embedded into a compiler framework which supports
design decisions for the parallel execution on a specific execution platform, like the
execution order of independent CM-tasks, assigning processors to CM-tasks, and de-
termining required data re-distributions between cooperating CM-tasks. The design
decisions are based on estimated costs for the execution of CM-tasks and the commu-
nication between them. Usually, different execution orders are possible for a given
specification program, and each possible execution order may result in different esti-
mated costs. The compiler framework selects the execution with the smallest estimated
costs for the execution platform considered.

The cost model is based on symbolic runtime formulas which estimate the expected
execution time of CM-tasks for a specific set of processors onthe given machine and
for a specific size of the input data. The cost model captures the expected execu-
tion times of the basic CM-tasks and the communication costsresulting from data
re-distribution operations induced by the P-relations. The costs for a basic CM-task
consist of computation costs for the arithmetic operationsand communication costs for
internal communication; also costs for data exchanges as specified by the C-relations
are considered. The data re-distribution costs depend on the size of transmitted data
in bytes and on the platform dependent startup time and byte-transfer time; the size of
transmitted data can be computed within the framework basedon the data types and
data distribution types. Costs for composed CM-tasks can bebuilt up from costs of
basic CM-tasks and communication times for P-relations andC-relations according to
the hierarchical CM-task structure: For a concurrent execution of CM-tasksCM1 and
CM2, the maximum of their cost formulas is taken; for a consecutive execution, the
sum of their cost formulas is used. The costs for the CM-taskcmmain determine the
costs for the entire program.

The symbolic runtime formulas are based on application dependent information
and platform dependent information. The application dependent information includes
the number of arithmetic operations and the number and typesof communication op-
erations. The platform dependent information includes theaverage execution time for
an arithmetic operation and formulas describing the execution time for the communi-
cation operations depending on the number of transmitted data items and the number
of participating processors. The cost information is included in the CM-task specifica-
tion and can be provided manually by the programmer if simplecost formulas are used
or can be extracted automatically by a compiler tool by inspecting the internal SPMD
structure of the CM-task implementations.

In [11] it has been shown that symbolic runtime formulas can give realistic predic-
tions of the runtime of the PAB and the PABM method. For the CM-taskpab stage
of the PAB method the cost formulaTpabstage(n, p) = (n/p ∗ T eval + (2 ∗K + 1) ∗
n/p ∗ T op) + T mb(p, n/p) has been derived, see Listing 1. In this formula,K rep-
resents the number of stage vectors,n is the size of the ODE system,p is the number
of processors,T eval is the time to evaluate a single component of the ODE system,
T op is the time to execute an arithmetic operation andT mb is the runtime of a multi-
broadcast operation (MPIAllgatherv()) depending on the number of processors and
the size of the data. All values, exceptp, are known at compile-time. This results in



Figure 3:Overview of the transformation framework.

the cost formulaK · Tpabstage(n, p) for one time step of a data parallel version of the
PAB method executing all stage vectors one after another by all processors.

3.3 Transformation Framework

A compiler framework is provided to transform CM-task programs specified in the
specification language into executable parallel MPI programs. The framework inte-
grates scheduling and load balancing methods, data distribution methods, as well as a
generation process for the final MPI program. The framework supports two different
approaches to generate parallel programs:
• The static approach of the framework generates an MPI program (in C) with a

fixed schedule, i.e. the execution order of the CM-tasks and the size of the processor
groups used for the execution is fixed at compile time and cannot be changed at
runtime. The fixed schedule is created for a given problem instance (e.g. a fixed
system size) and a specific target platform with a fixed numberof processors. This
approach is especially suited for dedicated homogeneous platforms and requires an
accurate cost model for a good schedule.

• Thesemi-dynamic approachof the framework generates an MPI program (in C)



with an initial plan for an execution order of the CM-tasks and an initial size of the
processor groups used for the execution. This initial plan is based on a fixed sched-
ule for a default problem instance and a default target platform. The MPI program
generated allows the integration of a load balancing modulethat is able to arrange
dynamic reorganizations of the processor groups executingCM-tasks based on ob-
servations of the dynamic behavior of the execution progress and possible load
imbalances. Thus, semi-dynamic programs are able to adapt to different problem
instances and varying target platforms, i.e., they make useof additional processors,
if available, and compensate for load imbalances resultingfrom platform hetero-
geneity or an uneven distribution of workload. This approach is especially suited
for non-dedicated heterogeneous platforms.
The input to the framework consists of (a) a description of the CM-task application

in the specification language and (b) the platform dependentpart of the cost information
in a separatemachine specification. The generated program uses implementations of
basic CM-tasks that are provided by the programmer as parallel MPI functions. The
interface of each of these MPI functions has to match the specification, i.e., the number
and types of the parameters have to match; the data distribution types are used to select
appropriate re-distribution operations. At runtime, the generated program provides two
kinds of communicators to the basic CM-tasks: (a) a group communicator for group
internal communication and (b) a cluster communicator thatincludes all processes that
execute CM-tasks that are interconnected by C-relations for communication between
running CM-tasks.

The programs generated by the semi-dynamic approach additionally use a load bal-
ancing library and a data re-distribution library. The loadbalancing library is initialized
at program start with the CM-task graph of the application and is invoked during the
execution of the application with measured runtimes of executed CM-tasks and may
output an adapted schedule. The data re-distribution library provides runtime support
for copying and re-distributing data structures.

The transformation framework includes a number of transformation steps where
each step generates new information and adds it to the application description. Addi-
tionally, support tools are provided to visualize the progress of the framework and to
give the programmer a possibility to interact with the framework, e.g., to influence or
change decisions made by the framework. Figure 3 gives an overview of the transfor-
mation system. In the following, we describe the transformation steps in more detail.

TheDataflow Analyzer uses a data dependency analysis to detect the P-relations
and C-relations that are defined implicitly in the initial specification program. For
the P-relations, three different kinds of data dependencies are considered between the
input/output parameter lists of the CM-tasks forming a CM-task graph: a WR data
dependency occurs when a CM-taskA writes a variable that is subsequently read by
a CM-taskB; a RW data dependency emerges when a CM-taskA reads a variable
that is subsequently written by a CM-taskB; a WW data dependency arises when
CM-tasksA andB subsequently write to the same variable. In each of these cases
a P-relation between CM-tasksA andB is inserted; for WR data dependencies this
P-relation is additionally annotated with the name of the variable, denoting that a data
re-distribution betweenA andB might be necessary.



The C-relations of a CM-task graph are constructed using an analysis of the com-
munication parameter lists of the CM-tasks. Two cases are considered: (a) two CM-
tasksA andB access the same communication variable denoting a point-to-point com-
munication betweenA andB during their execution and therefore a single C-relation
is created; (b) more than two CM-tasks access the same communication variable re-
sulting in collective communication between these CM-tasks and therefore C-relations
between each pair of these CM-tasks are inserted.

The Schedulerdetermines a global hierarchical schedule consisting of a starting
point in time and an executing processor group for each CM-task in a given specifica-
tion of a CM-task application. Heuristics or hand-coded scheduling can be used for the
scheduling decisions.

The Static Data Manager inserts descriptions of data re-distribution operations
into the specification language. Such a description consists of the starting point in
time, the source and target processor groups and a list of variables that should be re-
distributed. For each variable, the name, the data type and the source and target distri-
bution type is specified. The required data re-distributionoperations are determined by
an inspection of the P-relations within each composed CM-task.

The Static Code Generatorproduces a static coordination program that utilizes
the MPI message passing library for the processor group management and for the re-
alization of the data re-distribution operations. The coordination program consists of
an initialization phase that creates all required communicators, a coordination function
for each composed CM-task, and a finalization procedure thatdisposes all created com-
municators. A coordination function may contain declarations of local variables, con-
structs to guide the control flow (if-statement, for-loop) and code to execute CM-tasks
and data re-distribution operations. The data re-distribution operations are performed
in three steps: first, all sending processors pack their datainto a sending buffer; second,
the data is transmitted over the network; and third, the receiving processors unpack the
data into the appropriate memory locations.

The Semi-dynamic Data Managercontributes to the transformation process in
two ways. First, it marks the positions in the specification program where the load bal-
ancing should be performed. By default, the marked positions are points in time where
all processors are available to allow a global restructuring and within loops to allow an
adaption of the schedule based on previous loop iterations.Second, this transforma-
tion step decides which variable accesses are performed to the original variable and for
which accesses a copy of the original variable should be supplied. The original variable
may only be accessed by at most one CM-task at any given point in time. Write ac-
cesses use the original variable to ensure that it always contains the most recent values.
This approach provides a flexible way to deal with a changing processor group layout
without having to recompute all required re-distribution operations at runtime.

The Semi-dynamic Code Generatorproduces a coordination program that con-
sists of a coordination function for each composed CM-task.Before starting a CM-task
the required communicators are created and the data re-distribution library is invoked
to ensure a correct data distribution of the input data. The runtimes of the executed CM-
tasks are measured and provided to the load balancing library at the positions marked
by the previous transformation step.
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Figure 4: Runtimes of one time step of the PAB method for Brusselator on SCI Xeon
cluster with K = 4 (left) and runtime of the PABM method on CLiC with K = 8 (right).

4 Experimental evaluation

In the following, we illustrate the CM-task model for solution methods of ODEs. In
particular, we consider the PAB and PABM methods that have been introduced as ex-
amples in Subsection 3.1. For the runtime tests we consider three different program
versions using a static schedule:
• The pure data parallel version computes the stage vectors one after another using

all available processors. Communication between the different stage vector com-
putations is not required.

• The task parallel version usesK disjoint processor groups of equal size to compute
theK stage vectors in parallel. Internally, each task is executed in an SPMD fashion
resulting in mixed task and data parallelism for the entire program. Additional
communication operations are required at the end of each time step to exchange the
stage vectors. This communication is realized by an intra group broadcast followed
by an inter group data exchange.

• The orthogonal version uses the same task layout as the task parallel variant. The
exchange of stage vectors is performed using concurrent multi-broadcast operations
between processes with the same group rank.
The runtime tests shown are made for ODE systems that result from a spatial dis-

cretization of the 2D Brusselator equation [7]. The resulting ODE systems are sparse:
each component of the right-hand side functionf of the ODE system has a fixed evalu-
ation time that is independent of the size of the ODE system; thus, the evaluation time
for the entire functionf increases linearly with the size of the ODE system. The figures
show the execution time of one time step, obtained by dividing the total execution time
by the number of time steps performed. A typical integrationmay consist of tens of
thousands of time steps, thus leading to a large overall execution time.

Figure 4 (left) shows the runtimes for a Xeon cluster consisting of 16 dual SMP
nodes with an SCI interconnection network using ScaMPI. Fortwo processors, no task
parallel implementation is given because at leastK = 4 processors are required for
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Figure 5: Speedups of the PAB (left) and PABM (right) methods for Brusselator on IBM
Regatta with K = 8.

task parallelism. The runtimes forp = 24 are worse compared to the results forp = 16
because two processes need to be started on some nodes makingthe network interface
on these nodes a bottleneck. Forp = 32 the amount of data per node decreases leading
to faster execution times. There is no speedup for the task parallel version because the
communication overhead outweighs the additional computational power.

Figure 4 (right) shows the execution times of the PABM methodon the CLiC clus-
ter. This cluster is built from 528, 800 MHz, Pentium III processors connected by a
fast-Ethernet network. For this cluster, the task parallelimplementation is significantly
faster than the data parallel implementation which is further improved by exploiting
orthogonal communication structures. The impressive decrease in runtime when us-
ing concurrent multiprocessor tasks instead of data parallelism can be explained by the
large communication overhead for collective communication operations on the CLiC
due to its interconnection network. From the figure, it can beseen that for a larger
number of processors, the task parallel implementations with orthogonal communica-
tion (as it is supported by the CM-task model) usually leads to the fastest runtimes.

Figure 5 shows the speedups of the different program versions for the PAB and
PABM methods for an IBM Regatta system; this system uses 32, 1.7 GHz, Power4
processors per SMP node and has 41 nodes. The results show that the orthogonal pro-
gram version can outperform a data parallel execution scheme even on shared memory
platforms. The PABM method requires a higher computationaleffort compared to the
PAB method and therefore also higher speedups are possible.Group based communi-
cation also plays a more important role in the PABM method, leading to a decrease of
the speedups for the data parallel version for more than 16 processors.

The speedups for the PAB method on the CHiC cluster are presented in Figure 6
(left) for the sparse Brusselator system and in Figure 6 (right) for the dense Schrödinger
system. The Schrödinger system uses a right-hand side function f for which the evalua-
tion of each component depends on all components of its argument vector and therefore
the evaluation time of the entire functionf depends quadratically on the size of the ODE
system. The CHiC cluster consists of 538 dual Opteron 2218 nodes clocked at 2.6 GHz
interconnected by a 10GBit/s Infiniband network. For the benchmark tests the MVA-
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Figure 6:Speedups of the PAB-method with K = 8 on the CHiC with Infiniband network
using a sparse ODE system (left) and a dense ODE system (right).

PICH2 MPI library was used. The computation to communication ratio of the dense
system is much higher compared to a sparse system leading to much higher speedups.
The number of executed arithmetic operations per node is identical in all three program
versions and therefore the speedups for the dense system liemuch closer together. For
the sparse system, the achieved speedups are limited because the amount of communi-
cation and computation are of the same order of magnitude.

Altogether, the results show that the orthogonal program version, as one example
for communication between CM-tasks, outperforms both other program version in al-
most all cases. Especially for cluster systems with a slowerinterconnection network,
such as the CLiC cluster (see Figure 4 (right)) optimizations such as orthogonal task
parallel versions are required to achieve competitive performance results. But also for
platforms with a fast interconnection network like the CHiCcluster, significant perfor-
mance improvements can be obtained, especially for a largernumber of processors.

5 Related Work

In the past decade, several research groups have proposed models for mixed task and
data parallel executions with the goal to obtain parallel programs with faster execution
time and better scalability properties, see [2, 18] for an overview of systems and ap-
proaches and see [3] for a detailed investigation of the benefits of combining task and
data parallel executions. An exploitation of task and data parallelism in the context
of a parallelizing compiler with an integrated scheduler can be found in the Paradigm
project [9, 14]. The approach in this article is an extensionof these approaches which
captures additional communication patterns.

Other environments for mixed parallelism in scientific computing are language ex-
tensions, see [6] for an overview. In contrast to our approach, these environments leave
the task placement, i.e. the scheduling, to the programmer and do not have an explicit
specification language. The Fx compiler[19] extends the HPFdata parallel language
with statements that allow the partitioning of processor groups into disjoint subgroups



whose size may be determined at runtime offering a semi-dynamic execution. [4] de-
scribes a concept to combine the task parallel Fortran M withthe data parallel Fortan
D or HPF to derive a mixed parallel execution. This concept allows communication
between concurrently running parallel programming parts but lacks an automatic data
re-distribution between data parallel tasks. Opus[5] usesShared Data Abstractions
(SDAs) for synchronization and communication between parallel program parts. The
Tlib library [17] is a realization of the TwoL model as runtime system.

Scheduling algorithms for computing an appropriate mix of task and data parallel
executions for M-task programs are presented in [21, 22]. For the decision, the scala-
bility characteristics of the M-tasks and the communication costs between the M-tasks
are taken into account. A comparison of different scheduling algorithms for M-task
programs is given in [13]. These scheduling algorithms cannot be applied directly to
CM-task programs, since they do not capture the C-relationsbetween CM-tasks.

The use of skeletons to coordinate different program parts was considered within
the Lithium environment [1]. Task and data parallel skeletons are available and can
be nested within each other. Skeletons were also used in the COLTHPF[12] compiler
to create mixed parallel coordination programs providing aruntime system that con-
trols communication and supports the dynamic loading of additional tasks. A lot of re-
search has been invested in the development of the BSP (bulk synchronous parallelism)
model and there exists a programming library (Oxford BSP library) that allows the for-
mulation of BSP programs in an SPMD style [8]. NestStep extends the BSP model
by supporting group-oriented parallelism by nesting of supersteps and a hierarchical
processor group concept [10]. NestStep is defined as a set of extensions to existing
programming languages like C or Java and is designed for a distributed address space.

6 Conclusions

In this paper, we have presented a parallel programming model with mixed task and
data parallelism for coding modular applications. This model is based on M-tasks
where each M-task is a parallel program part which can be executed on an arbitrary
set of processors and can be hierarchically decomposed intofurther M-tasks. Program-
ming models for M-tasks usually consider task graphs with control or data dependen-
cies (precedence constraints). We have extended the M-taskmodel by communication
between concurrently running M-tasks. The model is able to capture communication
between M-tasks, thus providing a flexible way to structure complex modular appli-
cations. In particular, the model is able to structure the communication between M-
tasks such that orthogonal communication patterns can be exploited. Experimental
results for solution methods for ODEs show a significant performance improvement
compared to data parallel or pure task parallel execution schemes. Another area of ex-
amples which are expected to benefit from the CM-task model are modular simulation
algorithms, e.g., from atmospheric simulation. For the implementation of efficient pro-
grams in the CM-task model, we have proposed a step-wise transformation process that
is realized by a transformation framework. This framework supports the development
of efficient CM-task programs by an automated transformation process and a toolset of
interacting software tools to transform a specification into an executable program.
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