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Abstract. The performance of many scientific applications for distributed
memory platforms can be increased by utilizing multiprocessor-task pro-
gramming. To obtain the minimum parallel runtime an appropriate sched-
ule that takes the computation and communication performance of the
target platform into account is required. However, many tools and en-
vironments for multiprocessor-task programming lack the support for
an integrated scheduler. This paper presents a scheduling toolkit, which
provides this support and integrates popular scheduling algorithms. The
implemented scheduling algorithms provide an infrastructure to auto-
matically determine a schedule for multiprocessor-tasks with dependen-
cies represented by a task graph.

1 Introduction

Large applications for distributed memory platforms often show an insufficient
scalability for a high number of processors resulting from a large communication
overhead especially caused by collective communication operations, like broad-
cast operations. The increasing popularity of large homogeneous cluster systems
and hierarchical cluster-of-cluster systems necessitates a programming model
that helps to reduce this overhead. Multiprocessor-task programming can ad-
dress this problem by splitting an application into a set of multiprocessor-tasks
(also called M-tasks or modules), which can be executed in parallel on disjoint
processor groups if there are no preventing data dependencies.

The development of M-task applications, which exploit data and task paral-
lelism at the same time, is usually more complex and error-prone compared to
the development of pure data or task parallel applications. Therefore a variety
of software tools, frameworks and language extensions have been proposed, see
e.g. [1–3]. Most of these approaches belong to the class of data parallel languages
with support for task parallelism or to the class of task parallel languages with
the option to specify data parallelism.

An efficient execution of an M-task application requires a schedule, which de-
fines the execution order and the processor groups for all M-tasks. The schedule
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that leads to a minimum runtime strongly depends on the hardware characteris-
tics of the target machine, e.g. the communication performance, and is therefore
not portable. Scheduling algorithms that are often based on heuristics or ap-
proximation procedures can be used to calculate a schedule depending on the
structure of the application and hardware specific parameters. Most of the exist-
ing tools used to develop M-task applications require the developer to manually
specify a schedule. This increases the required implementation effort and leads
to a poor portability.

In this paper we introduce the scheduling toolkit (STK) that offers support
for scheduling M-task applications and may be used by other tools for M-task
programming. STK takes a description of the structure of an M-task application
in form of a hierarchical directed acyclic graph with annotated cost information
and a description of the parallel target platform as an input and produces a
feasible M-task schedule that is adopted to the target platform as an output. The
cost information in the input may be measured runtimes or runtime predictions
in form of symbolic runtime formulas. STK contains implementations of popular
algorithms for M-task applications with precedence constraints. Furthermore we
present a comparison of the implemented algorithms.

This paper is structured as follows. Section 2 explains the programming
model used for STK. The structure and functionality of STK is described in Sec-
tion 3. The algorithm library of STK, which includes all implemented scheduling
algorithms, is presented in Section 4, which additionally includes a comparison
of the performance of the scheduling algorithms. Section 5 explains the graphical
user interface while Section 6 concludes this paper.

2 The M-task Programming Model with Dependencies

An M-task programming model with dependencies was described e.g. in [4] or
within the TwoL(Two Level)-system[5]. M-task applications can be modeled by
a hierarchical annotated directed acyclic graph (dag) G = (V,E). The node set
V in STK consists of three different types of nodes: the unique Start Node Q
that is a predecessor of all other nodes, the unique Stop Node R that succeeds all
other nodes and a set of regular nodes M that correspond to the execution of an
M-task. An M-task m ∈ M is a parallel program part that can be executed on
any group of processors gm ∈ P({1, . . . , P}), gm 6= ∅ of a P -processor homoge-
neous target platform. The expected execution time is described by the runtime
function Tm : [1, . . . , P ] → R+ that is annotated at each M-task m ∈ M .

There are basic M-tasks, whose runtime functions are supplied by the appli-
cation developer, and complex M-tasks, which consist of other M-tasks and are
represented by an M-task dag. The runtime functions for basic M-tasks in STK
can be specified by either giving measured runtimes or by using symbolic runtime
formulas. Symbolic runtime formulas may be derived by adopting a cost model
like BSP[6], LogP[7], or by fitting measured runtimes to a function prototype.
Depending on the cost model the runtime functions Tm may require further pa-
rameters. The runtime functions for complex M-tasks are determined during the



Fig. 1. Example of an M-task application represented by a directed acyclic graph (left)
and an appropriate schedule (right). The figure shows the parameter dependencies
resulting in a multigraph. The final M-task dag can be derived by combining multiple
edges between a pair of nodes into a single edge.

scheduling process by running a scheduling algorithm on the associated internal
M-task dag.

Each node v ∈ V of the M-task dag has a set of input parameters Iv and a set
of output parameters Ov, which are data structures used for the communication
between M-tasks. Each parameter a ∈

⋃
v∈V (Iv∪Ov) has a data type DTa, which

specifies the size and the memory layout, and a data distribution DDa(v), which
determines which processor owns which part of the data structure. The data
distribution may change during program execution and is therefore dependent on
the node v ∈ V that uses the parameter. There is a directed edge e = (v1, v2) ∈ E
in the M-task dag if an output parameter of v1 is an input parameter of v2

without being modified by another M-task. The edges may be obtained by a
dataflow analysis. An edge e = (v1, v2) leads to a data re-distribution if the
processor group changes, i.e. gv1 6= gv2 , or a parameter requires a different data
distribution, i.e. ∃a ∈ Ov1 ∩ Iv2 with DDa(v1) 6= DDa(v2). The costs for the
re-distribution operation is denoted as Tre(v1, v2).

There may be multiple implementations of each basic M-task, which accom-
plish the same task and require the same parameters with the same data types
but may use different data distributions or have different runtime estimations.
In case of multiple implementations of an M-task m ∈ M the runtime function
Tm and the data distributions DDa(m) for all a ∈ Im ∪Om additionally depend
on the implementation. An example M-task dag is shown in Figure 1(left).

A schedule S assigns each M-task m ∈ M a processor group gm and a starting
time TSm , i.e. S(m) = (gm, TSm). A feasible schedule has to guarantee that all
predecessor M-tasks of m have finished their execution and necessary data re-
distributions have been carried out before starting the execution of an M-task
m ∈ M , i.e. TSn + Tn(|gn|) + Tre(n, m) ≤ TSm for all n ∈ V and (n, m) ∈ E.
Additionally each processor of the target machine can process one task at any
given time index at most, i.e. if [TSm

, TSm
+Tm(|gm|)] ∩ [TSn

, TSn
+Tn(|gn|)] 6= ∅

then gm ∩ gn = ∅ for all m,n ∈ M. The makespan of the schedule Cmax(S) is
called the time where all output parameters are available at the Stop Node R,
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Fig. 2. Dataflow of the scheduling toolkit.

i.e.
Cmax(S) = max

m∈M
(TSm

+ Tm(|gm|) + Tre(m,R)).

The determination of a feasible schedule with a minimum makespan is called
the scheduling problem. Figure 1(right) shows an example of a feasible schedule
without data re-distributions.

3 Scheduling Toolkit

This section gives an overview of the structure and functionality of STK, which is
shown in Figure 2. The workflow of STK starts by supplying an input scheduling
problem and ends by generating an output schedule. The input scheduling prob-
lem can be read from a file by using the Input Parser or a synthetic scheduling
problem can be created by using the Problem Generator.

The input used by STK is split into 3 XML-based files, the SchedulingProb-
lem, the ProblemDesc and the MachineDesc. The SchedulingProblem input is
the main part and describes the structure of an M-task application. This input
file consists of a definition of data types and data distribution types and a set
of M-task definitions, where each definition contains a parameter list with data
types and a set of implementations. Each implementation fixes the data distri-
bution for all parameters of the underlying M-task. Implementations of basic
M-tasks furthermore contain a cost information in form of measured runtimes
or a symbolic runtime formula. Implementations of complex M-tasks contain an
M-task dag. The M-task dag is defined by specifying a set of nodes, where each
node refers to an M-task definition in the input file, and a set of edges. Listing
3.1 shows an input description for the example application from Figure 1(left).
The definition of data types and data distribution types has been omitted. The
root M-task dag representing the whole application is referenced as MainModule.
As a good schedule for a given application usually depends on the size of the
input data or other problem specific values, this information is encapsulated in
the ProblemDesc input part and may also be changed by using the graphical user
interface. In this way, schedules for different problem instances may be created



Listing 3.1. Example of a main input file for STK.
<SchedulingProblem Name="Example">

<ProblemParam Name="n"/>
<MachineParam Name="t_op"/><MachineParam Name="t_bc"/>
<MainModule ModuleRef="2"/>

<!-- Definition of data types (vector) and data distributions -->

<Module Name="bm" Id="1">
<Param Name="in1" Id="1" Type="vector"/>
<Param Name="in2" Id="1" Type="vector"/>
<Param Name="out" Id="2" Type="vector"/>
<Implementation Name="bm_block" Id="1"><BasicModule>

<Runtime Formula="T_par(p, n, t_op, t_bc)=n*t_op/p+t_bc(p, n)"/>
</BasicModule></Implementation>

</Module>

<Module Name="main" Id="2">
<Param Name="in1" Id="1"/><Param Name="in2" Id="2"/>
<Param Name="out" Id="3"/>
<Implementation Name="main-complex" Id="1"><ComplexModule>

<!-- Specification of data distributions for all parameters -->
<StartNode Name="Start" Id="1"/>
<Node Name="bm#1" Id="2" ModuleRef="1"/>
<Node Name="bm#2" Id="3" ModuleRef="1"/>
<Node Name="bm#3" Id="4" ModuleRef="1"/>
<Node Name="bm#4" Id="5" ModuleRef="1"/>
<Node Name="bm#5" Id="6" ModuleRef="1"/>
<StopNode Name="Stop" Id="7"/>
<Edge Id="1" SourceNodeId="1" SourceParamId="1"
TargetNodeId="2" TargetParamId="1"/>

<Edge Id="2" SourceNodeId="1" SourceParamId="2"
TargetNodeId="2" TargetParamId="2"/>

<!-- further edge definitions -->
</ComplexModule></Implementation>

</Module>
</SchedulingProblem>

without altering the main input file. An example for such an input file is given
in Listing 3.2. Finally all machine dependent information that may be required
for symbolic runtime formulas is stored in the MachineDesc input part. There
may be constants, e.g. the time needed to execute an arithmetical operation, and
functions, e.g. the time required for a broadcast operation dependent on the size
of the data to be transmitted and the number of processors. Listing 3.3 presents
an example MachineDesc input.

The Problem Generator includes several algorithms for creating specific M-
task dags, e.g. SP-graphs, in-trees, out-trees, or general dags. SP-graphs [8] are
dags that are built according to a recursive definition. An SP-graph is a single
node or the series or parallel composition of two SP-graphs. In-trees are a special
kind of tree where every node has exactly one outgoing edge meaning all edges
are directed towards a single root node. Out-trees are the opposite where every
node has exactly one incoming edge and all edges are directed away from a single
root node. Furthermore several cost models for representing the computational
costs of the nodes of the generated M-task dags are supported. The generated
scheduling problems can be used to test the robustness and the performance



Listing 3.2. Example of a ProblemDesc-file for the extended input format.
<ProblemDesc>

<Constant Name="n" Value="1000"/ >
</ProblemDesc>

Listing 3.3. Example of a MachineDesc-file for the extended input format.
<MachineDesc>

<Machine Name="CLiC" Processors="12">
<Constant Name="t_op" Value="0.000000069"/ >
<Function Name="t_bc" Formula=

"t_bc(p,n)=(0.0383+0.474e-6*log(p))*n"/>
</Machine>

</MachineDesc>

of scheduling algorithms. The generation of the synthetic M-task dags can be
influenced by a number of specifications. These specifications are: type of the
dag (SP-graph, in-tree, out-tree or general dag), number of nodes in the dag,
maximum degree of a node (sum of incoming edges and outgoing edges has to
be smaller than this value for any node in the dag), a depth ratio to generate
flat or deep graphs, a ratio of communication to computation costs, a ratio of
the occurrence of more than one implementation for the nodes, and the runtime
cost model.

The Algorithm Library is the core of STK and includes implementations
of several scheduling algorithms for M-task programs with dependencies. The
scheduling algorithms take an internal representation of a scheduling problem as
input and produce an internal representation of a schedule, which can be saved
to the output format by the Output Generator. The output contains a feasible
schedule description for the whole application. This output file of a schedule
contains the schedule for the MainModule of the input including the length of
the schedule, the processor group of the overall scheduling problem, and a list of
module calls ordered by their starting time. Each module call is defined by the
processors the module is proposed to run on (processor group), the starting time
and the finishing time of the module, and the chosen implementation. Parts of
the output file for the example input problem are given in Listing 3.4.

STK supports symbolic runtime formulas to represent cost information. This
is a very flexible approach as many different cost models can be used to derive
these runtime formulas, e.g. BSP, LogP, Amdahl’s law, or even unit runtimes.
The Formula Evaluation subsystem encapsulates all functionality to handle the
symbolic runtime formulas.

The Graphical User Interface(GUI) enables the user to control all steps in
scheduling an M-task dag. Section 5 gives further insight into the features of the
GUI. Additionally STK may be controlled via a command line interface.



Listing 3.4. Example of an output-file for the given input files.
<GlobalSchedule Name="Example">

<MainSchedule ScheduleRef="1"/>
<Schedule Id="1" ModuleRef="4" ImplementationRef="1" Length="17.267858" >

<ProcessorMap>
<Group FirstProc="0" NumProcs="16"/ >
<Machine Name="CLiC"/>

</ProcessorMap>
<ModuleCall Name="bm#1" Id="2" StartTime="0.0" EndTime="17.250608"

ModuleRef="1" ImplementationRef="1">
<ProcessorGroup>

<Group FirstProc="0" NumProcs="6"/>
</ProcessorGroup>

</ModuleCall>
<!-- further module calls sorted by StartTime -->

</Schedule>
</MainSchedule>

</GlobalSchedule>

4 Scheduling Algorithm Library

This section gives an overview of the implemented scheduling algorithms. Most of
the implemented scheduling algorithms are defined for non-hierarchical M-task
dags consisting only of basic M-tasks. Therefore hierarchical input scheduling
problems have to be decomposed into a set of non-hierarchical problems first and
the resulting schedules of the non-hierarchical schedulers have to be composed
into a hierarchical schedule finally. Currently the following algorithms for non-
hierarchical M-task dags are contained in our algorithm library:

Allocation-and-Scheduling-based algorithms try to solve the scheduling prob-
lem with precedence constraints in a two-step approach introduced in [4] consist-
ing of an allocation step and a scheduling step. Implemented algorithms of this
class are Task-parallel, Data-parallel, TSAS (Two Step Allocation and Schedul-
ing)[4], CPA (Critical Path and Area-based scheduling)[9], CPR (Critical Path
Reduction)[10] and a modified version of [11] that we call MSAA (Modified SP-
graph approximation algorithm).

Layer-based algorithms are scheduling algorithms, which are based on shrink-
ing and decomposing an M-task dag into layers. These algorithms, which were
introduced within the (TwoL) system with the TwoL-Level[12] and the TwoL-
Tree[13] algorithm, consist of three phases, the shrinking phase, the layering
phase and the layer-scheduling phase. In addition we extended the Dual-3/2
approximation algorithm[14] for scheduling M-tasks without dependencies by a
shrinking and a layering phase for M-tasks with dependencies.

In the following we present a comparison of the implemented scheduling al-
gorithms based on the makespan of the produced schedules. For this purpose we
consider the average makespan achieved for 100 different synthetic M-task dags
belonging to the class of SP-graphs that were generated by the Problem Gen-
erator (see Section 3). The generated runtime formulas are based on Amdahl’s
law. We consider task graphs with 10 to 200 nodes and target platforms with
16 and 256 available processors. The obtained results are presented in Figure



3. Because the results of the Data-parallel scheduler are very slow and increase
linearly we only show the first values so that the results of the other schedulers
can be shown in more detail.
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Fig. 3. Comparison of the average makespan of different scheduling algorithms for task
graphs with 10 to 200 nodes and platforms with 16 (left) and 256 (right) processors.

The Data-parallel and the Task-parallel schedulers generate the slowest sched-
ules. We therefore focus on the specialized M-task scheduling algorithms, whose
results lie closely together for 16 available processors. For 10 nodes MSAA con-
structs the schedules with the minimum average makespan. For 20 and more
nodes CPR achieves the best results. The schedules delivered by TSAS for 16
available processors have a considerably higher average makespan compared to
the best schedulers. Considering the average over all tested numbers of nodes
the schedules of TSAS have a 22% higher makespan compared to CPR.

TSAS, whose performance was rather poor for 16 available processors, achieves
the best average results for 256 available processors. For up to 60 nodes MSAA
produces the second lowest makespans followed by CPR. Compared to TSAS the
schedules constructed by CPR have a 12% higher average makespan followed by
MSAA (18%). CPA, whose schedules require 95% more time compared to TSAS,
is clearly outperformed by the other scheduling algorithms. Ex-Dual-3/2, TwoL-
Level and TwoL-Tree exhibit a similar performance by constructing schedules
that are about 14% slower compared to CPR for 16 processors and about 26%
slower compared to TSAS for 256 processors.

Considering the obtained schedules for each synthetic M-task dag in iso-
lation it can be seen that the schedule with the minimum makespan is never
constructed by the Task-parallel or the Data-parallel scheduler. CPA builds a
schedule with minimum makespan in very few cases, it is mostly dominated by
CPR. TwoL-Tree is mostly better than TwoL-Level by a small amount. In almost
all cases the best schedule is produced by TSAS, TwoL-Level, CPR, Ext-Dual-



Fig. 4. The scheduling toolkit STK with a loaded scheduling problem (left) and the
corresponding schedule (right).

3/2, or MSAA. Altogether these results show that a mixed task and data parallel
schedule outperforms a pure task or data parallel execution.

5 The Graphical User Interface

The graphical user interface (GUI) of STK is shown in Figures 4. The main win-
dow provides the functionality to load an M-task dag with annotated runtime
information (Load SchedulingProblem), to load a specific problem instance (Load
ProblemDesc), to load a description of a target machine (Load MachineDesc),
to generate a synthetic M-task dag with synthetic runtime information and a
synthetic target machine (Generator), to run a scheduling algorithm on the cur-
rently loaded problem (Scheduler), to validate the obtained schedule (Validate
Schedule), to save the obtained schedule to an XML file in the output format
(Save Schedule), and to save the currently loaded problem (Save Problem).

The main part of the GUI allows the visualization of a loaded M-task dag
presented in Figure 4(left), the editing of problem specific and machine depen-
dent parameters and the visualization of schedules obtained by running one of
the included scheduling algorithms shown in Figure 4(right). Furthermore, there
are dialogs for the configuration of the scheduling algorithms and for the config-
uration of the generator for synthetic task graphs.

6 Conclusion and Future Work

In this paper we have introduced the scheduling toolkit STK, which offers a
scheduling environment for M-task programming with dependencies. The aim of
STK is to generate a schedule for a specified input scheduling problem, which can
be used in isolation or for other tools for the development of M-Task applications.
This is necessary because existing tools for developing M-task applications re-
quire a manual specification of the schedule. Our solution closes the gap between



the specification and the execution of M-task programs by automatically deter-
mining good schedules. Through the possibility of including different scheduling
algorithms it is possible to adaptively take the applications requirements and
hardware details of the target machine into account.

Future steps in the development of STK include the support of a wider range
of scheduling problems and heterogeneous target platforms. Currently we are
working at the integration of STK into the TwoL Component System[3].
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