
Layer-Based Scheduling Algorithms for
Multiprocessor-Tasks with Precedence Constraints

Jörg Dümmler, Raphael Kunis, and Gudula Rünger

Chemnitz University of Technology,
Department of Computer Science, 09107 Chemnitz, Germany

E-mail: {djo, krap, ruenger}@cs.tu-chemnitz.de

A current challenge in the development of parallel applications for distributed memory plat-
forms is the achievement of a good scalability even for a high number of processors. The scal-
ability is impacted by the use of communication operations, e.g. broadcast operations, whose
runtime exhibits a logarithmic or linear dependence on the number of utilized processors. The
multiprocessor-task programming model can help to reduce the communication overhead, but
requires an appropriate schedule for an efficient execution. Many heuristics and approxima-
tion algorithms are available for this scheduling task. The choice of a suitable scheduling al-
gorithm is an important factor in the development of multiprocessor-task applications. In this
paper, we consider layer-based scheduling algorithms and compare their runtimes for large task
graphs consisting of up to 1000 nodes and target systems with up to 256 processors. Further-
more, we introduce an extension methodology to enable scheduling algorithms for independent
multiprocessor-tasks to handle precedence constraints.

1 Introduction

Modular applications from scientific computing can be implemented using the
multiprocessor-task (M-Task) programming model with precedence constraints, which has
been shown to yield better results than a pure data parallel or a pure task parallel exe-
cution, especially for distributed memory platforms with a large number of processors.
In the M-Task programming model, a parallel application is defined as a set of M-Tasks
where each M-Task can be executed on an arbitrary subset of the available processors of
the target machine. Dependencies arise from data and control dependencies between M-
Tasks. Independent M-Tasks can be executed in parallel on disjoint subsets of the available
processors.

The execution of an M-Task application is based on a schedule that assigns each M-
Task a subset of the available processors and fixes the execution order of the M-Tasks. In
general, for a given M-Task program many different schedules are possible. Which sched-
ule achieves the best results, i.e. leads to a minimum parallel runtime of the application,
depends on the application itself and on the target platform. Therefore, for target plat-
forms with different computation and communication behavior, different schedules may
lead to a minimum runtime. As determining the optimal schedule is an NP-hard problem,
many scheduling heuristics and approximation algorithms have been proposed to get a near
optimal solution to this problem.

We define two main classes of scheduling algorithms for M-Tasks with precedence
constraints: allocation-and-scheduling-based and layer-based algorithms. Algorithms of
these categories were implemented in a scheduling toolkit1 that enables application de-
velopers to automatically determine the best algorithm for any combination of M-Task
program and target hardware platform. In this paper, we examine layer-based scheduling

1

algorithms. Allocation-and-scheduling-based algorithms have been considered in 2. Much
theoretical and practical research has been done for scheduling sets of independent M-
Tasks but most scientific applications can only be modeled with precedence constraints.
Therefore, we present an extension strategy for the problem of scheduling tasks without
precedence constraints to the scheduling problem with dependencies and apply this strat-
egy to several scheduling algorithms. Our extension strategy enables the extension of any
scheduling algorithm for independent M-Tasks to support precedence constraints.

The paper is structured as follows: Section 2 explains the M-Task programming model
with dependencies. Section 3 outlines our extension methodology and gives an overview
of the considered layer-based scheduling algorithms. The obtained benchmark results are
discussed in Section 4. Section 5 concludes the paper.

2 Multiprocessor-Task programming model

In the M-Task programming model a parallel application is represented by an anno-
tated directed acyclic graph (M-Task dag) G = (V,E). An example of a small
dag is given in Figure 1. A node v ∈ V corresponds to the execution of an M-
Task, which is a parallel program part implemented using an SPMD programming style.

4 5

2

1

3

6

7

Figure 1. Example of a
small M-Task dag.

An M-Task can be executed on any nonempty subset gv ⊆
{1, . . . , P} of the available processors of a P -processor target
platform. The size of a processor group |gv| is denoted as the
allocation of the task v.

A directed edge e = (u, v) ∈ E represents precedence con-
straints between two M-Tasks u and v, i.e. u produces output data
that v requires as input data. Therefore, u and v have to be exe-
cuted one after another. Edges may lead to a data re-distribution
if the processor group changes, i.e. gu 6= gv or if u and v re-
quire different data distributions. M-Tasks that are not connected
by a path in the M-Task dag can be executed concurrently on dis-
joint subsets of the available processors. Each node v ∈ V is
assigned a computation cost Tv : [1, . . . , P] → R+ and each edge

e = (u, v) ∈ E is assigned a communication cost Tcomm(u, v).
The execution of an M-Task application is based on a schedule S, which assigns each

M-Task v ∈ V a processor group gv and a starting time TSv
, i.e. S(v) = (gv, TSv

). A
feasible schedule has to assure that all required input data are available before starting an
M-Task, meaning that all predecessor tasks have finished their execution and all necessary
data redistributions have been carried out, i.e.

∀u, v ∈ V, (u, v) ∈ E TSu
+ Tu(|gu|) + Tcomm(u, v) ≤ TSv

.

Furthermore, M-Tasks whose execution time interval overlaps have to run on disjoint pro-
cessor groups, i.e.

∀u, v ∈ V [TSu , TSu + Tu(|gu|)] ∩ [TSv , TSv + Tv(|gv|)] 6= ∅ =⇒ gu ∩ gv = ∅
The makespan Cmax(S) of a schedule S is defined as the point in time at which all M-
Tasks of the application have finished their execution, i.e.

Cmax(S) = max
v∈V

(TSv + Tv(|gv|).

2

In this paper we do not take data re-distribution costs into account. This is feasible because
the communication costs in scientific applications are usually a magnitude lower compared
to the computational costs of the M-Tasks. Furthermore, it is often possible to hide at least
parts of these costs by overlapping of computation and communication.

3 Layer-based Scheduling Algorithms

There has been a lot of research regarding scheduling algorithms for independent M-Tasks.
However, these scheduling algorithms cannot cope with precedence constraints between
M-Tasks. This limitation can be avoided using layer-based scheduling algorithms3 for M-
Tasks with precedence constraints. These algorithms utilize a shrinking phase and a lay-
ering phase to decompose an M-Task dag into sets of independent M-Tasks, called layers.
The subsequent layer scheduling phase computes a schedule for each layer in isolation.
Additionally, we introduce an explicit fourth phase, the assembling phase constructing the
output schedule for the M-Task dag. Our extension strategy enables the combination of the
shrinking phase, the layering phase and the assembling phase with a scheduling algorithm
for independent M-Tasks in the layer scheduling phase. Therefore, any scheduling algo-
rithm for independent M-Tasks can be extended to support M-Task dags. The phases are
illustrated in Figure 2 utilizing the small example M-Task dag from Figure 1.

This extension method has been applied to the following algorithms for independent M-
Tasks described in Section 3.3: The scheduling algorithm with approximation factor two4

was extended to the Ext-Approx-2 algorithm. The Ext-Dual-
√

3 algorithm was derived
from the dual-

√
3 approximation algorithm5 and the dual-3/2 approximation algorithm6

was transformed into the Ext-Dual-3/2 algorithm. A similar approach was utilized for
malleable tasks7. This approach also executes phases to derive independent tasks, but does
not include a shrinking phase and the malleable tasks consist of single processor tasks.

3.1 Shrinking Phase

The shrinking phase reduces the solution space of the scheduling problem by replacing
subgraphs of the M-Task dag that should be executed on the same set of processors by a
single node leading to a new dag G′ = (V ′, E′), |V ′| ≤ |V |, |E′| ≤ |E|. This phase is
implemented as follows: At first we try to find all maximum linear chains in the dag G. A
linear chain is a subgraph Gc of G with nodes {v1, .., vn} ⊂ V and edges {e1, .., en−1} ⊂
E, with ei = (vi, vi+1), i = 1, .., n − 1, and vi is the only predecessor of vi+1 and vi+1

is the only successor of vi in G. A maximum linear chain Gcm is a chain which is no
subgraph of another linear chain. We then aggregate the nodes and edges of each Gcm to
a new node vcm having the sum of the computation costs of all nodes plus the sum of the
communication costs of all edges as computation cost. This aggregation implies that each
Gcm in G is replaced by the aggregated node vcm connecting all incoming edges of v1 and
all outgoing edges of vn of the maximum chain Gcm with the new node vcm .

3.2 Layering Phase

In the layering phase the nodes of the shrinked dag G′ are partitioned into l disjoint subsets
of nodes where each subset contains only independent nodes. Such a subset without prece-
dence constraints is called a layer. In the following the nodes of a layer i, i = 1, . . . , l,

3

2_4

1

5 6

7

3 L1

L2

L3

L0

2_4

1

5 6

7

32

1

5 64

7

3

��������

����
����
����
����

����
����
����
����

ti
m

e

ti
m

e

la
y

er
s

3

7

5 6

2_4

1 L0

L1

L2

processors

la
y

er
s

3

7

5 6

1 L0

L1

L3

L2

processors

4

2

L3

p
h
as

e

p
h
as

e
la

y
er

in
g

p
h
as

e

la
y
er

sc

h
ed

u
li

n
g

p
h
as

e

as
se

m
b
li

n
g

sh
ri

n
k
in

g

��������

����
����
����
����

����
����
����
����

Figure 2. Illustration of the phases of the layer-based scheduling algorithms.

are denoted as VLi , VLi ⊆ V ′ with
⋃

i∈1..l VLi = V ′. Additionally, there has to exist an
ordering between the layers i and k, i, k = 1, . . . , l given by:

∀u ∈ VLi ,∀v ∈ VLk
if there is a path from u to v in G′ =⇒ i < k.

The scheduling decision in the next phase becomes more flexible when the number of
layers gets smaller and the number of nodes in a layer gets larger. Therefore a greedy
approach is used, which performs a breadth first search and puts as many nodes as possible
into a layer, to realize this phase.

3.3 Layer Scheduling Phase

In this phase an M-Task schedule is computed for each constructed layer VLi , i = 1, . . . , l
in isolation. In the following we omit the index i and use VL for the layer to be scheduled.

TwoL-Level determines the total execution time for each possible partitioning of the set
of available processors into κ, κ = 1, . . . ,min(P, |VL|) subgroups ĝκ,1, . . . ĝκ,κ of about
equal size3. The schedule for each of these partitionings is computed by adopting a list
scheduling heuristic. In each step of this heuristic the M-Task v ∈ VL is assigned to
group ĝ∗ ∈ {ĝκ,1, . . . ĝκ,κ}, where ĝ∗ is the first subgroup becoming available and v is
the M-Task with the largest execution time. The final processor groups g1, . . . , gκ∗ are
computed by a subsequent group adjustment step from the groups ĝκ∗,1, . . . , ĝκ∗,κ∗ , where
κ∗ denotes the partitioning resulting in a minimum runtime.

TwoL-Tree starts by constructing a tree for each M-Task v ∈ VL consisting of a single
node8. A dynamic programming approach is used to find all unordered pairs of trees {t1,
t2} with an equal depth and disjoint sets of M-Tasks. For each pair {t1, t2} a new tree
t with a new root node and children t1 and t2 is created. Each tree represents a schedule
of the contained M-Tasks. The inner nodes of the trees are annotated with a cost table
containing the execution time of the whole subtree for all possible processor group sizes
gs = 1, . . . , P . A second annotation defines whether the schedules represented by the
children of the node should be executed one after another or in parallel on disjoint processor
groups. Finally, a set of trees each containing all nodes of the current layer is constructed,
where each such tree symbolizes a different schedule. The output schedule of the algorithm
is constructed from the tree which admits the minimum execution time.

Approx-2 is a 2-approximation algorithm for a set of independent M-Tasks4. It partitions
the M-Tasks of a layer into the sets P (τ) and S(τ). P (τ) contains the parallel M-Tasks that
are assigned a number of processors such that their execution time is smaller than τ and

4

S(τ) is a set of M-Tasks that are assigned a single processor. The schedule is constructed
by starting all M-Tasks of P (τ) at time 0 on disjoint processor groups and by using a
list scheduling heuristic to assign the M-Tasks of S(τ) to the remaining processors. The
optimal value of τ is selected by using binary search on an array of candidate values.

Dual-
√

3 belongs to the class of dual approximation algorithms5. A dual-θ approximation
scheduling algorithm takes a real number d as an input and either delivers a schedule with
a makespan of at most θ ∗ d or outputs that there is no schedule with a makespan ≤ d.
Dual-

√
3 is a 2-shelve approximation algorithm that uses a canonical list algorithm or a

knapsack solver to construct the schedule. At first the algorithm determines the minimal
number of processors pv for each task v ∈ VL such that the execution time does not exceed
d. If

∑
v∈VL

pv < P a canonical list algorithm is used to pack all tasks in the first shelve
starting at time 0. Otherwise three subsets of the tasks are created. S1 consists of the tasks
with Tv(pv) > λ, λ =

√
3d − d. In S2 tasks with 1

2d ≤ Tv(pv) ≤ λ and in S3 tasks
with Tv(pv) < 1

2d are stored. S2 and S3 are packed into the second shelve that starts at
time d. The first shelve is filled with tasks of S1 until the sum of the needed processors
gets larger than P . All remaining tasks of S1 are packed into the second shelve with a
processor number of qv > pv determined by a knapsack algorithm.

Dual-3/2 is a dual approximation algorithm with θ = 3
2 that constructs schedules con-

sisting of two shelves6. The algorithm starts by removing the set TS of small M-Tasks
from the layer and defining a knapsack problem to partition the remaining M-Tasks into
the sets T1 and T2. The M-Tasks of T1 and T2 are assigned the minimal number of proces-
sors such that their execution time is less than d or d

2 , respectively. The initial schedule is
obtained by first inserting the M-Tasks of T1 at start time 0 in the first shelve, the M-Tasks
of T2 at start time d in the second shelve and by assigning the small M-Tasks of TS to idle
processors. The output schedule is calculated by repeatedly applying one of three possible
transformations to the schedule until it becomes feasible. These transformations include
moving tasks between sets and stacking tasks on top of each other.

3.4 Assembling Phase
This phase combines the layer schedules and inserts necessary data re-distribution oper-
ations between the layers resulting in a global schedule for the M-Task dag. The layer
schedules are combined following the ordering of the layers defined in the layering phase.
Furthermore, the shrinked nodes, aggregated nodes of maximum linear chains Gcm

, are
expanded, i.e. all nodes v ∈ V of a shrinked node vcm ∈ V ′ are executed one after another
on the same processor group. This is realized for each Gcm with nodes {v1, ..vn} ⊂ V
and edges {e1, ..en−1} ⊂ E as follows: Schedule node v1 of the chain on processor group
gvcm

at time TSvcm
. The following nodes vi, i = 2, . . . , n of Gcm are scheduled on gvcm

at time TSvi−1
+ Tvi−1(|gvcm

|) + Tcomm(vi−1, vi) including data re-distributions between
two nodes vi−1 and vi.

4 Simulation Results

The benchmark tests presented in this section are obtained by running the scheduling
toolkit on an Intel Xeon 5140 (“Woodcrest”) system clocked at 2.33 GHz. For each num-
ber of nodes we constructed a test set consisting of 100 different synthetic M-Task dags

5

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Nodes

R
un

tim
e

(s
ec

)

Comparison of the runtime for 16 Processors

Task-Layer
Dataparallel
TwoL-Level
TwoL-Tree
Ext-Dual-3/2
ExtApprox2
Ext-

√

3

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

Number of Nodes

R
un

tim
e

(s
ec

)

Comparison of the runtime for 256 Processors

Task-Layer
Dataparallel
TwoL-Level
TwoL-Tree
Ext-Dual-3/2
ExtApprox2
Ext-

√

3

Figure 3. Comparison of the average runtime of the layer-based scheduling algorithms for task graphs with 50
to 1000 nodes and 16 (left) and 256 (right) available processors.

belonging to the class of series-parallel-graphs (SP-graphs). SP-graphs reflect the regular
structure of most scientific applications. All nodes of the graphs are annotated by a runtime
estimation formula according to Amdahl’s law (Tpar = (f +(1−f)/p)∗Tseq), which de-
scribes the parallel runtime Tpar on p processors for a problem with an inherent sequential
fraction of computation f(0 ≤ f ≤ 1) and a runtime on a single processor Tseq(Tseq > 0).

First we present the runtime of the implemented scheduling algorithm averaged over
each test set. For a comparison with a pure data or task parallel execution we use Dat-
aparallel and Task-Layer respectively. Task-Layer uses a list scheduling algorithm in the
layer scheduling phase that assigns each node of the shrinked dag one processor and sched-
ules the tasks in parallel. Figure 3 shows the runtime of the scheduling algorithms for 16
(left) and 256 (right) processors depending on the number of nodes. In both cases Data-
parallel achieves the lowest runtimes and TwoL-Tree achieves the highest runtimes. For 16
available processors the schedulers, except Dataparallel, achieve nearly the same runtime
that is below one second for 1000 nodes and show a similar behavior if the number of nodes
is increased. Task-Layer achieves the second lowest runtimes that are in average 20 times
smaller than that of Dataparallel. All other algorithms have a nearly constant deviation
from the runtimes of Task-Layer of at most 0.1 seconds. In the case of 256 available pro-
cessors TwoL-Tree achieves the highest runtimes. The runtime is a factor of 3 to 9 higher
compared to the other schedulers for an M-Task dag with 1000 nodes. Ext-Dual-

√
3 is the

second slowest scheduler followed by TwoL-Level, Ext-Approx-2 and Ext-Dual-3/2 that
have significantly lower runtimes. Dataparallel and Task-Layer again achieve the lowest
runtimes. The runtimes of the schedulers for 256 available processors increases linearly
in the number of nodes of the dag. This behavior results from the linear runtimes of the
shrinking phase, the layering phase, and the assembling phase, which have a worst case
runtime of O(V + E). The layer scheduling phase is only executed for small subsets VL

of the available nodes V (|VL| � |V |). Additionally, the runtime of the layer scheduling
phase is dominated by the number of processors P , because P > |VL| for many layers.

Figure 4 shows the makespan of the produced schedules for 16 (left) and 256 (right)
processors depending on the number of nodes. The results for 16 available processors
show that TwoL-Tree and TwoL-Level produce the lowest makespans with a deviation of
1.8%. They are followed by the three adapted approximation algorithms Ext-Dual-3/2,

6

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

of Nodes

A
ve

ra
ge

 S
ch

ed
ul

e
M

ak
es

pa
n

(s
ec

)

Comparison of the Makespan for 16 Processors

Task-Layer
Dataparallel
TwoL-Level
TwoL-Tree
Ext-Dual-3/2
Ext-Approx-2
Ext-Dual-

√

3

0 200 400 600 800 1000

200

400

600

800

1000

1200

1400

of Nodes

A
ve

ra
ge

 S
ch

ed
ul

e
M

ak
es

pa
n

(s
ec

)

Comparison of the Makespan for 256 Processors

Task-Layer
Dataparallel
TwoL-Level
TwoL-Tree
Ext-Dual-3/2
Ext-Approx-2
Ext-Dual-

√

3

Figure 4. Comparison of the average makespan of the layer-based scheduling algorithms for task graphs with 50
to 1000 nodes and 16 (left) and 256 (right) available processors.

Ext-Dual-
√

3, and Ext-Approx-2 with 14.5%, 14.7%, and 14.7% higher makespans. The
makespan of the schedules produced by Dataparallel are also competitive (23.5% higher
than the ones from TwoL-Tree). The worst schedules were produced by Task-Layer with a
281% higher average makespan than TwoL-Tree. The results show that the makespans of
the produced schedules increase linearly in the number of nodes.

Considering the results for target machines with 256 processors, Figure 4 (right) shows
that the two TwoL schedulers changed their places with the adapted approximation algo-
rithms. The best average schedules were produced by Ext-Dual-

√
3 and Ext-Approx-2 with

a very small deviation, followed by Ext-Dual-3/2 with 2.8% higher makespans. TwoL-
Tree and TwoL-Level have a 11.6% and 16.9% higher average makespan. The results show
again that both, a pure data parallel and a pure task parallel execution are clearly outper-
formed by all other scheduling algorithms. The makespan of Task-Layer are in average 27
times smaller than the ones from Ext-Dual-

√
3 and Ext-Approx-2 which produce the best

schedules. Dataparallel creates schedules with an average makespan that is 3 times worse
compared to Ext-Dual-

√
3. These results also show that the makespans of the produced

schedules increase linearly in the number of nodes.
Table 1 shows the speedups of the produced schedules compared to Dataparallel. It

shows that except Task-Layer all scheduling algorithms construct better schedules than
Dataparallel on average. Also we have examined that the schedule with the lowest
makespans were never created by Task-Layer or Dataparallel. The best schedules were

Sched./Procs 16 64 128 256
Task Layer 0.33 0.16 0.13 0.11
TwoL-Level 1.21 1.72 2.12 2.54
TwoL-Tree 1.24 1.80 2.24 2.66
Ext-Dual3/2 1.08 1.73 2.31 2.90
Ext-Approx-2 1.08 1.82 2.43 2.98
Ext-Dual-

√
3 1.08 1.82 2.43 2.98

Table 1. Speedups of the produced schedules relative
to the Dataparallel Scheduler.

low number high number
of processors of processors

low number TwoL-Tree∗ (Ext-Dual-3/2,
of nodes TwoL-Level∗∗ Ext-Dual-

√
3

Ext-Approx2)∗,∗∗

high number TwoL-Tree∗ (Ext-Dual-
√

3,
of nodes Ext-Approx2)∗

TwoL-Level∗∗ (Ext-Dual-3/2,
Ext-Approx2)∗∗

∗ best quality ∗∗ good quality, reasonable runtime

Table 2. Recommended scheduling algorithms for dif-
ferent situations.

7

produced by TwoL-Tree for 16 available processors and by Ext-Approx-2, Ext-Dual-
√

3 or
Ext-Dual-3/2 for 256 available processors. The obtained results of the runtimes of the
algorithms and the quality of the schedules lead to the recommendations given in Table
2. The recommendations quote which algorithm should be utilized in which situation. A
situation is determined by the attributes: size of the dag, number of available processors
of the target machine, and the choice whether the best solution should be found or a good
trade-off between quality and runtime should be reached.

5 Conclusion

In this paper we proposed an extension methodology for scheduling algorithms for inde-
pendent M-Tasks to handle M-Tasks with precedence constraints, which is accomplished
by a layer-based approach. Additionally, we presented a comparison of the extended al-
gorithms with existing layer-based scheduling algorithms and derived a guideline, which
algorithm developers should utilize depending on the parallel application and target plat-
form. For this purpose we took the runtime of the scheduling algorithms as well as the
quality of the generated schedules into account. The results show that a mixed task and
data parallel execution derives better results than a pure data and task parallel execution
in all considered cases. Especially for a large number of processors, the M-Task approach
results in much higher speedups.

References

1. J. Dümmler, R. Kunis, and G. Rünger. A Scheduling Toolkit for Multiprocessortask
Programming with Dependencies. In Proc. of the 13th Int. European Conf. on Par.
and Distr. Comp. (Euro-Par 07), volume 4641 of LNCS, Rennes, France, 2007.

2. J. Dümmler, R. Kunis, and G. Rünger. A comparison of scheduling algorithms for
multiprocessortasks with precedence constraints. In Proc. of the 2007 High Perfor-
mance Computing & Simulation (HPCS’07) Conference, pages 663–669, 2007.

3. T. Rauber and G. Rünger. Compiler support for task scheduling in hierarchical exe-
cution models. J. Syst. Archit., 45(6-7):483–503, 1998.

4. W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable parallel tasks. In
SODA ’94: Proc. of the fifth annual ACM-SIAM symposium on Discrete algorithms,
pages 167–176. Society for Industrial and Applied Mathematics, 1994.

5. G. Mounie, C. Rapine, and D. Trystram. Efficient approximation algorithms for
scheduling malleable tasks. In SPAA ’99: Proc. of the eleventh annual ACM sympo-
sium on Parallel algorithms and architectures, pages 23–32. ACM Press, 1999.

6. G. Mounie, C. Rapine, and D. Trystram. A 3
2 -Approximation Algorithm for Schedul-

ing Independent Monotonic Malleable Tasks. SIAM J. on Computing, 37(2):401–412,
2007.

7. W. Zimmermann and W. Löwe. Foundations for the integration of scheduling tech-
niques into compilers for parallel languages. Int. J. of Comp. Science and Engineer-
ing, 1(3/4), 2005.

8. T. Rauber and G. Rünger. Scheduling of data parallel modules for scientific comput-
ing. In Proc. of the 9th SIAM Conf. on Parallel Processing for Scientific Computing
(PPSC), SIAM(CD-ROM), San Antonio, Texas, USA, 1999.

8

