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Abstract

In this paper, we explore the use of hierarchically

structured multiprocessor tasks (M-tasks) for programming

multi-core cluster systems. These systems often have hier-

archically structured interconnection networks combining

different computing resources, starting with the intercon-

nect within multi-core processors up to the interconnection

network combining nodes of the cluster or supercomputer.

M-task programs can support the effective use of the com-

puting resources by adapting the task structure of the pro-

gram to the hierarchical organization of the cluster system

and by exploiting the available data parallelism within the

M-tasks. In particular, we consider different mapping algo-

rithms for M-tasks and investigate the resulting efficiency

and scalability. We present experimental results for differ-

ent application programs and different multi-core systems.

1. Introduction

TheM-task programmingmodel has originally been pro-

posed to combine the benefits of task and data parallelism.

AnM-task program is hierarchically subdivided into a set of

M-tasks each working on a different part of the application

(task parallelism). An M-task is a parallel task which can

run on an arbitrary number of cores or processors, leading

to varying execution times. We distinguish basic M-tasks

and composedM-tasks. Basic M-tasks are implemented us-

ing an SPMD programming style, e.g. MPI or OpenMP, and

comprise the actual computations to be performed (data par-

allelism). Composed M-tasks are used to describe the inter-

actions between basic M-tasks or other composed M-tasks.

Within a composed M-task, other M-tasks can be activated

for execution. The advantage of this approach is to increase

the available degree of parallelism and to restrict communi-

cation within M-tasks to subsets of the available processors

or cores, thus reducing the communication overhead and in-

creasing scalability.

An application program given as an M-task specification

offers several possibilities for a parallel execution, differing

in the order in which the M-tasks are executed and the sub-

sets of processors or cores assigned to each M-task. On dif-

ferent parallel architectures different versions of the M-task

program might be the most efficient and scalable ones. To

find an optimal M-task program version is an NP-complete

problem which is usually solved by heuristic algorithms.

In this article, we extend the M-task approach to heteroge-

neous multi-core systems and propose mapping algorithms

which are aware of the heterogeneity of multi-core systems.

The contributions of this article include:

• to explore the use of the M-task programming model

for multi-core systems;

• to suggest mapping algorithms for assigning M-tasks

to specific processor cores and to explore the resulting

differences in execution time;

• to investigate the resulting scalability for several

benchmarks from the area of solvers for ordinary dif-

ferential equation (ODEs) and from the NAS parallel

benchmarks.

The investigations on dual-core and quad-core systems

show significant differences in the performance of the pro-

posed mappings depending on the communication pattern

of the application. The lowest execution times are usually

achieved by using a consecutive mapping that places pro-

cesses belonging to the same M-task onto the same cluster

node. Additionally, we show that the performance of ODE

solvers can be further improved by exploiting special com-

munication patterns based on an orthogonal arrangement of

the processes and the combination ofMPI and OpenMP into

hybrid execution schemes.

The rest of the paper is organized as follows. Section 2

describes the multiprocessor task programmingmodel. Sec-

tion 3 describes the mapping algorithms for M-tasks. Sec-

tion 4 presents a detailed evaluation of the mapping strate-

gies for different recent parallel systems. Section 5 dis-

cusses related work and Section 6 concludes and discusses

future work.



2. M-Task Programming

An M-task program is built up from a set of M-tasks co-

operating with each other. The coordination between M-

tasks can be based on control or data dependencies. M-tasks

have a set of input parameters and produce a set of output

parameters; both are visible to other M-tasks. A data depen-

dence between M-tasks M1 and M2 arises if M1 produces

output data required as an input for M2.

A data dependence may lead to a data re-distribution op-

eration if M-task M1 provides its output data in a differ-

ent distribution or on a different set of processors or cores

than it is expected by M-task M2. These data dependen-

cies or control dependencies emerging from the structure of

the application lead to precedence constraints between M-

tasks. Precedence constraints restrict the possible execution

order of the M-tasks. If M-tasks M1 and M2 are connected

by a precedence constraint the execution of M1 must have

been finished and all required data re-distribution operations

must have been carried out before the execution of M2 can

be started. For independent M-tasks a concurrent execution

on disjoint subsets of the available processors as well as an

execution one after another are possible.

Due to the precedence constraints between M-tasks, M-

task programs can be represented by a graph structure

GM = (V, E), where the set of nodes V consists of the

M-tasks of a program and edges e ∈ E connect different

M-tasks M1 and M2 if there is a precedence constraint be-

tween M1 and M2. A precedence constraint can be a data

or control dependence from M1 to M2. Examples for graph

structures GM are macro dataflow graphs in the Paradigm

compiler[3] or SP-graphs within the TwoL model[13].

For the parallel execution of the M-task program repre-

sented by GM there exist several execution schemes differ-

ing in

i) the number of cores assigned to each M-task and

ii) the execution order for independent M-tasks, i.e. for

M-tasks M1, . . . , Mk ∈ V that are not connected by a

path within GM (scheduling M-tasks).

For heterogeneous parallel platforms there is an addi-

tional degree of freedom in the parallel execution strategy,

which is the assignment of specific processors (or proces-

sor cores) to M-tasks (mapping M-tasks). The heterogene-

ity of the execution platform might be caused by different

processors (or processor cores), different nodes, or different

interconnections between cores, processors, and nodes.

3. Mapping Algorithms

Determining a suitable execution scheme of an M-task

program for a specific heterogeneous multi-core machine

requires several steps: scheduling the execution order of the

M-tasks, determining the number of cores assigned to each
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Figure 1. Use of Dewey notation for the rep-

resentation of heterogeneous platforms.

M-task, and mapping the M-tasks to specific cores. If the

cores assigned to an M-task do not have a shared address

space, the data distributions of the input and output param-

eters also have to be fixed. In the following, we concentrate

on the mapping decisions and explore different mappings

for M-tasks to specific processor cores.

3.1. Architecture Model

In this paper we consider multi-core systems with a hi-

erarchy of computing resources as a special case of a het-

erogeneous platform. We assume cores of the same type

but with different interconnections between (i) cores of the

same processor, (ii) processors of the same node, and (iii)

nodes of a partition or the entire machine. The architec-

ture can be represented as a tree-structure with cores C as

leaves, processors P as intermediate nodes being a parent

for cores, computing nodes N as intermediate nodes com-

bining processors, and partitions or the entire machine A as

root node.

For a unique identification of intermediate levels and leaf

cores of the architecture tree, we use the Dewey notation

[7]. Each node n in the tree gets a label l(n) consisting

of digits separated by dots; the label uniquely describes the

path from the root to the specific node. The root gets the

label l(n) = 0. The children of the root get the labels

1, . . . , k from left to right where k is the number of chil-

dren. The labels for the nodes in the following levels are

defined recursively. The label l(n) for a node n starts with

the label from the parent node m and concatenates a digit i
if n is the root of the subtree i, i = 1, . . . , k separated by a

dot: l(n) = l(m).i. This notation is suitable for describing

heterogeneous hierarchical multi-core systems, see Fig. 1.

3.2. Mapping

The mapping of M-tasks to processor cores has to take

the task structure and the architectural structure into ac-

count. In the following, we assume that the execution or-

der and the number of executing cores for each M-task has

been determined in a scheduling step. For the scheduling,

a set of homogeneous symbolic cores is used which has to

be mapped to physical cores in the mapping step. For the
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Figure 2. Example for a consecutive mapping

of M-tasks Mi, i = 1, . . . , 4 each requiring 4
symbolic cores on a platform with 4 nodes

consisting of 2 dual-core processors.

mapping, we consider the situation that g M-tasks are exe-

cuted concurrently to each other using a group partitioning

G = (G1, . . . , Gg) of symbolic processor cores such that

group Gi with |Gi| = gi executes M-task Mi. The map-

ping can be described by a function

F : {G1, . . . , Gg} → 2C

where C denotes the set of physical cores; F maps a

symbolic group Gi to a physical group F (Gi) and it is

F (Gi) ∩ F (Gj) = ∅ for i 6= j. Moreover |Gi| = |F (Gi)|,
i.e., each symbolic group is mapped to a physical group of

the same size.

In the following, we propose several mappings mainly

differing in the strategies how symbolic cores are mapped to

physical cores of the parallel machine. Since the underlying

programming model like MPI or OpenMP also influences

performance and communication times, the specific choice

of the mapping function also has to take this into consid-

eration. For the definition of the mappings, we assume a

platform consisting of |N | identical nodes, each containing

|P | processors with |C| cores. For each proposed mapping,

we define a sequence of physical cores

s1, s2, . . . sm with m = |N | ∗ |P | ∗ |C|.

Each physical core appears exactly once in this sequence.

The mapping function F assigns the symbolic cores of a

group Gi, i = 1, . . . , g to consecutive physical cores in this

sequence, i.e.

F (Gi) =

{

sj , sj+1, . . . , sj+|Gi|−1 | j = 1 +

i−1
∑

k=1

|Gk|

}

.

Node-oriented consecutive mapping: For this map-

ping, symbolic cores are mapped consecutively to physical

cores to obtain a node-oriented use of the physical cores. If

a group of symbolic cores is larger than the number of phys-

ical cores per node of the architecture, several nodes are

used such that each node is used only for one group. Oth-

erwise, more than one group may be mapped to one node.

This mapping tries to minimize the number of groups that

are mapped to each node of the architecture. Fig. 2 shows
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Figure 3. Example for a scattered mapping of

M-tasks Mi, i = 1, . . . , 4 each requiring 4 sym-
bolic cores on a platform with 4 nodes con-

sisting of 2 dual-core processors.

an example. This mapping should be beneficial if communi-

cation within nodes is faster than communication between

nodes for the specific target architecture and intra M-task

communication outweighs inter M-task communication.

In this mapping, the physical cores are ordered such that

cores of the same node are adjacent, i.e. the sequence of

physical cores is

1.1.1, ..., 1.1.|C|, 1.2.1, ..., 1.|P |.|C|, 2.1.1, ..., |N |.|P |.|C|.

The label l(si) = ni.pi.ci of an arbitrary core si, 1 ≤ i ≤
m in this sequence can be computed by

ni = 1 +

⌊

i − 1

|P | ∗ |C|

⌋

, pi = 1 +
(⌊

i−1
|C|

⌋

mod |P |
)

,

and ci = 1 + ((i − 1) mod |C|).

Scattered core-level mapping: For this mapping, the

physical cores for a specific group of symbolic cores are

selected such that cores are used whose Dewey notation end

with the same digit, i.e., corresponding cores of different

nodes are used. Fig. 3 illustrates this mapping. If a group

contains less symbolic cores than nodes, one physical core

of each node is used for the mapping. This ensures an equal

participation of the nodes in the communication performed

during the execution of the M-tasks of the group.

The sequence of physical cores for this mapping is de-

fined as

1.1.1,..., |N |.1.1, 1.1.2,..., |N |.1.|C|, 1.2.1,..., |N |.|P |.|C|.

The label of a core si in this sequence l(si) = ni.pi.ci is

given by

ni = 1 + ((i − 1) mod |N |) , pi = 1 +
⌊

⌊(i−1)/|N |⌋
|P |

⌋

,

and ci = 1 + (⌊ i−1
|N | ⌋ mod |P |).

Mixed core-node level mapping: Node-oriented and

core-oriented mapping strategies can be mixed, e.g. to

adapt to the ratio of intra vs. inter M-task communica-

tion. Mixed mappings can be described using the parameter

d, 1 ≤ d ≤ |P | ∗ |C| denoting the number of consecutive

physical cores of a node used to execute an M-task. If the



number of symbolic cores assigned to an M-task is greater

than d, multiple nodes are used for the execution. The scat-

tered mapping results for d = 1 and d = |P | ∗ |C| leads to
the consecutive mapping. The sequence of physical cores is

given by

1.1.1, ..., 1.(1 +
d − 1

|C|
).(1 + ((d − 1) mod |C|)), 2.1.1,

..., |N |.(1 +
d − 1

|C|
).(1 + ((d − 1) mod |C|)), ...,

1.(1 +
2d − 1

|C|
).(1 + ((2d − 1) mod |C|)), ..., |N |.|P |.|C|.

The label l(si) = ni.pi.ci of the ith core in the sequence

can be computed by

ni = 1 +

(⌊

i − 1

d

⌋

mod |N |

)

, pi = 1 +

⌊

r

|C|

⌋

,

ci = 1 + (r mod |C|)

with r =

⌊

⌊(i − 1)/d⌋

|N |

⌋

∗ d + ((i − 1) mod d).

4. Experimental Results and Evaluation

In this section, we investigate the resulting execution

time for the different mappings for different execution plat-

forms and benchmark applications. We also consider com-

munication optimizations between M-tasks and hybrid real-

izations of M-tasks with MPI and OpenMP.

4.1. Experimental Setup

4.1.1. Hardware Description

For the benchmark tests, a variety of platforms is used. The

Chemnitz High Performance Linux Cluster (CHiC) is built

up of 538 nodes consisting of two AMDOpteron 2218 dual-

core processors with a clock rate of 2.6 GHz and a peak

performance of 5.2 GFlops/s per core. The communication

between the nodes is performedwith theMVAPICH 1.0beta

MPI library over a 10 GBit/s infiniband network.

The SGI Altix system consists of 19 partitions. The

benchmarks are executed inside a partition containing 128

nodes, each equipped with two Intel Itanium2 Montecito

dual-core processors. The processors are clocked at 1.6

GHz and achieve a peak performance of 6.4 GFlops/s per

core. Each node has two links to the NUMAlink 4 intercon-

nection network offering a bidirectional bandwidth of 6.4

GByte/s. The employed MPI library is SGI MPT 1.17.

The Xeon cluster consists of 2 nodes with 2 Intel Xeon

E5345 ’Clovertown’ quad-core processors each. The pro-

cessors run at 2.33 GHz and have a peak performance of

9.33 GFlops/s per core. An infiniband network with a band-

width of 10 GBit/s connects the nodes and the MVAPICH2

1.0beta library supplies the MPI functionality.

4.1.2. Benchmark Description

A class of applications that benefit from the M-task pro-

gramming model are solution methods for ordinary dif-

ferential equations (ODEs) that compute a fixed number

K of independent stage vectors in each time step. The

computation of each stage vector can be represented by

an M-task. Examples for explicit solvers for non-stiff

ODEs are Iterated Runge-Kutta (IRK) methods[16] and

Parallel Adams-Bashforth(PAB) methods; implicit solvers

are Parallel Adams-Moulton(PAM) methods for non-stiff

ODEs and Diagonal-Implicitly Iterated Runge-Kutta (DI-

IRK) methods for stiff ODEs. The combination of the PAB

and PAM methods in a predictor-corrector scheme results

in an implicit ODE solver (PABM)[15].

Each time step of the IRK method computes m fixed

point iteration steps with an implicit Runge-Kutta correc-

tor. Each fixed point iteration step involves an intra M-

task multi-broadcast (MPI Allgatherv()) and a global data

re-distribution between M-tasks. At the end of each time

step the new approximation is computed using global com-

munication. Similar to IRK, the DIIRK method computes

m corrector steps each requiring a global data exchange. In

each corrector step of DIIRK, a system of non-linear equa-

tions is solved using Newton’s method with Gaussian elim-

ination leading to multiple intra M-task communication op-

erations. Compared to IRK, DIIRK requires more compu-

tations, and intra M-task communication is more important.

In the PABM method, the computation of the stage vectors

involves multiple intra M-task multi-broadcast operations.

Global communication is only required once at the end of

each time step. For the benchmarks, a sparse ODE system

(2D Brusselator discretization) and a dense ODE system

(resulting from a Schrödinger-Poisson system) are used.

Another class of applications that can benefit from the

M-task programming model are solvers for flow equations

that operate on a set of meshes (also called zones). A

single time step involves independent computation within

each zone followed by a border exchange between over-

lapping zones. The NAS parallel benchmark multi-zone

version (NPB-MZ)[17] provides solvers for discretized ver-

sions of the unsteady, compressible Navier-Stokes equa-

tions that operate on multiple zones. The fine grain par-

allelism within the zones is exploited using shared mem-

ory OpenMP programming; the coarse grain parallelism

between the zones is realized using message passing with

MPI. For the purpose of this article we consider a modi-

fied version of the Lower-Upper Symmetric Gauss-Seidel

multi-zone (LU-MZ) benchmark which uses MPI for both

levels of parallelism. This has the advantage that several

nodes of a distributed memory platform can operate on the

same zone. There are 16 zones in this benchmark that can

be represented by 16 independent M-tasks.
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4.2. Evaluation of Mappings to Cores

First, we compare a pure data parallel execution scheme

with a task parallel execution. At each point in time, the

data parallel scheme executes oneM-task using all |C| avail-
able cores and the task parallel version executes the max-

imum number K of independent M-tasks on K disjoint

groups consisting of ⌊|C|/K⌋ or ⌈|C|/K⌉ cores.
Fig. 4 shows the execution times of a time step of DIIRK

using four stages on the CHiC cluster. Task parallelism re-

sults in much lower runtimes because intra M-task commu-

nication can be restricted to groups of cores. Data transfers

are faster within a cluster node of the CHiC leading to a

clear performance benefit of the consecutive mapping.

Fig. 5 shows the speedups of IRK using four stages on

the SGI Altix. Intra M-task communication is less impor-

tant in IRK and therefore data parallelism is competitive.

For the task parallel versions, a scattered mapping deliv-

ers the best results. This mapping leads to the placement
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Figure 7. Performance of the LU-MZ bench-
mark on CHiC.

of processes with the same group rank on the same node.

Therefore, the exchange of the stage vectors between each

fixed point iteration is carried out within a node.

The execution times for different mappings of PABM on

the Xeon cluster are shown in Fig. 6. Compared to IRK,

PABM requires considerably more communication within

the M-tasks. On the other hand, in this configurationK = 8
M-tasks are executed using 2 cores each leading to a small

communication overhead for each M-task compared to re-

distributions between M-tasks. Therefore, for configura-

tions with manyM-tasks that are executed by only few cores

the lowest execution times are achieved by a scattered map-

ping.

The total GFlops per second achieved by the LU-MZ

benchmark are shown in Fig. 7 for the CHiC cluster and

in Fig. 8 for the SGI Altix. Problem classes ’C’ with a

global mesh size of 480 × 320 × 28 and ’D’ with a global

mesh size of 1632 × 1216 × 34 are used. The data paral-

lel version of class ’C’ can only be executed for up to 448
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cores because a minimum amount of data is required for

each process. For a low number of cores, pure data paral-

lelism leads to better results because a data exchange be-

tween zones is not required. But on a high number of cores

the communication within the zones becomes more impor-

tant because the amount of data assigned to each process

becomes smaller. The node consecutive mapping leads to

the best performance on both platforms. For class ’D’ the

computation to communication ratio is much higher leading

to smaller differences between the program versions.

4.3. Optimizing Communication Between
Tasks

The inter M-task communication within the considered

ODE solvers can be optimized by exploiting a special com-

munication pattern based on an orthogonal arrangement of

the MPI processes[12]. In these orthogonal program ver-

sions the data exchange between M-tasks is carried out by

concurrent multi-broadcast operations.

Fig. 9 compares the speedups for data parallel, standard

task parallel and orthogonal task parallel execution schemes

of IRK on the CHiC cluster. For a low number of cores,

most of the execution time is spent within computations

leading to an almost equal performance of all program ver-

sions. But for a high number of cores, a suitable mapping

is required for a good performance. The results show that a

mixed or a consecutive mapping perform best for the stan-

dard task parallel version whereas the consecutive mapping

clearly leads to the highest speedups for the orthogonal ver-

sion.

Similar to IRK, the execution times of PABM can be re-

duced significantly by employing orthogonal communica-

tion. Fig. 10 shows the execution times on the SGI Al-

tix. The scattered mapping achieves the lowest execution

times for the standard task parallel version. For the orthog-
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Figure 9. Speedups of IRK using the four
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Figure 10. Runtimes of PABM using K = 8
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onal program version a consecutive and a mixed mapping

achieve the best results because less time is spent in data

exchanges between M-tasks.

4.4. MPI Tasks vs. OpenMP Threads

An adaption to the hardware characteristics of clusters of

SMPs can be achieved by combining message passing with

MPI and thread programming with OpenMP into hybrid

programming models. In this section, we examine the per-

formance of hybrid realizations of M-task programs. The

upper level parallelism between M-tasks is realized by MPI

communication and for the lower level parallelism within

M-tasks hybrid MPI+OpenMP implementations are used.

Multiple processes of the same M-task have to be mapped

on the same cluster node to make use of the OpenMP paral-

lelism. Therefore, a suitable mapping strategy is required.

In the following, we focus on a consecutive mapping for

both, pure MPI and hybrid implementations.
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Figure 11. Speedups of pure MPI and hybrid

MPI+OpenMP realizations of IRK with the four
stage RadauIIA7 method on CHiC.
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Figure 12. Runtimes of pure MPI and hybrid
MPI+OpenMP versions of DIIRK on CHiC.

A comparison of the achieved speedups of IRK with

four stages on the CHiC cluster using four OpenMP threads

per cluster node is shown in Fig. 11. The hybrid execu-

tion scheme for the data parallel version leads to consider-

able higher speedups compared to a pure MPI realization.

The main source of this improvement is the reduction of

the number of participating MPI processes in global com-

munication operations. The best results for IRK are ob-

tained by using orthogonal communication between nodes

and OpenMP intra-node.

Fig. 12 shows the execution times of a time step of DI-

IRK with four stages on CHiC. The hybrid execution leads

to a slow-down for the data parallel version caused by pro-

gram parts that require a frequent synchronization, e.g. the

pivoting in the Gaussian elimination. For the task parallel

version, the hybrid execution scheme clearly outperforms

its pure MPI counterpart.
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Figure 13. Runtimes of different combina-

tions of MPI processes and OpenMP threads
of PABM with K = 8 stages on SGI Altix.

The SGI Altix has a distributed shared memory archi-

tecture that allows the use of OpenMP threads across dif-

ferent nodes. Therefore, many different combinations of

MPI processes and OpenMP threads are possible. Fig. 13

shows a comparison of the execution times of PABM with

eight stages on 256 cores of the SGI Altix. At least eight

MPI processes are required for task parallelism. Using the

maximum possible number of OpenMP threads leads to the

best results for both, the data parallel and the standard task

parallel version. For the orthogonal version, the lowest exe-

cution times are achieved by using 64 MPI processes and 4

OpenMP threads.

5. Related Work

Several research groups have proposed models and pro-

gramming environments to support mixed task and data par-

allel executions with the goal to obtain parallel programs

with faster execution time and better scalability properties,

see [2, 14] for an overview and see [4] for a detailed inves-

tigation of the benefits of combining task and data paral-

lelism.

Scheduling algorithms for computing an appropriatemix

of task and data parallelism for M-tasks programs on ho-

mogeneous platforms are presented in [18, 19, 11]. These

algorithms can be combined with the proposed mappings to

provide a better utilization of the computing resources of

multi-core clusters. An overview of M-task scheduling al-

gorithms for heterogeneous target platforms is given in [9].

These approaches are targeted to large cluster-of-clusters

systems and restrict the execution of single M-tasks to a

homogeneous sub-cluster. Our benchmark results show that

M-tasks have to be executed across multiple nodes of multi-

core clusters to obtain high speedups. Therefore, these



heterogeneous scheduling algorithms are not suitable for

multi-core clusters.

The mapping of tiles of distributed multi-dimensional ar-

rays with nearest neighbor communication on nodes of an

SMP cluster has been studied in [5]. Mapping heuristics

for data parallel applications on physical processors have

been presented in [10, 1, 6]. Profiling is used to obtain

the communication requirements of the target application

and a mapping heuristic selects an optimized placement of

the processes based on the communication performance of

the target platform. Mixed task and data parallel applica-

tions and dependencies between processes are not explic-

itly taken into account. A heuristic for mapping a set of

independent tasks consisting of a fixed number of threads

to multi-core processors has been introduced in [8].

6. Conclusions and Future Work

In this paper, we have proposed several mapping strate-

gies for M-task programs on multi-core systems. Investi-

gations on different platforms show a significant difference

in the performance for different mappings and for different

execution schemes. The optimal mapping usually depends

on the ratio of communication within M-tasks and data ex-

changes between M-tasks. M-tasks with a high commu-

nication requirement benefit from a mapping on consecu-

tive cores of the same cluster node. Exploiting orthogonal

communication patterns and hybrid MPI+OpenMP leads to

a further increase of the performance. As example appli-

cations, several large programs from scientific computing

have been considered. Future work includes the investiga-

tion of cost models to predict the impact of the proposed

mappings and providing an automatic selection of the best

mapping strategy.
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