
NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Exploiting Heterogeneous Compute Resources
for Optimizing Lightweight Structures

ROBERT DIETZE, MICHAEL HOFMANN, GUDULA RÜNGER

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
{dirob,mhofma,ruenger}@cs.tu-chemnitz.de

Abstract

Optimizing lightweight structures with numerical simulations leads to the development of complex simulation
codes with high computational demands. The optimization approach for lightweight structures consisting of fiber-
reinforced plastics is considered. During the simulated optimization, independent simulation tasks have to be
executed efficiently on the heterogeneous computing resources. In this article, several scheduling methods for
distributing parallel simulation tasks among compute nodes are presented. Performance results are shown for the
scheduling and execution of synthetic benchmark tasks, matrix multiplication tasks, as well as FEM simulation tasks
on a heterogeneous compute cluster.

Keywords Numerical simulations, scheduling, heterogeneous clusters

I. INTRODUCTION

The development of complex simulations in science and engi-
neering leads to various challenges for application program-
mers, especially when targeting at future ultrascale comput-
ing systems [4]. The sustainability and portability of applica-
tion codes represent important non-functional requirements,
which can be provided, for example, with an appropriate
methodology for the development process as well as technical
support in the form of dedicated programming libraries [7].
By encapsulating the data exchange operations of coupled
simulations, it is possible to achieve a flexibly distributed
execution of the simulation components on distributed sys-
tems. However, for compute-intensive simulations also the
efficient utilization of various computing resources, such as
HPC servers or clusters, is important.

As an application example for complex simulations, we
consider the optimization of lightweight structures based
on numerical simulations which are studied in the research
project MERGE1. The simulations cover the manufacturing
process of short fiber-reinforced plastics and the characteriza-
tion of their mechanical properties for specific operating load

1MERGE Technologies for Multifunctional Lightweight Structures,
http://www.tu-chemnitz.de/merge

cases [6]. For solving the optimization problem, the simula-
tions are performed several times with different parameter
sets in order to develop an optimal set of parameters. The
efficient execution of the simulations on HPC platforms leads
to a task scheduling problem with the following properties:

• The tasks are independent from each other and the num-
ber of tasks is usually in the order of tens or hundreds.

• Since each task represents an execution of the same par-
allel simulation application, all tasks behave almost the
same. This means that the expected parallel runtime is
the same for all tasks and can be determined previously,
for example, with separate benchmark measurements.

• The compute resources to be utilized are hierarchically
organized and can comprise several compute clusters.
Each cluster consists of several compute nodes and each
node contains several compute cores.

• The compute resources are heterogeneous in the sense
that each compute node has an individual performance.

• A parallel task can be either a shared-memory applica-
tion that can be executed only on a single node including
several cores or a distributed-memory application that
can be executed on a cluster including several nodes.

1

Original published: R. Dietze, M. Hofmann, and G. Rünger. Exploiting Heterogeneous Compute Resources for Optimizing Lightweight
Structures. In J. G. Blas, J. Carretero, E. Jeannot, and R. Wyrzykowski, editors, Proceedings of the 2nd International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015), pages 127–134, 2015. Online available at http://hdl.handle.net/10016/22036.

http://www.tu-chemnitz.de/merge
http://hdl.handle.net/10016/22036


Second NESUS Workshop • September 2015 • Vol. I, No. 1

In this article, we investigate the use of scheduling algo-
rithms for assigning simulation tasks to compute resources
with the goal to reduce the total parallel runtime of the en-
tire set of simulations. We employ task and data parallel
scheduling methods and propose a new scheduling algorithm
called WATER-LEVEL method. The WATER-LEVEL method
is designed as a trade-off between task and data parallel ex-
ecutions and is based on a best-case estimation of the total
parallel runtime of all tasks. All presented methods were
implemented to solve to scheduling problem described above.
We show performance results with different simulation tasks
on a heterogeneous compute cluster.

The rest of this article is organized as follows: Section II
presents the application example from mechanical engineer-
ing. Section III describes the approaches for scheduling
the execution of the simulations on heterogeneous compute
resources. Section IV shows corresponding performance
results. Section V discusses related work and Sect. VI con-
cludes the article.

II. SIMULATION AND OPTIMIZATION OF

LIGHTWEIGHT STRUCTURES

The numerical optimization of lightweight structures con-
sisting of fiber-reinforced plastics can be performed by a
simulation approach which is described in the following.

II.1 Simulation of fiber-reinforced plastics
The lightweight structures can be manufactured by injection
molding, which represents one of the most economically
important processes for the mass production of plastic parts.
The parts are produced by injecting molten plastic into a
mold, followed by a cooling process. Fillers, such as glass
or carbon fibers are mixed into the plastic to improve the
mechanical properties, such as the stiffness or the durability
of the parts. Besides the properties of the materials used,
the orientation of the fibers and the residual stresses within
the parts have a strong influence on the resulting mechanical
properties. Thus, determining the mechanical properties of
such short fiber-reinforced plastics requires to consider both
the manufacturing process and specific operating load cases
for the potential use of the plastic parts.

The manufacturing process can be simulated with compu-
tational fluid dynamics (CFD) that simulates the injection
of the material until the mold is filled. The input data of

the CFD simulation include the geometry of the part, the
material properties, such as the viscosity or the percentage
of mixed in fibers, and the manufacturing parameters, such
as the injection position or pressure. The simulation results
describe the fiber orientation and the temperature distribution
within the part. These result data are used for simulating
the subsequent cooling process with an approach based on
the finite element method (FEM) that computes the residual
stresses within the freezed part.

The simulation of the manufacturing process is followed by
an evaluation of the resulting part. Mechanical properties are
determined by simulating the behavior of the manufactured
part for specific operating load cases of its future use. These
simulations are also performed by FEM simulations using
boundary conditions that correspond to the given load cases.
The FEM application code employs advanced material laws
for short fiber-reinforced plastics and uses the previously
determined fiber orientation and residual stresses within the
part as input data. The final simulation results describe the
behavior of the part, for example, its deformation under an
applied surface load.

II.2 Optimizing manufacturing parameters

The goal of the simulation process is not only to simulate
one specific manufacturing process of a plastic part but to
optimize the properties of the lightweight structures. This is
done by an optimization process that varies selected material
and manufacturing parameters, such as the fiber percentage
or the injection position. The optimization is executed by re-
peatedly selecting specific values for the variable parameters
and then simulating the manufacturing process and the load
cases for the selected parameter configurations as described
in the previous subsection. Thus, there are a number of
simulation tasks to be executed (i. e., one for each parameter
configuration to be simulated) that are independent from each
other. The specific number of independent simulation tasks
strongly depends on the number of variable parameters or on
the optimization method employed and is usually expected
to be in the order of tens or hundreds.

Figure 1 (left) shows an example of a plastic part, which
is a plate made of short fiber-reinforced plastics with a hole
on one side. The plate is clamped on two sides and a circular
surface load is applied leading to the shown deflection in
force direction. The shown optimal injection point leads to a
fiber orientation within the plate that minimizes the deflec-

2



Second NESUS Workshop • September 2015 • Vol. I, No. 1

−0.05

0

0.05

−0.1 −0.05 0 0.05 0.1

Figure 1: Left: Clamped plate with hole, applied surface load (arrow), and optimal injection point (green). Right: Contour
plot of the objective function including the obtained minimum (green).

Figure 2: Overview of the optimization process.

tion. Figure 1 (right) shows a contour plot of the objective
function for the corresponding optimization problem. The
function values were determined during a Kriging-based op-
timization method [12]. This method creates an arbitrary
number of candidate points for the optimal solution which
are then recursively improved. The candidate points can be
computed independently from each other, thus leading to a
number of simulation tasks that can be executed at the same
time. Figure 2 gives an overview of the optimization pro-
cess. The repeated execution of the simulation tasks is the
most time consuming part of the optimization process. Thus,
performing these computations efficiently on HPC platforms
is required and can be supported by an appropriate schedul-
ing method for the parallel execution of simulation tasks on
various compute nodes.

III. DISTRIBUTING SIMULATIONS ON

HETEROGENEOUS HPC PLATFORMS

The optimization process described in Sect. II leads to in-
dependent numerical simulations that need be executed effi-
ciently on HPC platforms. In the following, we describe a cor-
responding scheduling problem and present several schedul-
ing algorithms for utilizing heterogeneous HPC clusters.

III.1 Scheduling problem

Task model: The independent numerical simulations are
given as nT parallel tasks T1, . . . , TnT . We assume that the
parallel runtime of the simulations was previously determined
with benchmark measurements on a specific reference com-
pute node. Thus, for each task Ti, i ∈ {1, . . . , nT}, the given
function ti(p) specifies the parallel runtime of the simula-
tion when using p processor cores. Furthermore, it is known
whether the tasks are capable of being executed either on a
single node only (e. g., for OpenMP-based codes) or on a
cluster of nodes (e. g., for MPI-based codes).

Machine model: The compute resources of the HPC plat-
form to be used consist of nN compute nodes N1, . . . , NnN .
For each node Nj, j ∈ {1, . . . , nN}, its number of processor
cores pj and a performance factor f j (with respect to the
reference compute node) is given. The nodes are grouped
into nC clusters C1, . . . , CnC such that each cluster is a subset
of nodes and each node is part of exactly one cluster. Each
cluster has to be able to execute an appropriate parallel task
(e. g., MPI-based) on all its nodes.

Schedule: The goal is to determine an assignment of the
given tasks to the compute resources of the HPC platform
such that the total runtime for executing all tasks (i. e., the
makespan) is minimized. For each task, the resulting sched-
ule contains the compute resources to be used (i. e., nodes
and utilized numbers of cores) and the estimated start time.
Furthermore, for each task, the list of tasks that utilize the
same compute resources immediately before is given. With
this information, it will be possible to wait for their com-
pletion, especially if the runtimes in practice differ from the
estimated runtimes.

3



Second NESUS Workshop • September 2015 • Vol. I, No. 1

III.2 Task and data parallel executions

Scheduling parallel tasks requires to determine the number
of parallel cores to be used by each task. The following task
and data parallel schemes will be used as reference methods:

Pure task parallel: This scheduling strategy uses only one
core for each task and, thus, allows the execution of as
many tasks as possible at the same time. The scheduling
is performed by creating a list of all cores, using the core
from the front of the list for the task to be scheduled
next and then moving this core to the back of the list.

Pure data parallel: This scheduling strategy uses as many
cores as possible for each task. Depending on the prop-
erties of the tasks (see Sect. III.1), either all cores of a
node or all cores of a cluster are used as compute re-
sources. The scheduling is performed by creating a list
of all compute resources (i. e., either nodes or clusters),
using the compute resource from the front of the list
for the task to be scheduled next and then moving this
compute resource to the back of the list.

Both methods schedule the tasks in their given order and
use the compute resources in a round-robin scheme indepen-
dently from their performance or utilization. We study the
following adaptations to create further variants of the task
and data parallel scheduling methods: The tasks are sorted
in descending order based on their sequential runtimes to
favor an early execution of long running tasks. Furthermore,
scheduling a task is now performed by selecting the compute
resource that provides the earliest finish (EF). This strategy
replaces the round-robing scheme and is especially important
for heterogeneous compute resources. Overall, we consider
four task and data parallel scheduling variants, i. e., the origi-
nal methods (TASKP and DATAP) and the variants with the
earliest finish (TASKP-EF and DATAP-EF).

III.3 WATER-LEVEL method

In addition to the task and data parallel execution schemes
described in the previous subsection, we present a further
strategy for assigning tasks to compute resources which we
call WATER-LEVEL method (WATERL). The method uses the
given runtime functions of the tasks and the performance fac-
tors of the compute nodes to determine the compute resources
for a each task. For realistic tasks, we assume the following

Figure 3: Scheduling of one task (yellow) either on two (left)
or three (right) cores, previously scheduled tasks (gray), and
optimally executed remaining tasks (blue).

behavior: The parallel runtime of a task decreases for increas-
ing numbers of parallel cores until an optimal number of
cores is reached and, thus, a higher number of parallel cores
(up until the optimal number) should be preferred. However,
the decreasing of the parallel runtime is usually restricted
by parallelization overheads (e. g., due to communication or
synchronization) and, thus, a lower number of parallel cores
should be preferred. Therefore, the WATER-LEVEL method
increases the number of cores for a task only up until an
estimation of the resulting makespan reaches a minimum.
This estimation is determined by assigning a task temporarily
to a specific number of cores and assuming all remaining
tasks can be executed optimally in parallel on the compute
resources. Support for heterogeneous compute resources is
achieved by taking the performance factors f j, j = 1, . . . , nN ,
of the compute nodes into account for the estimation.

Figure 3 shows an illustration of the WATER-LEVEL strat-
egy in which the current task to be scheduled (yellow) will
use either two (left) or three (right) cores. All remaining
tasks (blue) are assumed to be executed optimally in paral-
lel on all cores (i. e., distributed like “water” over the “task
landscape”). In this case, the current task would be assigned
to three cores since the estimation of the resulting makespan
(i. e., the “water level”) reaches a minimum.

The pseudocode of the WATER-LEVEL method for tasks
that can be executed only on single compute nodes is shown
in Figure 4. The method starts by determining the total
work W required for executing all tasks sequentially (line 4).
Scheduling the tasks proceeds similar to the task and data
parallel methods of the previous subsection: The tasks are
sorted in descending order based on their sequential runtimes
to favor an early execution of long running tasks (line 5)
and a loop iterates over all tasks in the sorted order (line 7).

4



Second NESUS Workshop • September 2015 • Vol. I, No. 1

1 input : tasks Ti, i = 1, . . . , nT , with runtimes ti(p)
2 input :nodes Nj, j = 1, . . . , nN , with pj cores
3 output :compute resource and start time for each task
4 seq. work W = ∑nT

i=1 ti(1)
5 sort Ti, i = 1, . . . , nT in descending order of ti(1)
6 // assume T1, . . . , TnT are sorted
7 for i = 1, . . . , nT do
8 W = W − ti(1)
9 minimal makespan m∗ = ∞

10 for j = 1, . . . , nN do
11 p = 0
12 repeat
13 p = p + 1
14 select p cores of Nj as resource R with start time s
15 estimate makespan m with optimally parallelized

seq. work W and task Ti assigned to resource R
16 if m < m∗ then
17 m∗ = m ; R∗ = R ; s∗ = s

18 until p ≥ pj or ti(p) is minimal

19 use resource R∗ and start time s∗ for task Ti

Figure 4: Pseudocode of the WATER-LEVEL method for
tasks that can be executed only on single compute nodes.

In each iteration for the current task Ti, i ∈ {1, . . . , nT},
the sequential work W of all remaining tasks is calculated
(line 8). Then, two loops iterate over the compute nodes
(line 10) and their number of cores (line 12) to determine
the compute resources for the task Ti that lead to a minimal
makespan. The inner loop stops earlier if the parallel runtime
ti(p) reaches a minimum for the current number of cores p.
It depends on the given runtime function whether and how
this minimum can be determined.

For tasks that can be executed only on a single compute
node, a compute resource R consists of a specific node and
the number of cores to be used on that node. The final
schedule also requires the corresponding start time s on the
compute resource (line 14). The selected compute resource R
is temporarily used for task Ti and the resulting makespan m
with optimally parallelized work W of the remaining tasks is
estimated (line 15). If this estimated makespan m is smaller
than the current minimal makespan m∗, then the correspond-
ing compute resource R and start time s are stored (line 17)
such that they can be later used for the task Ti (line 19).

Nodes Processors Cores GHz
cs1,cs2 Intel Xeon E5345 2× 2× 4 2.33
sb1 Intel Xeon E5-2650 1× 2× 8 2.00
ws1,. . . ,ws5 Intel Xeon X5650 5× 2× 6 2.66

Table 1: List of the compute resources used.

For tasks that can be executed on a cluster of nodes, the
pseudocode shown in Fig. 4 has to be modified. The clusters
C1, . . . , CnC have to be provided as input and loops over the
clusters and their cores replace the lines 10 and 12. Ad-
ditionally, a compute resource R for the current task Ti,
i ∈ {1, . . . , nT} will then contain a subset of the nodes
of the current cluster and the numbers of cores to be used
on each of these nodes. In general, the distinction between
the two kinds of tasks could also be performed on a per task
basis in an implementation of the WATER-LEVEL method.

IV. PERFORMANCE RESULTS

The task and data parallel methods as well as the WATER-
LEVEL method have been used for the scheduling of different
simulation tasks. In the following, we present performance
results on a heterogeneous compute cluster.

IV.1 Experimental setup
The heterogeneous compute cluster used consists of 8 com-
pute nodes, each with two multi-core processors. Table 1 lists
the nodes and their specific processors. The parallel runtime
of the tasks required for the scheduling is determined with
separate benchmark measurements on the reference compute
node cs1. The performance factors of the other compute
nodes are derived from the sequential runtimes of a task on
those compute nodes. In the following subsections, we show
total parallel runtimes for executing a number of tasks ac-
cording to the determined schedules. Starting the tasks is
performed by a Python script running on a separate front-end
node of the cluster using SSH connections to the compute
nodes to be utilized. Each schedule is executed 5 times and
the average result is shown.

IV.2 Benchmark tasks
As synthetic benchmark, we employ “sleep” tasks that per-
form no computations, but only wait for a specific time

5



Second NESUS Workshop • September 2015 • Vol. I, No. 1

0
50

100
150
200
250
300
350
400
450

1 4 8 12 16 20 24 28 32

R
un

tim
e

[s
ec

on
ds

]

Number of tasks

Sleep tasks

x = 1.0, TASKP
x = 1.0, DATAP
x = 1.0, WATERL
x = 0.95, TASKP
x = 0.95, DATAP
x = 0.95, WATERL

Figure 5: Parallel runtime of different scheduling methods
using sleep tasks without (x = 1.0) and with parallelization
overhead (x = 0.95) executed on node cs1.

t(p) = 50s ·
[

x · 1
p + (1− x) · (log p + p)

]
. The runtime

comprises of a fraction x which decreases linearly with the
number of cores p (e. g., computation) and a remaining part,
which increases logarithmically and linearly (e. g., paralleliza-
tion overhead).

Figure 5 shows parallel runtimes of sleep tasks with x =
1.0 (i. e., without parallelization overhead) and x = 0.95
(i. e., with parallelization overhead) executed on node cs1
depending on the number of parallel tasks using different
scheduling algorithms. The TASKP method achieves the
same results for both kinds of tasks, because the tasks are
always executed sequentially. The runtime shows a step-wise
increase after every 8 additional tasks, since with these task
numbers all 8 cores of the compute node are equally utilized.
The DATAP method uses always the maximum number of 8
cores for each task and shows strong differences between the
two kinds of tasks. With x = 1.0, the parallel runtime of a
task decreases linearly and the minimum runtime is achieved
using the maximum number of cores. However, with x =
0.95, using the maximum number of cores leads to a strong
increase of the runtime due to the increasing parallelization
overhead. The WATER-LEVEL method achieves a trade-off
between the TASKP and DATAP method. With x = 1.0,
the optimal result of the DATAP method is achieved. With
x = 0.95, the runtime results are close to the runtime results
of the TASKP method, but show a different shape with a more
continuous increase instead of the step-wise increase.

0

10

20

30

40

50

60

1 4 8 12 16 20 24 28 32 36 40

R
un

tim
e

[s
ec

on
ds

]

Number of tasks

Matrix multiplication tasks

TASKP
TASKP-EF
DATAP
DATAP-EF
WATERL

Figure 6: Parallel runtime of different scheduling methods
using matrix multiplication tasks executed on nodes cs1 and
ws1 with a total of 20 cores.

The matrix multiplication operation (DGEMM) from the
OpenBLAS library is used as parallel benchmark tasks that
can be executed on one compute node only. The number
of cores utilized is controlled with the environment vari-
able OPENBLAS_NUM_THREADS. The matrix size is set
to 4000× 4000. Figure 6 shows parallel runtimes depend-
ing on the number of parallel tasks using different schedul-
ing algorithms and the compute nodes cs1 and ws1. The
TASKP methods shows a step-wise increase similar to Fig. 5.
Additionally, there is a slight increase between each step
since the matrix multiplication tasks on the same compute
node influence each other. Selecting the compute nodes ac-
cording to the earliest finish (TASKP-EF) causes an earlier
utilization of the faster node ws1 and thus, decreases the run-
time for specific task numbers. The DATAP method shows
a strong increase of the runtime due to the parallelization
overhead caused by always using the maximum number of
cores. The DATAP-EF method (i. e., with earliest finish) se-
lects the faster compute node ws1 more often, thus leading to
a smaller runtime. The results of the WATER-LEVEL method
demonstrate the trade-off between the task and data parallel
schemes. With small numbers of tasks, the runtime of the
WATER-LEVEL method is equal or below the best data paral-
lel scheme and for higher numbers of tasks, the runtime of
the WATER-LEVEL method is similar to the best task parallel
scheme.

6



Second NESUS Workshop • September 2015 • Vol. I, No. 1

0

10

20

30

40

50

1 20 40 60 80 100 120

R
un

tim
e

[s
ec

on
ds

]

Number of tasks

FEM simulation tasks

TASKP-EF
DATAP-EF
WATERL

Figure 7: Parallel runtime of different scheduling methods
using FEM simulation tasks executed on all nodes listed in
Table 1 with a total of 92 cores.

IV.3 FEM simulation tasks

An OpenMP parallel FEM code [3] is used as simulation
tasks in the optimization process for lightweight structures
as described in Sect. II. Figure 7 shows parallel runtimes
depending on the number of parallel tasks using different
scheduling algorithms and all compute nodes listed in Ta-
ble 1. The data parallel scheme with the DATAP-EF method
leads to strongly increasing runtimes, which is caused by the
low speedup achieved with the parallel FEM code. Thus,
using a data parallel execution with high numbers of cores is
only advantageous if there are few FEM simulation tasks (i. e.,
about twice the number of compute nodes). The task parallel
scheme with the TASKP-EF method often leads to the small-
est runtimes, but shows a steep increase if the number of tasks
approaches the total number of cores. The WATER-LEVEL

methods leads to the same results as the DATAP-EF method
for small numbers of tasks. However, for higher numbers of
tasks, the WATER-LEVEL methods is up to a factor of two
slower than the TASKP-EF methods. This behavior is caused
by the less efficient parallel execution of the FEM code that
favors an execution with small numbers of cores. In contrast
to that, the WATER-LEVEL method assumes an optimal par-
allel execution of the unscheduled tasks for the estimation
of the makespan. Since this estimation differs strongly from
the actual parallel runtime of the tasks, the schedule of the
WATER-LEVEL method differs significantly from the faster
task parallel schedule.

V. RELATED WORK

Scheduling is a popular problem in computer science involv-
ing different application areas and approaches [9]. One of
those areas is the scheduling of sequential or parallel tasks
to be executed on a given set of hardware resources (e. g.,
processors) while additional dependencies between the tasks
may restrict their execution order. Determining an optimal
schedule (e. g., with minimal Makespan) for tasks with de-
pendencies is an NP-hard problem that is usually solved with
heuristics or approximation algorithms [8]. The layer-based
scheduling algorithm from [5] decomposes a set of tasks with
dependencies into layers of independent tasks and schedules
each layer separately with a so-called list scheduling algo-
rithm. Since the simulation tasks in our optimization process
are independent, we can omit a decomposition into layers.

List scheduling algorithms add priorities to the single tasks
and assign the tasks in descending order of their priority
to the processors. Algorithms, such as Largest Process-
ing Time (LPT) [2] and Longest Task First (LTF) [14], use
the given runtime of the tasks as priorities, thus scheduling
compute intensive tasks first. Algorithms for heterogeneous
architectures, such as Heterogeneous Earliest Finish Time
(HEFT) [13] and Predict Earliest Finish Time (PEFT) [1],
also take the runtime of the tasks on individual processors
into account for the priorities. The proposed WATER-LEVEL

method is also a list scheduling algorithm that prioritizes
the tasks according to their runtime. However, the WATER-
LEVEL method uses only the sequential runtime as priority
and uses the individual processor speeds of a heterogeneous
architecture for the allocation of cores by parallel tasks and
for the selection of compute nodes.

Scheduling parallel tasks with dependencies can also be
performed with a two-step approach consisting of an alloca-
tion step and a scheduling step. The scheduling step assigns
the parallel tasks to specific processors and is usually based
on a list scheduling algorithm. The allocation step deter-
mines the number of processors for each parallel task. This
step is usually performed iteratively starting with an initial
allocation (e. g., one processor per tasks) and then repeat-
edly assigning additional processors to tasks (e. g., to shorten
the critical path). Examples for such algorithms are Critical
Path Reduction (CPR) [10] and Critical Path and Allocation
(CPA) [11]. The WATER-LEVEL method performs the alloca-
tion of cores only once for each task during the list scheduling
and, thus, omits repeated allocation and scheduling steps.

7



Second NESUS Workshop • September 2015 • Vol. I, No. 1

VI. CONCLUSION

In this article, we have proposed the WATER-LEVEL schedul-
ing method for parallel tasks without dependencies on hetero-
geneous HPC platforms. The method performs an iterative
assignment of tasks to compute resources and uses a best-case
estimation of the makespan to determine the number of cores
to be used for each task. Performance results for benchmark
tasks demonstrate a good trade-off between task and data
parallel execution schemes. However, for simulation tasks
with low parallel efficiency, the best-case estimation may
differ strongly from the actual runtimes achieved. This disad-
vantage might be solved by using the given parallel runtimes
of the tasks for a better estimation of the makespan.

Acknowledgment
This work was performed within the Federal Cluster of Excel-
lence EXC 1075 “MERGE Technologies for Multifunctional
Lightweight Structures” and supported by the German Re-
search Foundation (DFG). Financial support is gratefully
acknowledged.

REFERENCES

[1] H. Arabnejad and J.G. Barbosa. List scheduling algo-
rithm for heterogeneous systems by an optimistic cost
table. Transactions on Parallel and Distributed Systems,
25(3):682–694, 2014.

[2] K.P. Belkhale and P. Banerjee. An approximate algo-
rithm for the partitionable independent task scheduling
problem. In Proc. of the 1990 Int. Conf. on Parallel
Processing, (ICPP’90), pages 72–75, 1990.

[3] S. Beuchler, A. Meyer, and M. Pester. SPC-PM3AdH
v1.0 - Programmer’s manual. Preprint SFB/393 01-08,
TU-Chemnitz, 2001.

[4] L. A. Bongo, R. Ciegis, N. Frasheri, J. Gong, D. Ki-
movski, P. Kropf, S. Margenov, M. Mihajlovic,
M. Neytcheva, T. Rauber, G. Rünger, R. Trobec,
R. Wuyts, and R. Wyrzykowski. Applications for ultra-
scale computing. Supercomputing Frontiers and Inno-
vations, 2(1):19–48, 2015.

[5] J. Dümmler, T. Rauber, and G. Rünger. Program-
ming support and scheduling for communicating par-

allel tasks. J. of Parallel and Distributed Computing,
73(2):220–234, 2013.

[6] M. Hofmann, F. Ospald, H. Schmidt, and R. Springer.
Programming support for the flexible coupling of dis-
tributed software components for scientific simulations.
In Proc. of the 9th Int. Conf. on Software Engineering
and Applications (ICSOFT-EA 2014), pages 506–511.
SciTePress, 2014.

[7] M. Hofmann and G. Rünger. Sustainability through
flexibility: Building complex simulation programs for
distributed computing systems. Simulation Modelling
Practice and Theory, Special Issue on Techniques And
Applications For Sustainable Ultrascale Computing Sys-
tems, 2015. (to appear).

[8] J.T. Leung, editor. Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis. CRC Press,
2004.

[9] M.L. Pinedo. Scheduling: Theory, algorithms, and
systems. Springer.

[10] A. Radulescu, C. Nicolescu, A.J.C. van Gemund, and
P.P. Jonker. CPR: Mixed task and data parallel schedul-
ing for distributed systems. In Proc. of the 15th
Int. Parallel and Distributed Processing Symposium
(IPDPS’01), pages 1–8. IEEE, 2001.

[11] A. Radulescu and A.J.C. van Gemund. A low-cost
approach towards mixed task and data parallel schedul-
ing. In Proc. of the Int. Conf. on Parallel Processing
(ICPP’01), pages 69–76. IEEE, 2001.

[12] M. Strano. A technique for FEM optimization under
reliability constraint of process variables in sheet metal
forming. Int. J. of Material Forming, 1(1):13–20, 2008.

[13] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Task
scheduling algorithms for heterogeneous processors. In
Proc. of the 8th Heterogeneous Computing Workshop
(HCW’99), pages 3–14. IEEE, 1999.

[14] J. Turek, J.L. Wolf, and P.S. Yu. Approximate algo-
rithms scheduling parallelizable tasks. In Proc. of the
4th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 323–332. ACM, 1992.

8


	Introduction
	Simulation and Optimization of Lightweight Structures
	Simulation of fiber-reinforced plastics
	Optimizing manufacturing parameters

	Distributing Simulations on Heterogeneous HPC Platforms
	Scheduling problem
	Task and data parallel executions
	Water-Level method

	Performance Results
	Experimental setup
	Benchmark tasks
	FEM simulation tasks

	Related Work
	Conclusion

