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Abstract

The use of multiprocessor tasks (M-tasks) has been showasadressful for
mixed task and data parallel implementations of algoritfios scientific com-
puting. The approach often leads to an increase of scalabdmpared to a pure
data parallel implementation, but restricts the data exghdetween M-tasks to
the beginning or the end of their execution, expressing datantrol dependen-
cies between M-tasks.

In this article, we propose an extension of the M-task maalebmmunicating
M-tasks (CM-tasks) which allows communication betweenagks during their
execution. In particular, we present and discuss the CMgasgramming model,
programming support for designing CM-task programs, amemental results.
Internally, a CM-task comprises communication and comntprigphases. The
communication between different CM-tasks can exploitrapted communication
patterns for the data exchange between CM-tasks, e.g.,ihg aghogonal real-
izations of the communication. This can be used to furthereiase the scalability
of many applications, including time-stepping methodsalthise a similar task
structure for each time step. This is demonstrated for mmiunethods for ordi-
nary differential equations.

1 Introduction

The implementation of modular programs on parallel platf®ican be supported by
multiprocessor task programming (M-task programming)ctEll-task represents a
part of a program which can be executed in parallel by anrarfyinumber of proces-
sors. The entire program consists of a set of M-tasks; a auatidn structure specifies
how the M-tasks of one specific program cooperate with ealslrand which de-
pendencies have to be considered for the execution. Forotbrelioation of M-tasks
different parallel programming models have been proposadl4, 15, 21]. A coordi-
nation structure in form of SP-graphs (serial parallel gsg3has been used in the TwoL
model [15]. Using M-tasks often leads to a better scalgbid@mpared to a pure data
parallel implementation due to a decrease of the commuaitaverhead. Executing
M-tasks concurrently on smaller subsets of processorscestihe internal overhead



for collective communication of the M-tasks, thus redudimg overall communication
overhead.

An M-task can use data produced by another M-task, leadidgpendencies be-
tween M-tasks that have to be considered for their executiotlependency between
two M-tasks may require communication to achieve a datagteHaution such that a
data structure is reordered at the end of one M-tastk be available in a data distribu-
tion expected by another M-tagk before the execution aB starts. This restricts the
data exchange between M-tasks to the beginning or the eheiofexecution.

In this article, we extend the standard M-task model as uséuki TwoL model to
the model of communicating M-tasks (CM-tasks) which all@wsore complex graph
structure and an additional kind of communication betweetatks. The extension
includes modified M-tasks which have the ability to commuatgowith other M-tasks
during their execution. This new feature can capture thewiehof applications from
scientific computing or numerical analysis in which modutgshange information
during their execution. Examples are modules with inteiteghtions exchanging data
with other modules after each iteration step. The CM-taskleh@can also benefit
from specific communication patterns. For example, it issfiids to organize the com-
munication phases between CM-tasks in an orthogonal fasttias enabling a more
efficient realization of array-based applications on magcation platforms.

The CM-task programming model requires new scheduling aad balancing al-
gorithms to achieve an efficient execution. The schedulagtb ensure that CM-tasks
which communicate with each other are executed concuyrenglach other on disjoint
sets of processors. The scheduling has to be based on a atedtwinich also takes the
internal computations and the external communicationsdse CM-tasks into con-
sideration. To support the programming in the CM-task madelhave designed a
transformation framework including a specification medsiarfor CM-task programs
and transformation steps which create an executable ppatigram.

In the following, we present the parallel programming maafeCM-tasks in Sec-
tion 2 and discuss the programming support in Section 3. Asgke applications, we
consider parallel Adams methods [16] which are solvers ystesns of ordinary dif-
ferential equations (ODESs) with potential method paraieland show experimental
results in Section 4. Section 5 discusses related work aciib&e concludes.

2 Programming model of CM-tasks

The CM-task programming model exhibits two levels of palem: an upper level

that captures the coarse-grain task structure of the atiglicand a lower level that
expresses parallelism within the tasks of the upper levelMitask program consists
of a collection of CM-tasks which form the tasks of the upgeel. Each CM-task is
implemented in a way that allows its execution on an arhjitrarmber of processors.
A CM-task can be a parallel module performing parallel cotapans (basic CM-task)
or can have an internal structure activating other CM-tgs&mposed CM-task). The
internal parallelism of basic CM-tasks is realized by an $RMogramming approach;
message passing may be used for distributed memory platfehite an implementa-
tion based on Pthreads or OpenMP may be advantageous oerslusth large SMP



nodes. But within one CM-task program, the same SPMD modehf® basic CM-
tasks is used. In this article, we assume that CM-tasks a@dban message passing
using MPI and have an internal data distribution for eacteirtinput and output vari-
ables. On the upper level, the CM-tasks of the same paraldgram can cooperate
with each other in two different ways:

1) P-relation: CM-tasksA and B have a precedence relation (P-relation) if CM-task
B requires input data from CM-taskbefore it can start its execution. This relation
is not symmetric and is denoted By p B.

2) C-relation: CM-tasksA and B have a communication relation (C-relation)Af
and B have to exchange data during their execution to be able toneentheir
execution correctly. This relation is symmetric and is deddy Ad- B.

In contrast, previous programming models based on M-tdkks anly P-relations
between the tasks. The P- and C-relations determine sons¢rairts on the potential
execution order of CM-tasks:

o If there is a P-relation between two CM-tasksand B, they have to be executed
one after another. 1B expects its input data in another data distribution as it is
produced byA, a re-distribution operation has to be used to make the dattahble
in the distribution expected. This re-distribution hasapture the situation that the
processor sets executifgand B are not identical and may even be disjoint.

o |ftwo CM-tasksA andB have a C-relation, both tasks have to be executed concur-
rently to realize the specified data exchange during theicetion. Therefored
andB are executed on disjoint sets of processors and cannot batedeone after
another.

o Due to the constraints on CM-tasks with C-relations to beetex at the same time
and for CM-tasks with P-relation to be executed one aftetrarpthere cannot be
both a P-relation and a C-relation between two CM-tasks.

o If there is no P-relation and no C-relation between two Ckk$ad and B, they
can be executed concurrently to each other but also onesafftther.

A CM-task program can be rep-
resented as a CM-task grap =
(V,E) where the set of node¥ =
{A1,...,A,} represent the CM-tasks.
The edges are composed of two sBts-

E. U E, with E. N E, = 0; E, con-

tains directed edges and represents the P-
relations between CM-taskg;. contains

bidirectional edges and represents the C-

relations between CM-tasks.

Figure 1 illustrates an M-task graph
Figure 1: M-task graph (left) with p- (I€f) and a CM-task graph (right) for a
relations and CM-task graph (right) with p-  typical task graph structure occurring in
and C-relations. time stepping methods, e.g. for the so-

lution of ODEs. The M-task graph cap-
tures two time steps where M-tasks,, M3, and M, perform independent computa-
tions within one time step and the task&, M, andMg perform analogous computa-




tions for the next time step. In betweeW; combines the results, e.g. for error control
or information exchange. In the M-task model (with P-rela$ only), M, and Mg
cannot be combined because the result®fis used byMs. In the CM-task model,
such combinations are possible, see Figure 1 (right). Thet&WsC M-, C M3, and

C M, are used to perform the independent computations withimiassef time steps
and to combine the results at the end of each time step. Datmeges with other
program parts are captured by C-relations.

The CM-task graph of a CM-task program illustrates constsabn the execution
order. Different execution orders are possible, but willally result in different ex-
ecution times. The goal is to find a schedule and mapping ®ICK-tasks of one
program which fulfills the constraints given by the CM-tas&gh and leads to a mini-
mum execution time on a given parallel execution platform.

3 Programming Support

To support the development of CM-task programs, a spedditdanguage, a cost
model, and a transformation framework with support toolsehzeen developed.

3.1 Specification language

The specification language is used to describe the upperdéCM-task programs by
giving a list of CM-task declarations. The dependencies{Rtions) and interactions
(C-relations) between CM-tasks are expressed by varialiieh carry the information
to be communicated. For a P-relation between CM-tasled B, specific variables
are produced byl as output data and are requiredByas input data. For a C-relation
between CM-tasksl and B, specific variables are exchanged betwdesnd B or are
sent fromA to B (or from B to A) during the execution oft and B.

A CM-task specification of an application consists of datzetgeclarations, data
distribution type declarations, declarations of CM-taskgplied by the user (basic
CM-tasks), and definitions of CM-task graphs (composed @dkg). As data types
we consider scalars and multi-dimensional array strustuFer the data distribution,
arbitrary block-cyclic and replicated distributions ovaulti-dimensional processor
meshes are available. The specification contains only teefawe definition of the
CM-tasks. The implementation of the basic CM-tasks areigeal/separately by the
programmer using the corresponding data distribution.

The declaration of a basic CM-task starts with the keywamdiask followed by a
unique name and two parameter lists: an input/output paearist in round brackets
for variables that are communicated over the P-relatiotiseabbeginning or the end of
the CM-task and a communication parameter list in squarekita for variables that
are exchanged during the execution of the CM-task. Eachmpetea has a name and a
data type. The input/output parameters additionally havecaess type (in, out, inout)
and array variables have a data distribution type. An esiimaf the execution time
based on the cost model, see Subsection 3.2, can also béegheci

Composed CM-tasks are defined by using the keywondraph followed by the
name and the input/output parameter list similar to thermpatars for basic CM-tasks.



Listing 1: Specification program for the PAB method.

const K=8, n=320000;

type vector = array [n] of double;

distrib vector:replic = [REPLIC(p)];

cmtask pab_stage (stage:int:in, xs,xe,h:double:inout,
yps:vector:inout:replic) [xchg:vector] with runtime
n/p*T_eval+(2xK+1)*n/p*xT_op+T_mb(p, n/p);

cmmain pab (xs,xe,h:double:in, yps:vector [K]:inout:replic) {
var vecxchg : vector;
parfor (i = 0:K—1) {

pab_stage (i, xs, xe, h, yps[il])[vecxchgl; } }

One composed CM-task is defined as the main entrance poitieo€M-task pro-
gram; this CM-task is denoted by using the keywardmain instead ofcmgraph.

The body of composed CM-tasks may include the declaratidooafl variables using
the keywordvar. Loops and conditional statements are available to defiaéntier-

nal task structure of composed CM-tasks. Different type®ap structures are sup-
ported: sequentidbr andwhile-loops can be used to define the sequential execution
of CM-tasks. Parallgbarfor-loops can be used to activate a set of CM-tasks that are
executed concurrently on disjoint subsets of processdrs.it€ration space of thfer
andparfor -loops has to be known at compile time (constant loop bountisyeas the
while-loop contains an estimation of executed iterations. Qantls are expressed
by using the keyword and may contain an optionalsebranch.

The activation of a CM-task is specified by giving the namehaf CM-task, an
input/output parameter list (for the P-relations), and mcwnication parameter list
(for the C-relations). The P-relations and C-relations &fM-task graph are defined
implicitly by using variable names in the parameter listheTrransformation steps
of the framework annotate additional information to the posed CM-task definitions
including the explicit specification of the relations, sdhkng and load balancing deci-
sions, and information about necessary data re-distabutperations; see Subsection
3.3 for more details.

Example As an example for scientific applications that can benefihftbe CM-task
programming model we consider parallel Adams methods wduietsolution methods
for ordinary differential equations (ODEs). These methbage been developed for
a parallel implementation in [20] and include the explicitrallel Adams-Bashforth
(PAB) methods as well as the implicit parallel Adams-Moualt®AM) methods. Com-
bining the PAB method with the PAM method in a predictor-eator scheme results
in an implicit ODE solver (PABM) with fixed point iteration irgy the PAB method as
predictor. In [16], a detailed description of a parallel lempentation is given.

Both, the PAB and PABM methods compute a fixed numkieof stage vectors
in each time step which are then combined to compute the fihatisn vector of the
time step. In the M-task model, the stage vectors of one tiey@&an be computed by
separate M-tasks which are executed concurrently by disgeits of processors. This
has the advantage that the internal communication of thadWst(which is dominated
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Figure 2: Orthogonal communication be-
tween CM-tasks: Processor subsets C;
withC; = {1, 2, 3}, Cy = {4, 5, 6} and Cs =
2 5 {7,8,9} are used for executing CM-task

A CM;, i = 1,2,3. Orthogonal communica-
1 1 tion for communication between CM-tasks
(D 2 @ is performed within the subsets {1,4,7},
— — = - {2,5,8}, and {3,6,9}.
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by a gather operation, e.g. MRlllgatherv()) is restricted to a subset of the processors.
At the end of each time step, global communication is reguimeonstruct the solution
vector of the time step. Far time steps, the total number of M-taskseis K. Using

the CM-task model, it is now possible to define CM-tasks siietht bne CM-task is
responsible for the computation of the corresponding stagtors in alk: consecutive
time steps, i.e. a total number &f CM-tasks is used, independently from the number
oftime steps. This enables the use of orthogonal commuoith¢tween the CM-tasks
at the end of each time step to construct the solution veétinedtime step. For many
array-based algorithms from scientific computing with ptisd CM-task parallelism,
this can reduce the communication overhead tremendously.

The term orthogonal communication denotes a communicatdtern for proces-
sors arranged in a two-dimensional mesh structure andetiviid two different ways
into subsets of processors with corresponding communiaiithe first division into
subsets of processofs,, ..., Ck is used to execute CM-tasksMy,...,C My in
parallel, each one executing one CM-task. The internal comcation of CM-task
CM; is executed within subset;, 7 = 1,... K. The second division into subsets
results by building new subsets across the suliSets. ., Ck; these orthogonal sets
of processors contain one processor of each of the subsets., Cx and are used
for the communication between concurrently running CMé&asee Figure 2 for an
illustration. In the example, the second communicator edu®r the data exchange
after each time step using a multi-broadcast operationraziddes all processors with
the same rank within the first communicator.

Listing 1 shows the specification program for the PAB methdtth i = 8 stage
vectors for an ODE of size = 320000. For the replicated storage of the stage vec-
tors a data typgect or and a distribution type epl i ¢ (for replicated distribution)
are declared. The CM-task that computes the stage vectoaiésipab_st age and
requires the stage numbgr age, the starting timexs, the ending timexe, and the
step sizeh as an input. The parametgps inputs the initial stage vector and outputs
the final result after all time steps have been computed. dh@wnication parameter
xchg is used to exchange information with the CM-tasks computiregother stage
vectors after each time step. The cost information provideliscussed in Subsection
3.2. The composed CM-taglab is the main part of the application. It consists of a
parallel loop that createls independent CM-tasksab_st age. Because all loop iter-
ations access the same local varialde xchg, there is an implicit C-relation between
each pair of iterations.



3.2 Cost model

The specification language is embedded into a compiler framewhich supports
design decisions for the parallel execution on a specific@i@en platform, like the
execution order of independent CM-tasks, assigning psmeso CM-tasks, and de-
termining required data re-distributions between codpegaCM-tasks. The design
decisions are based on estimated costs for the executioklab€ks and the commu-
nication between them. Usually, different execution osdame possible for a given
specification program, and each possible execution ordgrreslt in different esti-
mated costs. The compiler framework selects the execuiidrthe smallest estimated
costs for the execution platform considered.

The cost model is based on symbolic runtime formulas whitimese the expected
execution time of CM-tasks for a specific set of processorthergiven machine and
for a specific size of the input data. The cost model capturesekpected execu-
tion times of the basic CM-tasks and the communication cresslting from data
re-distribution operations induced by the P-relationse Thsts for a basic CM-task
consist of computation costs for the arithmetic operatammscommunication costs for
internal communication; also costs for data exchangesedifigd by the C-relations
are considered. The data re-distribution costs dependensitle of transmitted data
in bytes and on the platform dependent startup time and togesfer time; the size of
transmitted data can be computed within the framework basetie data types and
data distribution types. Costs for composed CM-tasks cabuiieup from costs of
basic CM-tasks and communication times for P-relations@undlations according to
the hierarchical CM-task structure: For a concurrent ettecwf CM-tasksC M7 and
C M,, the maximum of their cost formulas is taken; for a conseeutixecution, the
sum of their cost formulas is used. The costs for the CM-taskiain determine the
costs for the entire program.

The symbolic runtime formulas are based on application déget information
and platform dependent information. The application depeninformation includes
the number of arithmetic operations and the number and typesmmunication op-
erations. The platform dependent information includesatierage execution time for
an arithmetic operation and formulas describing the exectime for the communi-
cation operations depending on the number of transmittéalitlans and the number
of participating processors. The cost information is ideld in the CM-task specifica-
tion and can be provided manually by the programmer if simapkt formulas are used
or can be extracted automatically by a compiler tool by ietipg the internal SPMD
structure of the CM-task implementations.

In [11] it has been shown that symbolic runtime formulas cae gealistic predic-
tions of the runtime of the PAB and the PABM method. For the @gkpab_st age
of the PAB method the cost formulg,qpstage (7, p) = (n/p* T_eval + (2« K + 1) *
n/p* T_op) + T_-mb(p,n/p) has been derived, see Listing 1. In this formutarep-
resents the number of stage vectorss the size of the ODE system,is the number
of processors] _eval is the time to evaluate a single component of the ODE system,
T _op is the time to execute an arithmetic operation @hghb is the runtime of a multi-
broadcast operation (MBAllgatherv()) depending on the number of processors and
the size of the data. All values, exceptare known at compile-time. This results in



Application .
(Specification s Maff:_hlng
Language) pecification

Transformation Framework

Specification
+ P-relations Scheduler
+ C-relations

Specification
+ Schedule

Dataflow
Analyzer

Data Manager
(static)

Data Manager
(semi-dynamic)

Specification
+ Re-distribution
Operations

Specification
+ Variable Copy
+ Synchr. Points

Code Generator
(semi-dynamic)

Code Generator
(static)

Static
Coordination
Program

MPI Message Load Balancing Data Re-
Passing Library Library distribution Library,

Figure 3:Overview of the transformation framework.

Semi-dynamic
Coordination
Program

Library with basic\, _
CM-tasks

2

the cost formulak - Tapstaqge (12, p) fOr one time step of a data parallel version of the
PAB method executing all stage vectors one after anothell pyacessors.

3.3 Transformation Framework

A compiler framework is provided to transform CM-task pragns specified in the
specification language into executable parallel MPI progra The framework inte-
grates scheduling and load balancing methods, data distnbmethods, as well as a
generation process for the final MPI program. The framewagpsrts two different
approaches to generate parallel programs:

e The static approach of the framework generates an MPI program (in C) with a
fixed schedule, i.e. the execution order of the CM-tasksla@dize of the processor
groups used for the execution is fixed at compile time and abe changed at
runtime. The fixed schedule is created for a given problerante (e.g. a fixed
system size) and a specific target platform with a fixed nurobprocessors. This
approach is especially suited for dedicated homogeneatfephs and requires an
accurate cost model for a good schedule.

e Thesemi-dynamic approachof the framework generates an MPI program (in C)



with an initial plan for an execution order of the CM-taskslam initial size of the
processor groups used for the execution. This initial pdareised on a fixed sched-
ule for a default problem instance and a default targetqatf The MPI program
generated allows the integration of a load balancing mothaleis able to arrange
dynamic reorganizations of the processor groups exec@vigasks based on ob-
servations of the dynamic behavior of the execution prageesl possible load
imbalances. Thus, semi-dynamic programs are able to adajiffeérent problem
instances and varying target platforms, i.e., they maketiadditional processors,

if available, and compensate for load imbalances resuftimgp platform hetero-

geneity or an uneven distribution of workload. This appto&cespecially suited

for non-dedicated heterogeneous platforms.

The input to the framework consists of (a) a description ef@M-task application
in the specification language and (b) the platform depenuietbf the cost information
in a separatenachine specificationThe generated program uses implementations of
basic CM-tasks that are provided by the programmer as paMPI functions. The
interface of each of these MPI functions has to match theifsgetoon, i.e., the number
and types of the parameters have to match; the data distrilbtypes are used to select
appropriate re-distribution operations. At runtime, teegrated program provides two
kinds of communicators to the basic CM-tasks: (a) a grouproanicator for group
internal communication and (b) a cluster communicatoriti@dtides all processes that
execute CM-tasks that are interconnected by C-relationsdmmunication between
running CM-tasks.

The programs generated by the semi-dynamic approachamuialiiy use a load bal-
ancing library and a data re-distribution library. The Idedancing library is initialized
at program start with the CM-task graph of the applicatiod msninvoked during the
execution of the application with measured runtimes of etext CM-tasks and may
output an adapted schedule. The data re-distributionriitpeovides runtime support
for copying and re-distributing data structures.

The transformation framework includes a number of tramsfdion steps where
each step generates new information and adds it to the afiplicdescription. Addi-
tionally, support tools are provided to visualize the pesgrof the framework and to
give the programmer a possibility to interact with the fravoek, e.g., to influence or
change decisions made by the framework. Figure 3 gives awieweof the transfor-
mation system. In the following, we describe the transfdiomesteps in more detalil.

The Dataflow Analyzer uses a data dependency analysis to detect the P-relations
and C-relations that are defined implicitly in the initialesification program. For
the P-relations, three different kinds of data dependsrarie considered between the
input/output parameter lists of the CM-tasks forming a Gidkt graph: a WR data
dependency occurs when a CM-tadlwrites a variable that is subsequently read by
a CM-taskB; a RW data dependency emerges when a CM-thgkads a variable
that is subsequently written by a CM-tagk a WW data dependency arises when
CM-tasks A and B subsequently write to the same variable. In each of thesescas
a P-relation between CM-tasksé and B is inserted; for WR data dependencies this
P-relation is additionally annotated with the name of thealde, denoting that a data
re-distribution betweerl and B might be necessary.



The C-relations of a CM-task graph are constructed usinghatysis of the com-
munication parameter lists of the CM-tasks. Two cases amsidered: (a) two CM-
tasksA and B access the same communication variable denoting a pojpitd com-
munication betweenl and B during their execution and therefore a single C-relation
is created; (b) more than two CM-tasks access the same coiwation variable re-
sulting in collective communication between these CM-¢aekd therefore C-relations
between each pair of these CM-tasks are inserted.

The Schedulerdetermines a global hierarchical schedule consisting déuirsg
point in time and an executing processor group for each GW-taa given specifica-
tion of a CM-task application. Heuristics or hand-codedestthing can be used for the
scheduling decisions.

The Static Data Manager inserts descriptions of data re-distribution operations
into the specification language. Such a description cansisthe starting point in
time, the source and target processor groups and a list @bles that should be re-
distributed. For each variable, the name, the data typetengdurce and target distri-
bution type is specified. The required data re-distributiparations are determined by
an inspection of the P-relations within each composed Ci¢-ta

The Static Code Generatorproduces a static coordination program that utilizes
the MPI message passing library for the processor group gesnent and for the re-
alization of the data re-distribution operations. The dimation program consists of
an initialization phase that creates all required commatois, a coordination function
for each composed CM-task, and a finalization procedurelibpbses all created com-
municators. A coordination function may contain declamnagi of local variables, con-
structs to guide the control flow (if-statement, for-loopflacode to execute CM-tasks
and data re-distribution operations. The data re-didinlwperations are performed
in three steps: first, all sending processors pack theiridata sending buffer; second,
the data is transmitted over the network; and third, theivetgeprocessors unpack the
data into the appropriate memory locations.

The Semi-dynamic Data Managercontributes to the transformation process in
two ways. First, it marks the positions in the specificatiomgsam where the load bal-
ancing should be performed. By default, the marked positaye points in time where
all processors are available to allow a global restructuaind within loops to allow an
adaption of the schedule based on previous loop iteratiSesond, this transforma-
tion step decides which variable accesses are performbd tariginal variable and for
which accesses a copy of the original variable should bel®gpT he original variable
may only be accessed by at most one CM-task at any given potithe. Write ac-
cesses use the original variable to ensure that it alwaytacathe most recent values.
This approach provides a flexible way to deal with a changioggssor group layout
without having to recompute all required re-distributigreeations at runtime.

The Semi-dynamic Code Generatomproduces a coordination program that con-
sists of a coordination function for each composed CM-t&8glore starting a CM-task
the required communicators are created and the data ribdigin library is invoked
to ensure a correct data distribution of the input data. Thémes of the executed CM-
tasks are measured and provided to the load balancingyibtdahe positions marked
by the previous transformation step.
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Figure 4: Runtimes of one time step of the PAB method for Brusselator on SCI Xeon
cluster with K = 4 (left) and runtime of the PABM method on CLiC with K = 8 (right).

4 Experimental evaluation

In the following, we illustrate the CM-task model for soluti methods of ODEs. In
particular, we consider the PAB and PABM methods that haen ligtroduced as ex-
amples in Subsection 3.1. For the runtime tests we condidee tifferent program
versions using a static schedule:

e The pure data parallel version computes the stage vectersfter another using
all available processors. Communication between therdiffestage vector com-
putations is not required.

e The task parallel version usésdisjoint processor groups of equal size to compute
the K stage vectorsin parallel. Internally, each task is exetintan SPMD fashion
resulting in mixed task and data parallelism for the entiregpam. Additional
communication operations are required at the end of eaehdiap to exchange the
stage vectors. This communication is realized by an intoajgbroadcast followed
by an inter group data exchange.

e The orthogonal version uses the same task layout as the éasltgb variant. The
exchange of stage vectors is performed using concurretitbroadcast operations
between processes with the same group rank.

The runtime tests shown are made for ODE systems that resuitd spatial dis-
cretization of the 2D Brusselator equation [7]. The resglfDDE systems are sparse:
each component of the right-hand side funcfiarithe ODE system has a fixed evalu-
ation time that is independent of the size of the ODE systhus,tthe evaluation time
for the entire functiori increases linearly with the size of the ODE system. The figure
show the execution time of one time step, obtained by digdire total execution time
by the number of time steps performed. A typical integratiwey consist of tens of
thousands of time steps, thus leading to a large overallgiogctime.

Figure 4 (left) shows the runtimes for a Xeon cluster coimgjsof 16 dual SMP
nodes with an SCI interconnection network using ScaMPItWworprocessors, no task
parallel implementation is given because at |ddst= 4 processors are required for
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Figure 5: Speedups of the PAB (left) and PABM (right) methods for Brusselator on 1BM
Regatta with K = 8.

task parallelism. The runtimes fpr= 24 are worse compared to the resultsfoe 16
because two processes need to be started on some nodes thakiegwork interface
on these nodes a bottleneck. fpor 32 the amount of data per node decreases leading
to faster execution times. There is no speedup for the tasilplaversion because the
communication overhead outweighs the additional comjmurtat power.

Figure 4 (right) shows the execution times of the PABM metbodhe CLIC clus-
ter. This cluster is built from 528, 800 MHz, Pentium Ill pessors connected by a
fast-Ethernet network. For this cluster, the task paratiplementation is significantly
faster than the data parallel implementation which is ®rriimproved by exploiting
orthogonal communication structures. The impressiveedess in runtime when us-
ing concurrent multiprocessor tasks instead of data pdisath can be explained by the
large communication overhead for collective communicatiperations on the CLiC
due to its interconnection network. From the figure, it carséen that for a larger
number of processors, the task parallel implementatiotts evthogonal communica-
tion (as it is supported by the CM-task model) usually lead$é fastest runtimes.

Figure 5 shows the speedups of the different program vessionthe PAB and
PABM methods for an IBM Regatta system; this system uses 32GHz, Power4
processors per SMP node and has 41 nodes. The results shahetbathogonal pro-
gram version can outperform a data parallel execution sefemn on shared memory
platforms. The PABM method requires a higher computatieffakt compared to the
PAB method and therefore also higher speedups are pos&ibep based communi-
cation also plays a more important role in the PABM methoaklieg to a decrease of
the speedups for the data parallel version for more than déegsors.

The speedups for the PAB method on the CHIC cluster are piexsém Figure 6
(left) for the sparse Brusselator system and in Figure @tyigr the dense Schrodinger
system. The Schrodinger system uses a right-hand sidéduarfi¢or which the evalua-
tion of each component depends on all components of its agtwector and therefore
the evaluation time of the entire functibdepends quadratically on the size of the ODE
system. The CHIC cluster consists of 538 dual Opteron 22#i8s0locked at 2.6 GHz
interconnected by a 10GBit/s Infiniband network. For thedhemark tests the MVA-
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Figure 6:Speedups of the PAB-method with K = 8 on the CHiC with Infiniband network
using a sparse ODE system (left) and a dense ODE system (right).

PICH2 MPI library was used. The computation to communicatitio of the dense
system is much higher compared to a sparse system leadingdio Inigher speedups.
The number of executed arithmetic operations per node figite in all three program
versions and therefore the speedups for the dense systemdie closer together. For
the sparse system, the achieved speedups are limited pe¢baummount of communi-
cation and computation are of the same order of magnitude.

Altogether, the results show that the orthogonal prograrsi@e, as one example
for communication between CM-tasks, outperforms bothrgpihegram version in al-
most all cases. Especially for cluster systems with a slamterconnection network,
such as the CLIC cluster (see Figure 4 (right)) optimizagisach as orthogonal task
parallel versions are required to achieve competitivequerénce results. But also for
platforms with a fast interconnection network like the CHildster, significant perfor-
mance improvements can be obtained, especially for a largaber of processors.

5 Related Work

In the past decade, several research groups have proposktsnfar mixed task and
data parallel executions with the goal to obtain parallefpams with faster execution
time and better scalability properties, see [2, 18] for aaraiew of systems and ap-
proaches and see [3] for a detailed investigation of the fiterod combining task and
data parallel executions. An exploitation of task and dataltelism in the context
of a parallelizing compiler with an integrated scheduler ba found in the Paradigm
project [9, 14]. The approach in this article is an extensibthese approaches which
captures additional communication patterns.

Other environments for mixed parallelism in scientific cartipg are language ex-
tensions, see [6] for an overview. In contrast to our apprptese environments leave
the task placement, i.e. the scheduling, to the programnteda not have an explicit
specification language. The Fx compiler[19] extends the H&®& parallel language
with statements that allow the partitioning of processaugss into disjoint subgroups



whose size may be determined at runtime offering a semisdimexecution. [4] de-
scribes a concept to combine the task parallel Fortran M thighdata parallel Fortan
D or HPF to derive a mixed parallel execution. This concelowed communication
between concurrently running parallel programming pauntddcks an automatic data
re-distribution between data parallel tasks. Opus[5] &esred Data Abstractions
(SDAs) for synchronization and communication between |gdnarogram parts. The
Tlib library [17] is a realization of the TwoL model as run&ésystem.

Scheduling algorithms for computing an appropriate mixasktand data parallel
executions for M-task programs are presented in [21, 22 tf@decision, the scala-
bility characteristics of the M-tasks and the communicatosts between the M-tasks
are taken into account. A comparison of different scheduéityorithms for M-task
programs is given in [13]. These scheduling algorithms oabe applied directly to
CM-task programs, since they do not capture the C-relatiebween CM-tasks.

The use of skeletons to coordinate different program paats eonsidered within
the Lithium environment [1]. Task and data parallel skeaistare available and can
be nested within each other. Skeletons were also used in@h& GoH12] compiler
to create mixed parallel coordination programs providimgrtime system that con-
trols communication and supports the dynamic loading oftetdhl tasks. A lot of re-
search has been invested in the development of the BSP {mdkionous parallelism)
model and there exists a programming library (Oxford BSRali) that allows the for-
mulation of BSP programs in an SPMD style [8]. NestStep eddehe BSP model
by supporting group-oriented parallelism by nesting ofesafeps and a hierarchical
processor group concept [10]. NestStep is defined as a saterfstons to existing
programming languages like C or Java and is designed fotrbdieed address space.

6 Conclusions

In this paper, we have presented a parallel programming hvaitte mixed task and
data parallelism for coding modular applications. This elad based on M-tasks
where each M-task is a parallel program part which can beut@don an arbitrary
set of processors and can be hierarchically decomposeflinier M-tasks. Program-
ming models for M-tasks usually consider task graphs withtrab or data dependen-
cies (precedence constraints). We have extended the Mytadkl by communication
between concurrently running M-tasks. The model is ableafiiure communication
between M-tasks, thus providing a flexible way to structwmplex modular appli-
cations. In particular, the model is able to structure th@mainication between M-
tasks such that orthogonal communication patterns can peited. Experimental
results for solution methods for ODEs show a significant grenfince improvement
compared to data parallel or pure task parallel executibarses. Another area of ex-
amples which are expected to benefit from the CM-task mo@airedular simulation
algorithms, e.g., from atmospheric simulation. For thelengentation of efficient pro-
grams in the CM-task model, we have proposed a step-wissftrianation process that
is realized by a transformation framework. This framewargorts the development
of efficient CM-task programs by an automated transformgiimcess and a toolset of
interacting software tools to transform a specificatioo i executable program.
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