
A Comparison of Scheduling Algorithms for
Multiprocessortasks with Precedence Constraints

Jörg Dümmler, Raphael Kunis and Gudula Rünger
Chemnitz University of Technology
Department of Computer Science

09107 Chemnitz, Germany
E-mail: {djo,krap,ruenger}@cs.tu-chemnitz.de

Keywords— Multiprocessortask Programming, Sche-
duling, Distributed Memory, Scalable Computing

Abstract— Many parallel applications from scientic
computing show a modular structure and are therefore
suitable for the multiprocessortask programming model
with precedence constraints. This programming model
has been shown to yield better results than a pure data-
parallel or a pure taskparallel execution on distributed
memory platforms in many cases. The efficient execu-
tion of multiprocessortask programs requires an appro-
priate schedule, which takes the structure of the appli-
cation and the performance characteristics of the target
platform into account. Many heuristics and approxima-
tion algorithms have been proposed to fulfil this sche-
duling task. In this paper we consider popular schedu-
ling algorithms that have been implemented in a sche-
duling toolkit. Specifically, we introduce Allocation-and-
Scheduling-based algorithms and compare their runtime
for large task graphs consisting of up to 1000 nodes and
target systems with up to 256 processors. Furthermore
we consider the quality of the produced schedules and
derive a guideline describing which scheduling algorithm
is most suitable in which situation.

I. Introduction

A current challenge in the development of parallel
applications for distributed memory platforms is the
achievement of a good scalability even for a high num-
ber of processors. Often the scalability is impacted
by the use of collective communication operations li-
ke broadcast operations, whose runtime exhibits a lo-
garithmic or even linear dependence on the number of
participating processors. Especially the advent of large
homogeneous cluster systems and hierarchical cluster-
of-clusters, which consist of multiple homogeneous clu-
sters, necessitates a programming model that can help
to reduce the communication overhead.

A possible approach is the model of multiprocessor-
task (short M-Task) programming with dependencies
[7]. In this programming model a parallel application
consists of a set of M-Tasks, which can be executed on
an arbitrary subset of the available processors. Addi-
tionally there may be dependencies between M-Tasks
meaning that these M-Tasks have to be executed one
after another. These dependencies usually arise from
communication phases that are necessary between the
execution of M-Tasks to exchange data. For indepen-
dent M-Tasks a consecutive or a concurrent execution
on disjoint subsets of the available processors is possi-
ble. A schedule assigns each M-Task at least one pro-
cessor and fixes the execution order of the M-Tasks.

For a given M-Task program many different schedules
may be possible. Which schedule achieves the best re-
sults, i.e. leads to a minimum parallel runtime of the
application, depends on the application itself and on
the target platform. Therefore for target platforms with
different computation and communication behavior dif-
ferent schedules may lead to a minimum runtime. De-
termining the optimal schedule is an NP-hard problem,
but many scheduling heuristics and approximation al-
gorithms have been proposed to get a near optimal so-
lution to this problem.

Developing an M-Task application is more complex
and error-prone compared to the development of pure
SPMD applications. This mainly results from two diffe-
rent types of communication (between M-Tasks vs. wi-
thin an M-Task) and from the additional code required
to manage the partitioning of the set of processors into
subsets, on which the M-Tasks are executed. Further-
more, changes in the schedule of an M-Task applicati-
on usually require a complex restructuring of the whole
program resulting from a different processor group lay-
out and a different communication pattern. A variety
of languages, tools, libraries and frameworks to assist
in the development of M-Task applications has been
proposed. An overview is given in [1]. Most of these
approaches still require the developer to manually spe-
cify the schedule for an application. As different target
platforms may require different schedules this leads to
a poor portability.

Many of the proposed scheduling algorithms for M-
Task applications with precedence constraints have si-
milarities on how to approach the scheduling pro-
blem. We distinguish three main categories, which we
call Allocation-and-Scheduling-based algorithms, Layer-
based algorithms, and Configuration-based algorithms.
Allocation-and-Scheduling-based algorithms consist of
an allocation step, which fixes the number of exe-
cuting processors for each M-Task, and a scheduling
step, which determines the execution order of the tasks
and the exact processor groups. Layer-based algorithms
shrink and decompose the directed acyclic graph repre-
senting an M-Task application into a set of layers of
independent M-Tasks. The scheduling is performed for
each layer in isolation and the resulting layer schedules
are joined into a global schedule for the whole appli-
cation. Configuration-based algorithms are single step
methods that construct schedules based on a predefi-

ned set of possible configurations for each M-Task.
In this paper we examine Allocation-and-Scheduling-

based algorithms. We present a detailed comparison of
the runtime and the quality of the produced schedules
for scheduling algorithms from this class. Finally, we
derive a guideline, which M-Task scheduling algorithm
is most suitable in which situation. The performance of
M-Task scheduling algorithms was compared in [4], [5],
however only small applications were considered and a
different set of algorithms was used. To enable an auto-
matic scheduling of M-Task applications based on cost
expressions for the M-Tasks and for the communicati-
on between the tasks we develop a scheduling toolkit[2].
This toolkit includes scheduling algorithms from diffe-
rent categories including the presented Allocation-and-
Scheduling-based algorithms. The use of a toolkit per-
mits the examination of different scheduling algorithms
using an identical environment by utilising similar da-
ta structures for representing M-Task applications and
schedules.

This paper is structured as follows. Section II ex-
plains the multiprocessortask programming model with
dependencies. Section III gives an overview of the consi-
dered scheduling algorithms. The obtained benchmark
results are discussed in Section IV and Section V con-
cludes the paper.

II. Programming Model

Many programming models are based on M-Tasks.
In the M-Task programming model with precedence
constraints a parallel application can be represented
by an annotated direct acyclic graph (M-Task dag)
G = (V,E). Figure 1 shows an example of an M-Task
dag.

Fig. 1. Example of a
small M-Task dag.

A node v ∈ V corresponds
to the execution of an M-
Task, which is a parallel pro-
gram part that can be execu-
ted on any nonempty subset
gv ⊆ {1, . . . , P} of the availa-
ble processors of a P proces-
sor target platform. The size
of a processor group |gv| is al-
so denoted as the allocation
av of a task v. The allocation
A : V → [1, . . . , P]|V | of the
M-Task dag unites the single
allocations av ∀v ∈ V .

A directed edge e = (v1, v2) ∈ E represents prece-
dence constraints between the M-Tasks v1 and v2, i.e.
v1 produces output data required for v2 and therefo-
re v1 and v2 have to be executed one after another.
Edges may lead to a data redistribution if the proces-
sor group changes, i.e. gv1 6= gv2 or if v1 and v2 re-
quire different data distributions. M-Tasks that are not
connected by a path in the M-Task dag can be executed
concurrently on disjoint subsets of the available proces-
sors. Each node v ∈ V is assigned a computation cost
Tv : [1, . . . , P] → R+ and each edge e = (v1, v2) ∈ E is
assigned a communication cost Tcomm(v1, v2).

The costs for a path in the M-Task dag under a gi-
ven allocation are defined as the sum of the computing
costs of all nodes and the data redistribution costs of
all edges belonging to the path. The longest path in
the M-Task dag is called the critical path and has a
length of TCP (A). The set CP (A) contains all nodes
on the critical path. The top level TLv(A) of an M-
Task v ∈ V is the length of the longest path from any
task without predecessors to task v excluding v. The
length of the longest path from a node v ∈ V to any
node without successors including v is called the bot-
tom level BLv(A). The work Wv of an M-Task v ∈ V
is the product of the computing time and the allocati-
on, i.e. Wv(av) = Tv(av) ∗ av. The average computing
area TA is the arithmetical mean of the works of all
M-Tasks, i.e. TA(A) = 1

P

∑
v∈V Wv(av).

An M-Task may either be a basic M-Task that is
implemented using an SPMD programming style or a
complex M-Task that is built up from other M-Tasks
and can be represented by an M-Task dag. Hence a hier-
archical structure as it is described in the TwoL(Two
Level)-approach[8] arises.

The execution of an M-Task application is based
on a schedule S, which assigns each M-Task v ∈ V
a processor group gv and a starting time TSv

, i.e.
S(v) = (gv, TSv

). A feasible schedule has to assure that
all required input data are available before starting an
M-Task, meaning that all predecessor tasks have finis-
hed their execution and all necessary data redistributi-
ons have been carried out, i.e.

TSn
+ Tn(|gn|) + Tcomm(n, m) ≤ TSm

∀n, m ∈ V and (n, m) ∈ E.

Furthermore M-Tasks whose execution time interval
overlaps have to run on disjoint processor groups, i.e. if

[TSn , TSn + Tn(|gn|)] ∩ [TSm , TSm + Tm(|gm|)] 6= ∅
then gn ∩ gm = ∅ ∀ n, m ∈ V.

The makespan Cmax(S) of a schedule S is defined as the
point in time at which all M-Tasks of the application
have finished their execution, i.e.

Cmax(S) = max
v∈V

(TSv + Tv(|gv|).

In this paper we only consider non-hierarchical M-Task
applications, i.e. only basic M-Tasks are available, and
we do not take data redistribution costs into account.
This is feasible as these costs are usually a magnitu-
de lower compared to the computational costs of the
M-Tasks and it is often possible to hide at least parts
of these costs by overlapping of computation and com-
munication. We only consider M-Tasks graphs that be-
long to the class of series parallel graphs (sp-graphs),
because these graphs reflect the regular structure of
most scientific applications. Series-parallel-graphs are
a subset of directed acyclic graphs that are built by the
following recursive definition [9]. A single node is an sp-
graph. Two sp-graphs SP1 = (V1, E1), SP2 = (V2, E2),
can be combined to a new sp-graph by a series com-
position or a parallel composition. A sink node of a

sp-graph is a node without successors and a source no-
de is a node without predecessors. A series composition
connects every node from the set of sinks T1 ⊆ V1 of
SP1 with nodes from the set of sources S2 ⊆ V2 of SP2

by a new edge: SPnew = (V1 ∪ V2, E1 ∪ E2 ∪ T1 × S1).
A parallel composition merges the set of nodes and the
set of edges of SP1 and SP2 to a new series-parallel
graph: SPnew = (V1 ∪ V2, E1 ∪ E2).

III. Scheduling Algorithms

A popular approach to the M-Task scheduling pro-
blem with precedence constraints is a two-step ap-
proach introduced in [6] consisting of an allocation
step and a scheduling step, which we therefore call
Allocation-and-Scheduling-based algorithms. The allo-
cation step determines the allocation av for each node
v ∈ V of the M-Task dag. The exact layout of the pro-
cessor group gv and the starting time index TSv

is deter-
mined in the scheduling step. Most of these algorithms
only differ in the allocation step and use a modified
List-Scheduling algorithm in the scheduling step.

The modified List-Scheduling algorithm is based on
a priority queue with different priority functions (ear-
liest start time, bottom level, top level, smallest task
or largest task). The List-Scheduling algorithm works
as follows. Initialize the priority queue q by adding the
source nodes of the M-Task dag. While q is not empty
remove and schedule the head node v of the queue. The
scheduling of v with an actual start time of TSv is done
by finding a suitable set gv of processors for av with
the earliest processor ready time Tgv . Afterwards the
schedule time index TSv is re-evaluated by the followi-
ng equation:

TSv
= max(Tgv

, TSv
)

The finish time TFv
= TSv

+ Tv(av) of v is computed
and the earliest start time of the successors of v and the
processor ready times of the processors in gv are set to
this time. If the scheduling of v leads to the fulfilment of
all precedence constraints of a successors of v this suc-
cessor is added to the priority queue q. The worst case
complexity of the modified List-Scheduling algorithm
is O(E + V log(V) + V P) resulting from O(V + E) for
the computation of the task priorities, O(V logV) for
removing V tasks from the queue and maintaining the
queue ordering and O(V P) to schedule V tasks on P
processors.

In the following we present the main ideas of sche-
duling algorithms belonging to the class of Allocation-
and-Scheduling-based algorithms.

a) Dataparallel: The Dataparallel scheduler al-
locates all available processors to each M-Task in the
allocation phase resulting in an SPMD processing sty-
le. A topological sort of the task graph can be used to
obtain an order of execution of the tasks in the sche-
duling step. As the nodes of the input task graphs in
our scheduling toolkit are already stored in topological
order, the Dataparallel scheduler runs in O(V).

b) Taskparallel: The Taskparallel scheduler pro-
duces a schedule as it is known from uniprocessortask

scheduling. The allocation phase assigns each M-Task a
single processor and a List-Scheduling algorithm with
the bottom levels as a priority function is used for the
scheduling phase. The worst case time complexity of
O(E + V logV + V P) for the Taskparallel scheduler is
equal to the List-Scheduling algorithm.

c) TSAS: The Two Step Allocation and Schedu-
ling(TSAS)[6] scheduler transfers the problem to find a
discrete allocation for each M-Task to an optimization
problem in the continuous space. The objective of the
optimization is to find an allocation Ac : V → R|V| that
minimizes max{TCP (Ac), TA(Ac)}. The intention is to
find an allocation that is a good trade-off between criti-
cal path length and average area, which are both lower
bounds on the makespan of any feasible schedule. If the
cost functions are posynomials a convex optimization
problem results, which has a unique global minimum
that can be determined by an iterative algorithm in
polynomial time. A posynomial function f of a positive
vector variable x ∈ Rm has the form

f(x) =
N∑

i=1

ci

m∏
j=1

x
aij

j

with positive coefficients ci ∈ R+ and exponents aij ∈
R. For our tests we use cost expressions based on Am-
dahl’s law, which are posynomial functions. The result
of the allocation phase is obtained by mapping the con-
tinuous solution of the optimization problem to discrete
space. The scheduling phase uses a List-Scheduling al-
gorithm with the earliest possible start time of a task
as a priority function.

d) CPA: The Critical Path and Area-based sche-
duling (CPA)[5] scheduler was designed as a low-cost
scheduler and a computationally cheap heuristic is em-
ployed for the allocation phase. The idea of the allo-
cation phase is to find an allocation A that minimi-
zes max{TCP (A), TA(A)} and is therefore similar to
TSAS. The starting point is an allocation of one pro-
cessor per task, i.e. av = 1 ∀v ∈ V . Each iteration
of the main iteration loop chooses a critical path task
v ∈ CP (A) and increases its allocation, i.e. av = av +1.
As a consequence, the critical path may change and
other nodes are considered in subsequent iterations.
The main loop terminates when the average area ex-
ceeds the length of the critical path for the current al-
location, i.e. TA(A) ≥ TCP (A). The scheduling phase
uses a List-Scheduling heuristic with the bottom levels
of the tasks as a priority function. The worst case com-
plexity of CPA is O(V (V + E)P), which arises from
O(V P) iterations of the main iteration loop each requi-
ring O(V +E) time to compute the critical path and a
single execution of the List-Scheduling algorithm.

e) CPR: The Critical Path Reduction (CPR)[4]
scheduler follows a similar approach as the CPA-
scheduler but uses a more complex heuristic in the
allocation phase to reduce the length of the critical
path in the M-Task dag. CPR starts with an alloca-
tion of one processor per task, i.e. av = 1∀v ∈ V . The
main iteration loop first computes a priority prio for

all tasks based on the sum of the top and bottom le-
vel, i.e. priov = TLv + BLv ∀v ∈ V and inserts all
tasks in a priority queue. Afterwards the head task v
of the priority queue is removed from the queue, the
allocation is increased by 1, i.e. av = av + 1, and
a List-Scheduler with a bottom level priority functi-
on is run with the current allocation. If the construc-
ted schedule has a lower makespan than any previous-
ly obtained schedule, the current allocation is commi-
ted and the main loop is started over. Otherwise the
changes are rejected, i.e. av = av − 1, and the next
task in the priority queue is considered. The main loop
terminates, when the priority queue runs empty, i.e.
there is no task for which increasing its allocation re-
sults in a better schedule. The time complexity of CPR
is O(EV 2P + V 3Plog(V) + V 3P 2) and results from
O(V P) executions of the main iteration loop in the
worst case, which occurs when P processors are alloca-
ted to each of the V tasks. Each loop iteration may have
to call the List-Scheduling algorithm for all V tasks in
the worst case.

f) MSAA: The Modified sp-graph approximati-
on algorithm (MSAA)[3] scheduler uses an approxi-
mation algorithm based on integer values for the exe-
cution time of the tasks in the allocation phase and
an earliest start time List-Scheduler in the scheduling
phase. The approximation algorithm tries to decide
within pseudo-polynomial time whether an allocation
with costs c(A) ≤ X exists for a given positive integer
bound X. X represents the critical path length in the
M-Task dag for a pure taskparallel allocation

c(A) = max{TCP (A), TA(A)} ≤ Cmax(S).

This algorithm operates not at the sp-graph itself but
on the decomposition tree of the sp-graph. The sp-
graph decomposition tree GD = (VD, ED) corresponds
to a rooted, ordered, binary tree [9]. The internal no-
des correspond to the composition of the sp-graph and
are labeled s (series composition) or p (parallel com-
position). The leafs are the nodes in the sp-graph. Af-
ter the decomposition of the sp-graph a matrix F of
dimension |VD| × X is built that contains the values
F [vD, l], 1 ≤ vD ≤ |VD|, 0 ≤ l ≤ X. Each F [vD, l]
represents the smallest possible value for the work
WvD

(AvD
) of a node vd in the decomposition tree that

holds the following property: An allocation A for the
tasks in the sub decomposition tree under vd exists with

TCP (A) ≤ l, TA(A) ≤ WvD
(AvD

).

A dynamic programming approach is used to compu-
te all F [vD, l] values starting in the leafs of the de-
composition tree and moving upwards to the root. The
last step of the algorithm is to find a value for l with
F [rootD, l]/P ≤ X. Because more than a single l can
be found, we use all possible candidates of l in the list
scheduling step to determine the best solution. The al-
locations for the l-values can be found by storing ad-
ditional information in the computing step of all va-
lues in F . The complexity of the allocation algorithm

is O(|VD|∗P ∗X2). X2 is the main factor in the comple-
xity. We try to decrease the runtime of the algorithm by
mapping the runtimes of the nodes to integers getting
an X that is small but produces relative good sche-
dules. The mapping has to be performed, because the
algorithm needs integers to process the dynamic pro-
gramming approach. We use the following formula to
map the runtimes: X = (1+|V |/adapt)∗4, adapt = 250.
This mapping depends on the number of nodes |V | in
the sp-graph. It tries to find a good solution for getting
different integer values for different original execution
times of the tasks by keeping X small. The value for
adapt is based on runtime tests on our target machine
and it is possible to find a good solution for adapt by
running some tests on other target machines.

IV. Results

A. Testing Environment

The benchmark tests presented in this Section are
obtained by running the scheduling toolkit on an Intel
Xeon 5140 (“Woodcrest“) system clocked at 2.33 GHz.
The available main memory was 8 GB cached by an
L2 cache with a size of 4 MB. To run the scheduling
toolkit the 64 bit version of the Java 2 SE Runtime
Environment (JRE) Version 5.0 Update 9 was used.

For the benchmarks, we use test sets consisting of
100 different M-Task dags, which belong to the class
of series-parallel-graphs (sp-graphs). The generation al-
gorithm used to construct these graphs starts with a
number of sp-graphs consisting of a single node and
randomly combines these graphs by a serial or a paral-
lel composition. Afterwards all nodes of the graph are
annotated by a runtime estimation formula according
to Amdahl’s law (Tpar = (f + (1− f)/p) ∗ Tseq), which
describes the parallel runtime Tpar on p processors for a
problem with an inherent sequential fraction of compu-
tation f(0 ≤ f ≤ 1) and a runtime on a single processor
Tseq(Tseq > 0).

B. Runtime Results

In this Subsection we consider the runtime of the im-
plemented scheduling algorithms. All presented measu-
rements are the arithmetical mean of the runtimes for
each M-Task dag within a test set. The same test set
was used when varying the number of processors, but
changing the number of nodes requires a different set.

The Dataparallel and Taskparallel schedulers achie-
ve the lowest runtimes of all scheduling algorithms as
the execution does not involve a sophisticated schedu-
ling process. The runtimes of the Dataparallel schedu-
ler range from 0.5 ms for 50 nodes to 10.4 ms for 1000
nodes and are independent from the number of proces-
sors. These execution times can be considered as a ge-
neral overhead factor for the management of the inter-
nal structures of the scheduling toolkit. Figure 2 shows
the average runtimes of the Taskparallel scheduler. The
measurements for the Taskparallel scheduler show an
almost linear dependence on the number of nodes and
a slow increase of the runtime with the number of pro-
cessors. The runtime for 256 processors is about 20%

0
200

400
600

800
1000

0

50

100

150

200

250
0

0.005

0.01

0.015

0.02

of Nodes

Runtime of the Taskparallel Scheduler

of Processors

A
ve

ra
ge

 R
un

tim
e

(s
ec

)

Fig. 2. Average runtime of the Taskparallel scheduler for varying
number of nodes and processors.

0
50

100
150

200

0

50

100

150

200

250
0

5

10

15

20

25

of Nodes

Runtime of the TSAS Scheduler

of Processors

A
ve

ra
ge

 R
un

tim
e

(s
ec

)

Fig. 3. Average runtime of TSAS for different number of nodes
and processors.

higher compared to the execution time for 16 proces-
sors. These runtimes are also a measure for the List-
Scheduling part in CPA, CPR, TSAS and MSAA, as
the same heuristic is employed in these algorithms.

The average runtimes of TSAS are shown in Figu-
re 3. Because of the high runtime requirements for 100
test runs we only show results for up to 200 nodes for
this scheduling algorithm. The main part of the work
of TSAS is done in the allocation step, when solving
the convex optimization problem. The runtime of this
step is directly influenced by the number of required
iterations. For all tested numbers of nodes the average
runtime of TSAS decreased when increasing the num-
ber of processors. This is an interesting behavior that
is unique within the tested scheduling algorithms and
can be explained by a faster convergence of the convex
programming approach. In our tests we experienced a
medium deviation between the minimum and the ma-
ximum runtimes of TSAS for a given test set.

As the average execution times of CPA that are pre-
sented in Figure 4 show, CPA achieves a good perfor-
mance even for a high number of nodes for target plat-
forms with a low number of processors. The runtime
increases linearly with the number of processors agre-
eing with the worst case complexity of CPA. Although
the results show a constant increase of the runtime with

0
200

400
600

800
1000

0

50

100

150

200

250
0

1

2

3

4

of Nodes

Runtime of the CPA Scheduler

of Processors

A
ve

ra
ge

 R
un

tim
e

(s
ec

)

Fig. 4. Average runtime of CPA dependent on the number of
nodes and processors.

0
50

100
150

200

0

50

100

150

200

250
0

20

40

60

80

100

of Nodes

Runtime of the CPR Scheduler

of Processors

A
ve

ra
ge

 R
un

tim
e

(s
ec

)

Fig. 5. Average runtime of CPR for varying number of nodes
and processors

the number of nodes and the number of processors, the
runtimes within a given test set exhibit a large devia-
tion. This mainly results from a different number of
iterations in the main allocation loop, which is respon-
sible for the biggest part of the runtime. The number
of iterations can be between 1 (if the termination cri-
terion is met with the initial allocation) and O(V P) in
the worst case (when the resulting allocation assigns all
processors to each node).

The average runtime results for CPR are shown in
Figure 5. CPR exhibits the slowest average runtimes
of all implemented scheduling algorithms and was the-
refore only tested for M-Task dags with up to 200 no-
des. Compared to CPA the much higher runtime results
from the execution of the List-Scheduling heuristic in
each iteration, whereas CPA only requires a single List-
Scheduling step. For target platforms with a low num-
ber of nodes CPR still achieves reasonably low run-
times. The runtime of CPR strongly depends on the
input scheduling problem. The deviation between the
minimum and maximum runtimes for a given test set
is the highest of all scheduling algorithms. The reason
for this behavior is similar to CPA a varying number
of iterations in the main allocation loop, which can be
between 1 and O(V P). This can also explain, why the
test set with 190 nodes requires a higher average run-

0
200

400
600

800
1000

0

50

100

150

200

250
0

10

20

30

40

of Nodes

Runtime of the MSAA Scheduler

of Processors

A
ve

ra
ge

 R
un

tim
e

(s
ec

)

Fig. 6. Average runtime of MSAA for varying number of nodes
and processors

TABLE I: Average Runtimes relative to the Dataparallel

Scheduler.

Sche- 200 nodes 200 nodes 1000 nodes 1000 nodes
duler 16 proc. 256 procs. 16 procs. 256 procs.
Data 1 1 1 1
Task 1.36 1.67 1.41 1.71
TSAS 11484 7254 n/a n/a
CPA 9.00 158 13.1 331
CPR 214 42215 n/a n/a
MSAA 221 376 3126 3573

time compared to the test set with 200 nodes.
Figure 6 shows the runtime results for MSAA with

critical path adaption. The results show that this algo-
rithm achieves a good performance for small and high
numbers of processors and nodes in comparison to CPR
and TSAS. The dependency on the X-value can be seen
in the jumps at 250, 500, 750 and 1000 nodes. The run-
time is linear in the number of nodes and linear in the
number of processors if X is fixed. This linear runtime
results from the structure of the |VD| ×X matrix used
for computing the F -values that is linear in |VD| and P
and the main factor is X2 in the allocation step. The
runtimes within a given test set exhibit only small de-
viations. This results from the dependency of the run-
time on X2 which is much larger than |V | and P .

Table I gives an overview of the relative runtimes of
all tested scheduling algorithms compared to the Data-
parallel scheduler averaged over 100 test runs. It comes
to no surprise that the Taskparallel and Dataparallel
Schedulers have a much lower runtime compared to the
other algorithms as no sophisticated scheduling logic
is involved. From the specialized scheduling algorithms
CPA achieves the highest performance and especially
for a low number of processors clearly outperforms all
other algorithms. For a high number of processors the
gap between CPA and MSAA becomes smaller and it
can be assumed that MSAA beats CPA for processor
numbers somewhat higher than 256. TSAS and CPR
(for a high number of nodes) exhibit a considerably
higher runtime than all other algorithms. CPR is faster
than TSAS for a low number of processors, whereas
TSAS beats CPR for larger target platforms.

If the runtime of the scheduling algorithm is an issue,

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

of Nodes

A
ve

ra
ge

 S
ch

ed
ul

e
M

ak
es

pa
n

(s
ec

)

Comparison of the Makespan for 16 Processors

Taskparallel
Dataparallel
CPA
CPR
TSAS
MSAA

Fig. 7. Comparison of the average makespan of different sche-
duling algorithms for task graphs with 10 to 200 nodes and 16
available processors.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

of Nodes

A
ve

ra
ge

 S
ch

ed
ul

e
M

ak
es

pa
n

(s
ec

)

Comparison of the Makespan for 256 Processors

Taskparallel
Dataparallel
CPA
CPR
TSAS
MSAA

Fig. 8. Comparison of the average makespan of different sche-
duling algorithms for task graphs with 10 to 200 nodes and 256
available processors.

CPA is a good choice, because it achieves the lowest
runtimes of all specialized scheduling algorithms. For
target systems with many processors MSAA might be a
good choice since its runtime is also almost independent
from the structure of the input problem.

C. Quality of the Schedules

In this Section we consider the quality of the produ-
ced schedules, i.e. the makespan based on the runtime
estimation formulas. First we consider the average ma-
kespan for the test sets with up to 200 nodes. The re-
sults for all tested scheduling algorithms are shown in
Figure 7 for 16 available processors and in Figure 8 for
256 processors respectively. Especially Figure 8 shows
no crossing point between the curves of the scheduling
algorithms, i.e. a scheduling algorithm that achieves a

TABLE II: Speedups of the produced schedules relative to the

Dataparallel Scheduler.

Scheduler 16 procs. 64 procs. 128 procs. 256 procs.
Data 1 1 1 1
Task 1.89 1.81 1.79 1.79
TSAS 2.25 2.73 2.98 3.14
CPA 2.33 1.91 1.72 1.60
CPR 2.75 2.78 2.79 2.80
MSAA 2.51 2.68 2.65 2.62

TABLE III: Number of constructed schedules with the lowest

makespan for 16 (left value) and 256 processors (right value).

Scheduler 50 nodes 100 nodes 150 nodes 200 nodes
Data 0/0 0/0 0/0 0/0
Task 0/0 0/0 0/0 0/0
TSAS 1/68 0/87 0/93 0/92
CPA 9/0 11/0 12/0 18/0
CPR 67/18 77/8 80/7 80/8
MSAA 23/14 12/5 8/0 2/0

TABLE IV: Recommended scheduling algorithms for different

situations.

low number high number
of processors of processors

low number CPR∗ TSAS∗

of nodes CPA∗∗ MSAA∗∗

high number CPR∗ TSAS∗

of nodes CPA∗∗ MSAA∗∗

∗ best quality ∗∗ good quality, reasonable runtime

better quality for a low number of nodes is also better
for a higher number of nodes. The Dataparallel schedu-
ler delivers the schedules with the highest makespans
for all tested problem instances. The gap to the other
scheduling algorithms increases with the number of no-
des as more options for a mixed task and data parallel
execution are available. Table II lists the speedup of all
scheduling algorithms averaged over all task graph sizes
relative to the Dataparallel scheduler. The results of all
other scheduling algorithms lie closer together for 16
available processors and range from a speedup of 1.89
(Taskparallel) to a speedup of 2.75 (CPR). As Figure 7
shows, CPR constantly achieves the best average quali-
ty for 16 available processors. On the other hand CPR
gets outperformed by MSAA in 18%, by CPA in 12%
and by TSAS in 4% of the test cases.

For 256 available processors the schedules with the
lowest average makespan are delivered by TSAS with a
speedup of 3.14 compared to a dataparallel execution,
followed by CPR with a speedup of 2.8. The average re-
sults obtained by MSAA are located in the mid range
and CPA exhibits an unusual behavior. The makespan
of the schedules delivered by CPA increases if more
processors are available for most scheduling problems.
For 16 processors CPA could achieve competitive ma-
kespans but is worse than the Taskparallel scheduler for
256 processors.

Table III shows for each scheduling algorithm the
number of times it could generate the schedule with
the lowest makespan for different number of nodes. The
left number corresponds to 16 available processors and
the right number belongs to 256 available processors.
The Dataparallel and Taskparallel schedulers never con-
struct a minimal schedule. As the average results alrea-
dy showed, CPR obtains the best results for 16 proces-
sors and TSAS has the lead for 256 processors.

In summary the results state that there is no sche-
duling algorithm that clearly dominates the test field.
Our results for low numbers of processors agree with
the findings from [5], [4], where CPR achieves the best
quality and CPA was shown to be competitive to other

scheduling algorithms. We have shown that for a high
number of processors the quality of CPA gets worse and
CPR is mostly outperformed by TSAS. Especially the
experiments in this paper show that the M-Task pro-
gramming approach clearly outperforms a pure data-
parallel execution and is therefore a suitable model for
parallel computation. Table IV gives an overview of the
suggested scheduling algorithm depending on the size
of the input problem (number of nodes), the number of
processors and the runtime of the scheduling algorithm.

V. Conclusion and Future Work

In this paper we have evaluated a variety of schedu-
ling algorithms for M-Tasks with dependencies belon-
ging to the class of Allocation-and-Scheduling-based al-
gorithms. We compared the runtime of the scheduling
algorithms and the makespans of the generated sche-
dules. If the makespan of the resulting schedule should
be minimized, CPR is a good choice for a low num-
ber of processors and the runtime is reasonably low in
this case. For a high number of processors TSAS is fa-
ster and constructs better schedules compared to CPR.
As a schedule for an application usually depends on
the input data size and has therefore to be recomputed
multiple times, the running time of the applied schedu-
ling algorithm becomes an important issue. In this case
CPA is a good choice for a low number of processors,
but the resulting schedules are not competitive for a
high number of processors. MSAA offers a good sca-
lability for high numbers of nodes and processors and
produces schedules with a middle-ranked makespan.

Future work includes the examination of additional
categories of scheduling algorithms. It is planned to ma-
ke the algorithms that are implemented in the toolkit
available to other applications in form of a library.

References

[1] H. Bal and M. Haines, “Approaches for integrating task and
data parallelism,” IEEE Concurrency, vol. 6, no. 3, pp. 74–
84, 1998.

[2] J. Dümmler, R. Kunis, and G. Rünger, “A Scheduling Tool-
kit for Multiprocessortask-programming with Dependencies,”
submitted for publication.

[3] R. Lepere, D. Trystram, and G. J. Woeginger, “Approxima-
tion algorithms for scheduling malleable tasks under prece-
dence constraints,” Lecture Notes in Computer Science, vol.
2161/2001, 2001.

[4] A. Radulescu, C. Nicolescu, A. van Gemund, and P. Jonker,
“CPR: Mixed Task and Data Parallel Scheduling for Distri-
buted Systems,” in IPDPS ’01: Proc. of the 15th Int. Par.
& Dist. Proc. Symp. IEEE Computer Society, 2001, p. 39.

[5] A. Radulescu and A. van Gemund, “A Low-Cost Approach
towards Mixed Task and Data Parallel Scheduling,” in Proc.
of the 2001 Int. Conf. on Parallel Processing. IEEE Com-
puter Society, 2001, pp. 69–76.

[6] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A frame-
work for exploiting task and data parallelism on distribu-
ted memory multicomputers,” IEEE Trans. Parallel Distrib.
Syst., vol. 8, no. 11, pp. 1098–1116, 1997.

[7] T. Rauber and G. Rünger, “Compiler support for task sche-
duling in hierarchical execution models,” J. Syst. Archit.,
vol. 45, no. 6-7, pp. 483–503, 1998.

[8] ——, “A Transformation Approach to Derive Efficient Paral-
lel Implementations,” IEEE Trans. on Software Engineering,
vol. 26, no. 4, pp. 315–339, 2000.

[9] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The recognition
of series parallel digraphs,” Tech. Rep., 1979.

