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Abstract The development of complex simulations with high computational
demands often requires an efficient parallel execution of a large number of nu-
merical simulation tasks. Exploiting heterogeneous compute resources for the
execution of parallel tasks can be achieved by integrating dedicated schedul-
ing methods into the complex simulation code. In this article, the efforts for
developing an application from the area of engineering optimization consist-
ing of various individual components are described. Several scheduling meth-
ods for distributing parallel simulation tasks among heterogeneous compute
nodes are presented. Performance results and comparisons are shown for two
novel scheduling methods and several existing scheduling algorithms for paral-
lel tasks. A heterogeneous compute cluster is used to demonstrate the schedul-
ing and execution of benchmark tasks and FEM simulation tasks.

Keywords component-based development · distributed simulations · parallel
tasks · scheduling methods · heterogeneous platforms

1 Introduction

Complex simulations in science and engineering often comprise of large num-
bers of compute-intensive numerical tasks that dominate significantly the time-
to-solution. Increasing the problem sizes for these kinds of applications is usu-
ally limited since the number of tasks and their individual execution times
should not be too high. Exploiting HPC resources, such as current heteroge-
neous platforms or future ultrascale computing systems [6], provides an im-
portant way to overcome such limitations. However, especially for a variable
number of tasks that can be executed in parallel itself (i. e., parallel tasks), the
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efficient utilization of compute resources requires dedicated scheduling meth-
ods to be integrated and used within the application program.

The complex simulation which we consider is an application from mechani-
cal engineering for optimizing lightweight structures based on numerical simu-
lations. This class of applications is extensively studied in the research project
MERGE1 in a research group comprising of mathematicians, computer scien-
tists, and especially mechanical engineers who are interested in developing new
lightweight parts and constructions. The simulations cover the manufacturing
process of short fiber-reinforced plastics and the characterization of their me-
chanical properties for specific operating load cases [9]. To optimize these parts
and constructions, an optimization problem is set up which is then solved by
performing the simulations several times with different parameter sets. The
goal is to develop an optimal set of parameters. The optimization problem
is to be solved using HPC platforms with a variety of compute nodes and
depending on the specific optimization problem at hand it is desirable to be
able to port the optimization software to very different platforms. This leads
to some challenges for the parallel and distributed implementation.

The aim of the software development is twofold. On the one hand, the
specific optimization problem developed in the project should be implemented
such that the software is able to run on very different hardware and for ap-
plications of different sizes. Thus, the software should be sustainable in the
sense that it can be easily adapted by the mechanical engineer or mathemati-
cian. On the other hand, different simulation and optimization problems might
come up and the software development process itself should be sustainable so
that new applications can be easily implemented. Our approach is to build
a flexible application program whose individual components can be easily re-
placed or extended. Long-term reusability of the application program (e. g., for
increasing problem scales) is achieved by a thorough support for distributed
and heterogeneous platforms. Executing the simulations efficiently on a va-
riety of HPC platforms leads to a scheduling problem for parallel tasks on
heterogeneous compute nodes.

In this article, we present a component-based approach for the development
of a complex simulation application from engineering optimization. Especially,
we investigate the use of scheduling methods for assigning simulation tasks to
compute resources with the goal to reduce the total parallel runtime of the en-
tire simulations. We employ task and data parallel scheduling and propose two
new scheduling methods for parallel tasks. The Water-Level method uses
a best-case estimation of the total parallel runtime to determine the compute
resources for each parallel task. The Water-Level-Search method repeats
the Water-Level method several times to achieve an iterative improvement
of the resulting schedule. All presented methods have been implemented and
we show performance results with different tasks on a heterogeneous compute
cluster.

1 MERGE Technologies for Multifunctional Lightweight Structures, http://www.
tu-chemnitz.de/merge
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The three benchmarks for testing the scheduling methods developed have
been chosen carefully to reflect different potential behavior of the parallel exe-
cution time of parallel tasks in a set of tasks to be scheduled. The benchmark
for synthetic parallel tasks is described by a runtime formula of the parallel
execution time in which the parallelization overhead can be modified through
a parameter, thus reflecting very different performance behavior. A benchmark
from numerical linear algebra consists of a set of matrix multiplication tasks
each of which executes a DGEMM operation from the OpenBLAS library [16]
using matrices of size 4000 × 4000. This benchmark leads to parallel tasks
which have the same execution time and scale well up to the full number of
cores of a single compute node. The last benchmark comes from the complex
application code that we consider, in which a set of simulation tasks has to be
executed. The specific simulation tasks needed in the application code lead to
parallel tasks that scale moderately well and, hence, the goal is to achieve a
performance improvement by our scheduling methods.

The rest of the article is organized as follows: Section 2 describes the appli-
cation from mechanical engineering. Section 3 presents the component-based
application development. Section 4 presents the scheduling methods for exe-
cuting the simulations on heterogeneous compute resources. Section 5 shows
corresponding performance results. Section 6 discusses related work and Sect. 7
concludes the article.

2 Simulation and Optimization of Lightweight Structures

The numerical optimization of lightweight structures consisting of fiber-re-
inforced plastics to be developed in the project MERGE is performed by a
simulation approach described in the following.

2.1 Simulation of fiber-reinforced plastics

The lightweight structures are manufactured by injection molding, which rep-
resents one of the most economically important processes for the mass produc-
tion of plastic parts. The parts are produced by injecting molten plastic into a
mold, followed by a cooling process. Fillers, such as glass or carbon fibers, are
mixed into the plastic to improve mechanical properties, such as the stiffness
or the durability of the parts. Besides the properties of the materials used,
the orientation of the fibers and the residual stresses within the parts have
a strong influence on the resulting mechanical properties. Thus, determining
the mechanical properties of such short fiber-reinforced plastics requires to
consider both the manufacturing process and specific operating load cases for
the potential use of the plastic parts.

The manufacturing process is simulated with a computational fluid dynam-
ics (CFD) method that simulates the injection of the material until the mold
is filled. The input data of the CFD simulation include the geometry of the
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Figure 1 Overview of the coarse structure of the optimization process for lightweight struc-
tures.

part, the material properties, such as the viscosity or the percentage of mixed
in fibers, and the manufacturing parameters, such as the injection position or
pressure. The results of the simulation describe the fiber orientation and the
temperature distribution within the part. These results are used for simulat-
ing the subsequent cooling process with a finite element method (FEM) that
computes the residual stresses within the frozen part.

The simulation of the manufacturing process is followed by an evaluation
of the resulting part. Mechanical properties are determined by simulating the
behavior of the manufactured part for specific operating load cases of its fu-
ture use. These simulations are also performed by FEM simulations. Boundary
conditions represent the given load cases. The FEM application code employs
advanced material laws for short fiber-reinforced plastics and uses the pre-
viously determined fiber orientation and residual stresses within the part as
input data. The final simulation results describe the behavior of the part, for
example, its deformation under an applied surface load.

2.2 Optimization of manufacturing parameters

The goal of the simulation process is not only to simulate one specific manufac-
turing process of a plastic part but to optimize the properties of the lightweight
structures. This is achieved by an optimization process that varies material
and manufacturing parameters, such as the fiber percentage or the injection
position. Figure 1 shows a coarse overview of the optimization process. The
optimization is executed by repeatedly selecting specific values for the param-
eters to be used and then simulating the manufacturing process and the load
cases with the selected parameter configurations as described in the previous
subsection. Thus, there is a number of simulation tasks to be executed (i. e.,
one for each parameter configuration to be simulated) that are independent
from each other. The specific number of independent simulation tasks depends
strongly on the number of parameters to be varied and on the optimization
method to be employed.

Solving optimization problems with objective functions that involve numer-
ical simulations leads to various challenges, such as high computational costs
for each evaluation of the objective function, missing derivatives of the objec-
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tive function, discontinuous and noisy simulation results in many cases, and
large numbers of evaluations required for high-dimensional parameter spaces.
Therefore in engineering optimization, techniques based on metamodels (or
surrogate models) are often used [24]. The goal of these techniques is to create
an alternative model of the function that maps input parameters of experi-
ments to experimental results. A small number of experiments, e. g. compu-
tationally expensive simulations, is used for the training of a metamodel that
is inexpensive to evaluate. The metamodel can then be used for the predic-
tion of experimental results for various input parameters which have not been
simulated, for example, to solve an optimization problem.

The optimization of lightweight structures is performed with a Kriging
metamodel approach for the global optimization [12] that proceeds as follows.
Initial input parameter configurations for creating a metamodel are chosen
based on statistical methods for the design of experiments (i. e., either full
factorial or Latin Hypercube) [14]. The objective function is evaluated for
each initial configuration and the results are used to train the metamodel.
The Kriging metamodel provides an interpolation-based method that is espe-
cially appropriate for deterministic computer experiments [25]. Furthermore,
the Kriging metamodel allows the calculation of the expected improvement
for new parameter configurations, thus providing an efficient method for de-
termining new candidates for parameter configurations of the optimization
process. The objective function is evaluated for each candidate and the re-
sults are used to refine the metamodel. After a specific number of refinement
steps, the best remaining candidate is chosen as the optimal solution of the
optimization problem.

Evaluating the objective function involves the execution of the simulation
tasks and is the most time consuming part of the optimization process. How-
ever, since the evaluations are independent from each other, the simulation
tasks can be executed at the same time. Thus, the chosen optimization method
provides the opportunity to parallelize the evaluations during both the initial
training step and in each refinement step. The actual number of evaluations
depends, for example, on the complexity of the optimization problem or on
the availability of computational resources, but is usually expected to be in
the order of tens or hundreds. Performing these computations efficiently on
HPC platforms can be supported by an efficient scheduling method that maps
the parallel execution of simulation tasks on the various compute nodes.

As an example for the optimization of lightweight structures, we consider
the determination of an optimal injection position for the manufacturing of a
part made of short fiber-reinforced plastics. Figure 2 (left) shows a plastic part,
which is a plate with a hole on one side. The plate is clamped on two sides
and a circular surface load is applied leading to the shown deflection in force
direction. Figure 2 (right) shows a contour plot of the objective function for
the corresponding optimization problem. The optimal injection point shown
in the figure leads to a fiber orientation within the plate that minimizes the
deflection.
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Figure 2 Left: Clamped plate with hole and applied surface load (arrow). Right: Contour
plot of the objective function including the obtained minimum (green).

3 Component-based application development

Solving engineering optimization problems as described in Sect. 2 uses a large
variety of software programs. In the following, the different software compo-
nents and their integration into a sustainable application are described.

3.1 Software components for complex optimization applications

For the optimization of lightweight structures, we distinguish the following
groups of software programs that are combined into our complex application:

Simulation: The simulation of the manufacturing process and the operating
load cases uses computationally intensive numerical applications. The man-
ufacturing by injection molding is simulated with a customized open-source
CFD application based on OpenFOAM, which is a C++ library imple-
menting the finite volume method [11] parallelized with MPI. The simu-
lation of the subsequent cooling process and the operating load cases is
performed with an in-house adaptive 3D FEM application [5] parallelized
with OpenMP.

Optimization: Compared to the objective function of the optimization prob-
lem, the optimization methods employed are less computationally inten-
sive. The main optimization component is implemented in Python, since
Python provides a fast and flexible way of composing the solution meth-
ods for different optimization problems. Existing Python modules, such as
NumPy [30], scikit-learn [18], and pyDOE [20], are used to implement the
Kriging-based optimization method.

Data management: Scientific simulations and their integration into complex
applications require appropriate strategies for the management and ex-
change of various data. For the optimization application, this includes a
repository for optimization problems, dedicated storages for simulation re-
sults as well as programs for data conversion and analysis. Depending on
the specific optimization problems and application programs involved, local
or distributed file-based storages as well as a centralized MySQL database
are employed.
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User interaction: The specification of optimization problems and their param-
eters as well as the evaluation of simulation and optimization results are
to be performed manually by the user. For the optimization application, a
dedicated Python application called Injection Molding Process Optimiza-
tion Tool (IMPOT) with a graphical user interface has been developed to
support the configuration of optimization problems and parameters, the
selection of optimization methods, simulation applications, and compute
resources as well as the evaluation of the optimization results. Further
analysis and visualization of simulation results is performed by scientific
applications, such as ParaView [8] or VTK [26].

The large variety of the software components means that several different
execution platforms might be involved in the execution. For example, compu-
tationally intensive numerical simulations require the use of HPC platforms
while user-oriented software, such as IMPOT, will be executed on desktop
platforms, such as laptops or PCs. The selection of the execution platforms
might also depend on the specific optimization problem to be solved or on
the availability of compute resources. For example, during the development
process usually only small problem sizes are considered and, thus, all software
components can be executed locally on a single platform (e. g., desktop PC).
Increasing the problem sizes or switching to production runs will then require
to distribute one or more software components among several platforms.

3.2 Component-based development for sustainable applications

Achieving a sustainable solution for the complex application requires the flex-
ibility to add or replace existing software components and to distribute the
execution among different platforms without extensive additional development
efforts. In [10], we have proposed a method for building complex simulation
programs for distributed computing systems to enable such a sustainable de-
velopment process. Furthermore, we presented the Simulation Component and
Data Coupling (SCDC) library specifically designed as programming support
for these applications. Our approach leads to an application development that
is similar to other component-based architectures [4,17]. However, instead of
providing an entire task-based computational framework, the SCDC library
is designed as lightweight application-independent programming support that
can be easily integrated into existing application codes. The detailed descrip-
tion of the SCDC library and its comparison to other approaches for the de-
velopment of complex scientific simulations is given in [10].

The SCDC library provides a service-oriented approach for the coupling of
independent software components and can be utilized through C or Python
programming interfaces. All interactions between software components are or-
ganized as data exchanges between client and service components. These data
exchanges are performed transparently by the SCDC library utilizing different
data exchange methods, such as direct function calls, inter-process communi-
cation, or network communication. The library functions provide mechanisms
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Figure 3 Overview of the components for a service-oriented execution of the optimiza-
tion application for lightweight structures. Interactions (1)–(7) represent client accesses to
services performed with the SCDC library.

for setting up existing application programs as services as well as to access
these services from within other application programs as clients.

Figure 3 illustrates the service-oriented implementation of the complex op-
timization application based on the SCDC library. The IMPOT application
with its graphical user interface executes the optimization method, thus repre-
senting a client that accesses other components. Executing several simulation
tasks (e. g., for different parameter configurations, see Sect. 2.2) is separated
in two phases. The first phase performs the CFD simulations as follows:
– The input data of the CFD simulations is first transferred from the IMPOT

application to the storage service (1) and then the CFD simulation tasks are
submitted to the CFD service (2). Interaction between client and service
components is performed by blocking operations, which means that the
submission of the CFD simulation tasks to the CFD service (2) is not
completed until all current CFD simulation tasks are finished.

– The CFD service uses the information about the CFD simulation tasks
and the available compute resources to derive a scheduling problem (see
Sect. 4). Solving this problem requires to determine an assignment of the
compute resources to the CFD simulation tasks (i. e., a schedule) such that
the total time for executing all CFD simulation tasks is minimized. The
scheduling algorithms are implemented as a dedicated scheduling service
that is accessed by the CFD service (3).

– The CFD simulation tasks are executed by the CFD service, which first
retrieves the input data from the storage service (4) and then executes the
parallel CFD application on the compute resources given by the schedule.
The simulation results are also transferred to the storage service. After the
CFD service finished all CFD tasks, the submission of the CFD simulation
tasks performed by the IMPOT application (2) is completed.

In the second phase, the same steps are performed for the FEM simulation
tasks (i. e., interactions (1), (5)–(7) in Fig. 3). Finally, the IMPOT applica-
tion retrieves the simulation results from the storage service and decides how
to continue the optimization method. For example, if the Kriging-based op-
timization method requires a refinement of its metamodel, then a new set of
simulation tasks is executed by repeating the two phases. In each of these
phases, a scheduling problem is solved using the scheduling algorithms pre-
sented in the next section.
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4 Scheduling parallel tasks on heterogeneous HPC platforms

The scheduling problem emerging when simulating lightweight structures and
several scheduling methods for utilizing heterogeneous HPC clusters are pre-
sented in the following.

4.1 Scheduling problem for independent parallel tasks

Independent numerical simulations are given as nT parallel tasks T1, . . . , TnT
.

The parallel runtime ti(p) of the tasks Ti, i = 1, . . . , nT is assumed to be
previously determined with benchmark measurements on a specific reference
compute node where p denotes the number of cores employed. It is also as-
sumed that it is known whether a task is capable of being executed either on
a single node only (SN task, e. g., for OpenMP-based codes) or on a cluster of
nodes (CN task, e. g., for MPI-based codes).

The compute resources of the heterogeneous HPC platform are described
by a machine model with nN compute nodes N1, . . . , NnN

. For each node Nj ,
j ∈ {1, . . . , nN}, its number of processor cores pj and a performance factor
fj is given. The performance factor fj defines the computational speed of
compute node Nj as the ratio of the sequential execution time of a task on the
reference compute node and on the compute node Nj . The nodes are grouped
into nC clusters C1, . . . , CnC

such that each cluster is a subset of nodes and
each node is part of exactly one cluster. Each cluster is able to execute a CN
task in parallel (e. g., MPI-based) on all its nodes.

A schedule for the tasks Ti, i = 1, . . . , nT to be executed on the compute
nodes Nj , j = 1, . . . , nN is given by the following information for each task Ti:

– the set of compute nodes and their numbers of cores to be utilized,
– the estimated start time si and finish time ei.

The makespan of a schedule is then defined as the time difference between
the earliest start time of all tasks and the latest finish time of all tasks. We
assume that the earliest start time is 0 and, thus, the makespan is equal to
maxi=1,...,nT

ei. The goal is to determine a schedule such that the makespan is
minimized. Furthermore, we will also determine all tasks that are immediate
predecessors of a task and executed on the same compute node. With this
information, it will be possible to wait for the completion of the predecessor
tasks, especially if the runtimes in practice differ from the estimated runtimes.

4.2 Task and data parallel executions

The following task and data parallel schemes [7] are used as reference methods:

Pure Task Parallel (TaskP): The task parallel scheduling scheme for in-
dependent parallel tasks is defined to be a scheme in which exactly one
core is assigned to each task (i. e., executed sequentially). This leads to an



10 R. Dietze et al.

Time Makespan
Makespan

CoreCore
1 2 3 4 5 6 1 2 3 4 5 6

Time

Figure 4 Scheduling of one task (yellow) either on two (left) or three (right) cores with
previously scheduled tasks (gray) and optimally executed remaining tasks (blue).

execution of as many tasks as possible at the same time in parallel to each
other.

Pure Data Parallel (DataP): The data parallel scheduling scheme for in-
dependent parallel tasks is defined to be a scheme in which as many cores
as possible are assigned to each task. Depending on the properties of the
tasks (i. e., SN or CN task, see Sect. 4.1), either all cores of a node or all
cores of a cluster are used.

The scheduling is performed by iterating over the tasks and selecting the
compute resources to be utilized according to the task parallel or data parallel
scheme. To favor an early execution of long running tasks, the tasks are first
sorted in descending order based on their sequential runtimes. A single task is
then assigned to the compute resource that provides the earliest finish. Both
schemes are adapted to heterogeneous compute resources by scaling the given
runtimes of the tasks with the performance factors of the compute nodes.

4.3 Water-Level method

We propose a new scheduling strategy which we call Water-Level method
(WaterL). For each task, the Water-Level method selects the compute
nodes and the number of cores for which an estimation of the resulting makespan
reaches a minimum. This estimation is determined by assigning a task tem-
porarily to specific compute nodes and cores and assuming all remaining tasks
are executed fully parallel without parallelization overhead on the entire set of
compute resources. Figure 4 shows an illustration of the Water-Level strat-
egy in which the current task to be scheduled (yellow) will use either two (left)
or three (right) cores. All tasks that are not scheduled yet (blue) are assumed
to be executed fully parallel on all cores (i. e., they are distributed like “water”
over the “task landscape”). In this example, the current task will be assigned
to three cores since the estimation of the resulting makespan (i. e., the “water
level”) reaches a minimum.

The pseudocode of the Water-Level method is given in Fig. 5. To ease the
following description, we assume that only SN tasks are given. Supporting also
CN tasks can be achieved by iterating over clusters and their numbers of cores
instead of compute nodes and their numbers of cores (line 13). The method
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1 input : tasks Ti, i = 1, . . . , nT , with runtimes ti(p)
2 input : nodes Nj , j = 1, . . . , nN , with pj cores and performance factors fj
3 output: compute node, number of cores, start time and finish time for each task
4 total compute power P =

∑nN
j=1 pj · fj

5 sequential work WS =
∑nT

i=1 ti(1)
6 free work WF = 0
7 latest finish time emax = 0
8 sort Ti, i = 1, . . . , nT in descending order of ti(1)
9 // assume T1, . . . , TnT are sorted in descending order of their sequential runtimes

10 for i = 1, . . . , nT do
11 WS =WS − ti(1)
12 best estimated makespan m∗ =∞
13 for j = 1, . . . , nN and p = 1, . . . , pj do
14 assign Ti temporarily to p cores of compute node Nj

15 s = start time of task Ti
16 e = s+ ti(p)/fj
17 dWF = (max(e, emax)− emax) · P
18 dWF = dWF − (e− s) · fj · p
19 estimated makespan m = max(e, emax)
20 if WS > WF + dWF then m = m+ WS−(WF+dWF )/P
21 if m < m∗ then { (m∗, j∗, p∗, s∗, e∗, dW ∗

F ) = (m, j, p, s, e, dWF ) }

22 assign p∗ cores of node Nj∗ to task Ti with start time s∗ and finish time e∗
23 WF =WF + dW ∗

F
24 emax = max(e∗, emax)

Figure 5 Pseudocode of the Water-Level scheduling method.

starts by calculating the total compute power P of all compute nodes with
respect to a single core of the reference compute node (line 4). The sequential
work WS is determined as the work for executing all tasks sequentially on
the reference compute node (line 5). Additionally, the free work WF and the
latest finish time of all tasks emax are initialized (lines 6 and 7). While emax

corresponds to the makespan of the determined schedule, the free work WF

is equal to amount of work that can be executed by all compute resources
without increasing this makespan.

The determination of a schedule of the tasks proceeds as follows. The tasks
are sorted in descending order based on their sequential runtimes (line 8) and
a loop iterates over all tasks in that sorted order (line 10). For the current
task Ti, i ∈ {1, . . . , nT }, the remaining sequential work WS of all unscheduled
tasks is calculated (line 11). The currently best estimated makespanm∗ that is
achieved for scheduling the task Ti is initialized in such a way (line 12) that it
is larger than the following estimation. Then, a loop iterates over the compute
nodes and their numbers of cores (line 13) to determine the compute node and
the number of cores to be assigned for the task Ti.

The current task Ti is temporarily assigned to the currently considered p
cores of compute node Nj (line 14), thus leading to a potential start time s
(line 15). The potential finish time e is then calculated from the parallel run-
time ti(p) of the task scaled with the performance factor fj of the currently
considered compute node Nj (line 16). Estimating the makespan for this as-
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signment starts by calculating the potential change dWF of the free work as
follows. The free work is increased by the amount of work that can be executed
by all compute nodes if the latest finish time emax is increased to e (line 17).
The free work is decreased by the amount of work that is required to execute
task Ti with p cores on compute node Nj (line 18). The estimated makespan
m is now calculated as the maximum of the current latest finish time emax

and the finish time e of the current task (line 19). However, if the remaining
sequential workWS is larger than the free workWF +dWF , then the estimated
makespan m has to be further increased (line 20). This increase corresponds
to the time required to execute additional work WS − (WF + dWF ) on all
compute resources (i. e., with compute power P ). If the estimated makespan
m is smaller than the best estimated makespan m∗, then the corresponding
values are store (line 21).

After the loop over the compute nodes and their numbers of cores is com-
pleted, the stored values of the best estimated makespan are used for the
task Ti (line 22). Additionally, the free work WF and the latest finish time
emax are updated with the stored values (lines 23 and 24). Estimating the
makespan (lines 14–21) requires only constant time. Thus, the overall time of
the Water-Level method is linear in the number of tasks, compute nodes,
and cores.

4.4 Water-Level-Search method

The Water-Level method underestimates the makespan when the behavior
of the parallel tasks differs strongly from the assumptions of that method. This
can happen, for example, when tasks have a large parallelization overhead. The
Water-Level method then typically assigns too many cores to a parallel
task, which would perform better with a smaller number of cores. In this case,
the resulting makespan of the schedule is to high. To improve the scheduling
method, we propose a search-based approach called Water-Level-Search
method (WLSearch) that is able to correct such misestimations.

Instead of minimizing an estimation of the makespan, the Water-Level-
Search method uses a makespan limit m̂ to determine the compute node and
the number of cores for each task in such a way that this makespan limit is
not exceeded. The makespan limit is initialized with m̂ = WS/P , i. e. the total
sequential work WS of all tasks on the reference compute node divided by the
total compute power P of all compute nodes (see lines 4 and 5 in Fig. 5).
Whenever a task can not be scheduled without exceeding the makespan limit,
the makespan limit is increased and the scheduling of all tasks is restarted. If
the makespan limit was increased and all tasks could be scheduled, then the
makespan limit might still be to high and a search for a better lower makespan
limit is performed.

The Water-Level-Search method consists of three phases. Each phase
proceeds similar to the Water-Level method shown in Fig. 5, but without
estimating the makespan m (lines 17–20).
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Phase 1: The loop over the compute nodes and their numbers of cores (line 13)
is stopped if the potential finish time e is less than or equal to the makespan
limit m̂. In this case, the current compute node and cores are assigned to
the current task and the next task is scheduled. If the makespan limit m̂
is exceeded by all finish times e, then the makespan limit is set to the
smallest finish time and the scheduling of all tasks is potentially restarted.
More specifically, the restarts are only performed after nT

2 , 3nT

4 , 7nT

8 , . . .
tasks to limit the number of restarts to O(log nT ).

Phase 2: Since the last makespan limit m̂ might still be to large, a binary
search for a smaller makespan limit is performed. A list of candidates for
the search is created by collecting all finish times e during an execution
of the algorithm shown in Fig. 5. The resulting number of candidates is
limited to nT

∑nN

j=1 pj .
Phase 3: The binary search is performed as long as there are candidates left for

the makespan limit. In each step of the search, the median of the candidates
is used as the makespan limit m̂ to perform the algorithm shown in Fig. 5
in the same way as in Phase 1. Depending on whether the makespan limit
is exceeded or not, the candidates below or above the median are removed.
Finally, the last remaining candidate is used as the makespan limit that
leads to the schedule determined by the Water-Level-Search method.

Each phase performs the algorithm shown in Fig. 5 one or several times.
The total number of repetitions depends logarithmically on the number of
tasks and the total number of cores.

5 Performance results of the scheduling methods

In this section, we present performance results of the scheduling methods de-
scribed in Sect. 4 on a heterogeneous compute cluster.

5.1 Experimental setup

The heterogeneous compute cluster used consists of nN = 8 compute nodes,
each with two multi-core processors. Table 1 lists the nodes and their specific
processors. The compute node cs1 is used as the reference compute node and
the performance factors of all other compute nodes are calculated as the ratio
of the corresponding sequential execution times of the tasks (see Sect. 4.1).
The scheduling methods described in Sect. 4 are implemented in Python. Addi-
tionally, we have implemented two methods that represent existing approaches
for the scheduling of parallel tasks on heterogeneous compute clusters:

HCPA: The Heterogeneous Critical Path and Allocation method [15]
transforms individual computational speeds of processors into additional
“virtual” processors with equal speed. The scheduling is then performed
with an existing method for homogeneous compute clusters (i. e., CPA [22]).
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Table 1 List of the compute resources used.

Nodes Processors #Nodes × #Processors × #Cores GHz
cs1,cs2 Intel Xeon E5345 2× 2× 4 2.33
sb1 Intel Xeon E5-2650 1× 2× 8 2.00
ws1,. . . ,ws5 Intel Xeon X5650 5× 2× 6 2.66

However, the transformation between real processors and virtual proces-
sors requires to use the runtime formula of Amdahl’s law for the parallel
runtimes of the tasks. We have determined such a runtime formula for
our benchmark tasks with a least square fit of the parallel execution times
measured on the reference compute node.

∆-CTS: The∆-Critical Task Set method [27] extends an existing schedul-
ing method for sequential tasks on heterogeneous compute clusters (i. e.,
HEFT [28]) to parallel tasks. The compute node and the number of cores
is determined separately for each task such that the earliest finish time of
the task (i. e., based on the given runtime formula) is minimized. Addition-
ally, the number of similar tasks (i. e., with similar sequential execution
time) executed at the same time is maximized, thus limiting the maximum
number of cores to be used by each task.

For the experiments, we have obtained the predicted makespan of each
determined schedule and the measured makespan for executing the tasks ac-
cording to this schedule. Executing the tasks is conducted by a Python script
that runs on a separate front-end node of the compute cluster and uses SSH
connections to the compute nodes. The measurements are performed 5 times
and the average result is shown.

5.2 Results with synthetic tasks

As synthetic benchmark, we employ “sleep” tasks that perform no computa-
tions, but only wait for a specific time t(p) = 10s ·

[
x · 1p + (1− x) · (log p+ p)

]
to simulate the runtime of typical parallel tasks. The time comprises of a frac-
tion x · 1p which decreases linearly with the number of cores p and a remaining
part (1− x) · (log p+ p), which increases logarithmically and linearly. The for-
mula was chosen to model the runtime of a typical parallel task that comprises
of parallel computations and of parallelization overhead (e. g., for synchroniza-
tion or communication) that slows down the parallel execution if the number
of cores is to large.

Figure 6 shows the measured makespan of the synthetic tasks with x = 1.0,
i. e. without parallelization overhead (left) and x = 0.95, i. e. with a paral-
lelization overhead (right) depending on the number of tasks, using 4 different
scheduling methods. The compute node cs1 with a total of 8 cores is used
as compute resource. The TaskP method achieves the same results for both
kinds of tasks. This is expected, since the tasks are always executed sequen-
tially in this scheduling scheme. The makespan shows a step-wise increase after
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Figure 6 Measured makespan of synthetic tasks with x = 1.0, i. e. without paralleliza-
tion overhead (left) and x = 0.95, i. e. with parallelization overhead (right) using different
scheduling methods and compute node cs1.

every 8 additional tasks. With these numbers of tasks, i. e. 8, 16, 24, . . . , all 8
cores of the compute node are equally utilized and any additional task leads
to a higher makespan. The DataP method uses always the maximum number
of 8 cores for each task and the makespan shows strong differences between
the two kinds of tasks. With x = 1.0, the parallel runtime of a task decreases
linearly and the minimum runtime is achieved using the maximum number of
cores (see Fig. 6 (left)). However, with x = 0.95, using the maximum num-
ber of cores leads to a strong increase of the makespan due to the increasing
parallelization overhead of the parallel tasks (see Fig. 6 (right)).

The WaterL and WLSearch methods achieve a good trade-off between
the TaskP and DataP methods. With x = 1.0, the minimal makespan as
with the DataP method is achieved, because the WaterL method estimates
the behavior of tasks without parallelization overhead very well. A further
improvement with the WLSearch method is not possible. With x = 0.95,
the results are close to the results of the TaskP method, but with a more
continuous increase instead of the step-wise increase. Especially with less than
a multiple of 8 tasks, the WaterL method leads to a higher makespan than the
TaskP method. This behavior is caused by the estimation of the makespan by
the WaterL method that is based only on the sequential execution time of the
tasks. Neglecting the parallelization overhead underestimates the makespan
and leads to a choice of a number of cores for tasks that is too high. The
WLSearch method solves the drawback if such an underestimation occurs
by restarting the scheduling of all tasks with an increased estimation of the
makespan. The restarts provide opportunities to use a smaller number of cores
for the tasks, thus allowing to reach at least the same result as the TaskP
method.
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Figure 7 Predicted makespan (left) and measured makespan (right) of DGEMM tasks
using different scheduling methods and compute nodes cs1 and ws1.

5.3 Results with DGEMM tasks

The number of cores utilized by the DGEMM operation of the OpenBLAS
library is controlled with the environment variable OPENBLAS_NUM_THREADS.
The parallel runtime of a DGEMM task using p cores is modeled with the
runtime formula t(p) = a/pb + c. The parameters a, b, and c are determined
with a least square fit (by Gnuplot) of the parallel execution times measured
on the reference compute node cs1. The resulting runtime with matrices of size
4000× 4000 comprises of a constant part c = 2.30 seconds and a parallel part
a = 13.09 seconds that decreases proportionally to 1/p1.09. Thus, even though
the parallel part scales very well, there is always a significant sequential part.

Figure 7 (left) shows the predicted makespan of DGEMM tasks depending
on the number of tasks, using 6 different scheduling methods. The two compute
nodes cs1 and ws1 with a total of 20 cores are used as compute resources.
Similar to Fig. 6 (left), the TaskP method shows a step-wise increase of the
execution times due to the sequential execution of the tasks while the DataP
method shows a strong increase due to the parallelization overhead caused by
always using the maximum number of cores. The existing methods HCPA and
∆-CTS lead to an improved makespan for small numbers of tasks. However,
if the number of tasks is larger than the total number of cores, then the same
step-wise increase as the TaskP method occurs. In this case, only one core is
assigned to each task, because both methods chose the maximum number of
cores to be assigned to a task without considering the potential utilization of
cores by other tasks.

The WaterL method leads to a continuous increase of the makespan for in-
creasing numbers of tasks. Furthermore, the makespan of the WaterL method
is always below or at most equal to the best results of the TaskP method. This
is the expected behavior, because the estimation of the makespan that is used
to determine the number of cores to be assigned to a task represents a predic-
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tion of the remaining utilization of the cores. If there are many tasks left, then
this utilization is high and a task parallel execution is preferred. Otherwise, the
predicted utilization is low and a data parallel execution of the few remaining
tasks is chosen. The results demonstrate this intended trade-off between task
and data parallel executions. However, due to the significant sequential part
within the parallel DGEMM task, the WaterL method also underestimates
the makespan. By repeatedly improving the estimation of the makespan, the
WLSearch method further improves the makespan of the WaterL method
by about 6% on average.

Figure 7 (right) shows the measured makespan achieved by executing the
DGEMM tasks according to the determined schedule. The results of the DataP
method are close to the predicted makespan (left), but still lead to the high-
est makespan results. All other methods lead to strongly varying results. This
behavior is caused by the DGEMM tasks which influence each other when
executed on the same compute node. Due to the significant sequential part of
the tasks, all methods except the DataP method prefer the execution of mul-
tiple tasks at once. However, especially the step-wise increase of the TaskP,
HCPA, and ∆-CTS methods is still visible. The majority of the smallest mea-
sured makespans is achieved with the WLSearch method, thus confirming
the results of the predicted makespan (left).

5.4 Results with FEM simulation tasks

The FEM code [5] is parallelized with OpenMP and simulates the cooling of
a lightweight structure as described in Sect. 2. The number of cores utilized
by threads is controlled with the OpenMP environment variable OMP_NUM_-
THREADS. Since the different parameter sets to simulate usually do not affect
the runtime of the FEM code, all parallel tasks have the same execution time.
The parallel runtime is modeled with the formula t(p) = a/pb + c and the
parameters a, b, and c are determined with a least square fit (by Gnuplot)
of the parallel execution times measured on the reference compute node cs1.
The resulting runtime comprises of a constant part c = 4.47 seconds and a
parallel part a = 71.07 seconds that decreases proportionally to 1/p0.42. Thus,
each single FEM task scales only moderately well.

Figure 8 (left) shows the predicted makespan of FEM tasks depending on
the number of tasks, using 6 different scheduling methods. All compute nodes
listed in Table 1 with a total of 92 cores are used as compute resources. The
DataP method leads to a strong increase of the makespan, which is expected
since the parallel FEM code scales only moderately well. For the FEM tasks,
the DataP method is only advantageous if there are very small numbers of
tasks (i. e., less than twice the number of compute nodes). The TaskP method
shows a step-wise increase of the makespan, but with different widths and
heights of the steps due to the different numbers of cores and computational
speeds of the compute nodes used. The makespan of the HCPA method varies
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Figure 8 Predicted makespan (left) and measured makespan (right) of FEM tasks using
different scheduling methods and all compute nodes listed in Table 1.

around the TaskP method while the makespan of the∆-CTS method is either
higher than or equal to the TaskP method.

The makespan of the WaterL method is up to a factor of two higher than
the TaskP method. This behavior is caused by the FEM code that favors an
execution with small numbers of cores and the fact that the WaterL method
assumes an optimal parallel execution for its estimation of the makespan,
which differs strongly from the actual parallel runtimes of the FEM tasks. The
WLSearch method solves this problem by repeating the WaterL method
several times with improved estimations of the makespan. In general, this im-
provement is especially important for parallel codes that scale only moderately
well. The resulting makespan of the WLSearch method is always the best in
comparison to all other methods.

Figure 8 (right) shows the measured makespan achieved by executing the
FEM tasks according to the determined schedules. The results confirm the
general behavior of the methods, which was previously seen in the predicted
makespan results, i. e. the WLSearch method achieves the smallest execution
times for a broad range of numbers of tasks. However, the measured makespan
results are up to about a factor of 1.4 higher with less than 80 tasks and up
to a factor of 2 higher for larger numbers of tasks. This strong increase occurs
if a high number of sequential FEM tasks is executed on single nodes at the
same time. One reason might be that due to the limited memory bandwidth of
the compute nodes cs1 and cs2, the sequential runtimes of FEM tasks almost
double if all eight cores execute a separate (sequential) FEM task. However,
this affects all scheduling methods that rely on a given runtime formula for
the execution times of the tasks.

The parallel speedup Ts/Tp of the FEM tasks shown in Figure 9 demon-
strates the performance improvement. The sequential runtime Ts corresponds
to a sequential execution of all FEM tasks using only one core of compute
node sb1 (i. e., the compute node with the best sequential performance). The
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Figure 9 Parallel speedup achieved for the execution of 16 (left) and 92 (right) FEM tasks
using different scheduling methods.

parallel runtime Tp corresponds to a parallel execution of all FEM tasks based
on a schedule determined for using compute nodes with a total number of p
cores. Increasing the number of cores utilizes the compute nodes in order of
their performance, i. e. 1–16 cores with compute node sb1, 28–76 cores with
additional compute nodes ws1–ws5, and 92 cores with all compute nodes listed
in Table 1. Thus, the scheduling methods have to handle the heterogeneity of
the different compute nodes and the varying ratios between the number of
tasks and the number of cores.

Figure 9 (left) shows the parallel speedup with 16 FEM tasks depending
on the number of cores, using 6 different scheduling methods. The DataP
method always leads to the lowest speedup results, thus demonstrating the
need for an appropriate scheduling of the FEM tasks in favor of the parallel
execution of the FEM application itself. Up to 16 cores, all methods except
the DataP method, assign the 16 cores of compute node sb1 equally to the
tasks, thus leading to the same results. However, especially with 16 cores, the
parallel speedup of about 12 is lower than expected for executing all 16 tasks
sequentially at the same time. This is caused by an increase of the sequential
execution times if several FEM tasks are executed on a single compute node,
as mentioned before.

Using more than 16 cores leads to varying speedups for the different schedul-
ing methods. The speedup of the TaskP method remains constant, because
all 16 tasks are executed sequentially on the 16 cores of the compute node
sb1 and additional compute nodes are not used. The speedup of the HCPA
method and the WaterL method decreases with 28 cores and increases only
slightly when using additional cores. Both methods assign too many cores to
single tasks based on an expected parallel behavior (i. e., Amdahl-like or water-
like), which differs strongly from their actual parallel execution. The ∆-CTS
method does not experience these effects, because it prevents an unbalanced
assignment of cores to tasks. However, the balancing ignores the different com-
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putational speeds of the processors, thus leading to a strong decrease of the
speedup when additionally using the slow compute nodes cs1 and cs2. The
WLSearch method achieves an increasing speedup up to 92 cores. The prob-
lematic assignment of too many cores to single tasks is resolved by repeating
the assignment of cores to tasks with improved estimations of the makespan.
Furthermore, using slower computes nodes does not deteriorate the speedup,
because the assignment is based on the parallel runtime of the tasks recogniz-
ing also the different computational speeds of the processors.

Figure 9 (right) shows the parallel speedup with 92 FEM tasks depending
on the number of cores, using 6 different scheduling methods. In comparison
to the results with 16 FEM tasks, all scheduling methods, except the DataP
method, achieve a significant speedup with more than 16 cores. This is the
expected behavior when using less cores than tasks, because in these cases the
additional cores are used to execute more tasks sequentially at the same time.
Using 92 cores leads to a significant decrease of the speedup for the TaskP
method and the ∆-CTS method. In this case, both methods execute all tasks
sequentially and the slow compute nodes cs1 and cs2 decrease the overall
speedup. Especially, the WLSearch method achieves a further increase when
using all 92 cores, thus confirming the good results that were already shown
with less tasks (left).

In comparison to the DGEMM tasks used in the previous subsection, the
parallel behavior of the FEM simulation tasks has shown to be very challenging
for the scheduling methods. The usage of slow compute nodes as well as cases
with less tasks than cores affect the efficiency of most of the scheduling methods
such that their results are often not better than the task parallel scheme. In
contrast to that, the WLSearch method has demonstrated consistently good
results in all these cases, thus showing that both benchmark tasks and realistic
application tasks can be handled appropriately.

6 Related Work

Scheduling is an important problem supporting the efficient processing in dif-
ferent application areas [19]. One prominent area is the scheduling of sequential
and/or parallel tasks to be executed on a given set of hardware resources (e. g.,
cores, processors, or nodes) while additional dependencies between the tasks
may restrict their execution order. Determining an optimal schedule (e. g., with
minimal makespan) for tasks with dependencies is an NP-hard problem that is
usually solved with heuristics or approximation algorithms [13]. Layer-based
scheduling algorithms [23] decompose a set of parallel tasks with dependen-
cies into layers of independent tasks. Each layer is scheduled separately with a
scheduling algorithm for independent tasks, e. g. list scheduling. Since the sim-
ulation tasks of our optimization application are independent, a decomposition
into layers can be omitted.

List scheduling algorithms add priorities to the tasks and assign the tasks
in descending order of their priority to the processors. Algorithms, such as
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Largest Processing Time (LPT) [3] and Longest Task First (LTF) [29],
use the given runtime of the tasks as priorities to assign compute intensive
tasks first. Algorithms for heterogeneous platforms, such as Heterogeneous
Earliest Finish Time (HEFT) [28] and Predict Earliest Finish Time
(PEFT) [1], also take the runtime of the tasks on individual processors into
account for the priorities. The Water-Level method proposed in this article
is also a list scheduling algorithm that prioritizes the tasks according to their
runtime. However, the Water-Level method uses only the sequential runtime
as priority while the individual processor speeds of a heterogeneous platform
are used for the allocation of cores to parallel tasks and for the selection of
compute nodes.

Scheduling parallel tasks can also be performed with a two-step approach
consisting of an allocation step followed by a scheduling step. The scheduling
step assigns the parallel tasks to specific processors and is usually based on a
list scheduling algorithm. The allocation step determines the number of pro-
cessors for each parallel task. This step is usually performed iteratively starting
with an initial allocation (e. g., one processor per tasks) and then repeatedly
assigning additional processors to tasks (e. g., to shorten the critical path).
The resulting number of repetitions depends linearly on the number of tasks.
Example algorithms are Critical Path Reduction (CPR) [21], Critical
Path and Allocation (CPA) [22], and Modified Critical Path and
Area-based (MCPA) [2]. The Water-Level method performs the alloca-
tion of cores only once for each task during the list scheduling and, thus, omits
repeated assignments of additional processors to tasks. The Water-Level-
Search method repeats the Water-Level method, but with a number of
repetitions that depends only logarithmically on the number of tasks.

The HCPA method [15] is an extension of the CPA method and requires
to calculate the parallel runtime of tasks according to Amdahl’s law (see
Sect. 5.1). In contrast, both the WaterL method and the WLSearch use the
given parallel runtime of the tasks, thus omitting such limitations to a specific
runtime formula. The ∆-Critical Task Set method (∆-CTS) [27] repre-
sents an extension of the HEFT method for parallel tasks and, thus, uses the
earliest finish time according the given parallel runtime (see Sect. 5.1). This
is also done by the Water-Level method. However, the ∆-CTS method
considers only subsets of tasks together (i. e., tasks within a specific range
of the so-called bottom level) while the Water-Level method always con-
siders all tasks. Furthermore, the Water-Level-Search method iteratively
improves the schedule in several steps while the ∆-CTS method performs only
one step. Especially for the FEM simulation tasks from our complex applica-
tion, the experiments in Sect. 5 have demonstrated that these advantages of
the WLSearch method lead to a smaller makespan and to better parallel
speedup results than the HCPA method and the ∆-CTS method and, thus,
the WLSearch method outperforms the other methods.
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7 Conclusion

In this article, we have described a component-based development of a com-
plex scientific application from the area of engineering optimization and have
shown that a scheduling problem arises, which has to be solved efficiently for
an overall efficient execution. Achieving a sustainable application has been
accomplished by a flexible development approach that enables both to add
or replace individual software components and to distribute their execution
among different platforms. To support this approach, we have proposed two
scheduling methods for the efficient execution of parallel simulation tasks on
heterogeneous HPC platforms. The Water-Level method performs an itera-
tive assignment of the parallel tasks to compute resources and uses a best-case
estimation of the makespan to determine the number of cores to be assigned to
tasks. The Water-Level-Search method repeats this assignment with im-
proved estimations of the parallel behavior of the tasks. Performance results
for benchmark tasks demonstrate that the goal to achieve a good trade-off
between task and data parallel execution schemes has been reached. In com-
parison to other existing scheduling methods for parallel tasks, the Water-
Level-Search method leads to consistent good results for both benchmark
tasks and realistic application tasks. A significant speedup is also achieved for
the execution of the set of specific FEM simulation tasks from the complex
simulation application considered.
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