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Abstract Sorting is an integral part of numerous algorithms and, there-
fore, efficient sorting support is needed by many applications. This paper
presents a parallel sorting library providing efficient implementations of
parallel sorting methods that can be easily adapted to a specific appli-
cation. A parallel implementation of the Fast Multipole Method is used
to demonstrate the configuration and the usage of the library. We also
describe a parallel sorting method which provides the ability to adapt
to the actual amount of memory available. Performance results for a
BlueGene/L supercomputer4 are given.

1 Introduction

The task of sorting an arbitrary amount of data according to associated key val-
ues is an integral part of various algorithms and applications. As a consequence
there has been active research in the past resulting in numerous contributions
in sequential and parallel sorting [1,2]. Besides computational science in general,
efficient implementations of sorting methods are very important in parallel and
high performance computing. For instance, an integer sort is part of common
benchmarks like NAS Parallel Benchmarks or SPLASH-2. The runtimes spent
for sorting in real-world applications are diverse. For instance, in hierarchical N-
Body methods sorting may require up to 10 percent [3], whereas it is the major
part of the parallel spectral partitioner S-HARP [4]. Thus, the usage of efficient
parallel sorting methods can be essential to obtain good parallel implementa-
tions.

While optimized and ready-to-use libraries exist for many common tasks in
computational science, an appropriate support for parallel sorting is still missing.
Only a few approaches like the POSIX routine qsort or the integer sort from
the Zoltan library [5] using quicksort are available. Both of them are comparison
based algorithms and, therefore, they are inappropriate for the common case
of integer or floating point number sorting. Advanced implementations of radix
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sort methods are far more appropriate for that. But due to their fixed working
patterns, they also lack the appropriate flexibility to become widely applicable.

This paper presents the main aspects of the configuration and the usage of a
parallel sorting library. Primarily intended for applications in parallel scientific
computing, this approach tries to combine two major objectives: (1) the gen-
erality of a library approach needed to become widely applicable and (2) the
adaption to the actual application to obtain good efficiency. The library is writ-
ten in C, widely configurable, and capable of adapting to various needs of the
particular application or hardware environment. It features a separate configu-
ration step to create new versions of the library routines, especially adapted to a
certain application (e.g., the elements to be sorted). We also introduce a parallel
radix sort method providing resource awareness in terms of memory usage. It
is composed of various algorithms implemented in the library and capable of
fulfilling the needs of our sample application. A parallel implementation of the
Fast Multipole Method (FMM)[6] currently being developed at the John von
Neumann Institute for Computing. Performance results are shown for sorting
up to 1 billion elements on a BlueGene/L system, using random integer values
as well as real data from the sample application.

The rest of this paper is organized as follows. Section 2 introduces the sample
application and its need for efficient sorting support, followed by the description
of the parallel sorting method in Section 3. Section 4 presents the main aspects
of the library approach illustrated by the application. Section 5 presents perfor-
mance results of the sorting method in a high scaling parallel environment and
Section 6 concludes the paper.

2 Sorting within an FMM implementation

As a sample application requiring efficient parallel sorting support we consider
the Fast Multipole Method, an O(n) hierarchical N-Body algorithm. The specific
parallel implementation used is a three-dimensional FMM for calculating clas-
sical coulomb interactions. The main input data is a system of n point charges
given by coordinates xi, yi, zi and corresponding charge values qi, i = 1, . . . , n.
The result of the computation is the energy E and the gradient G of the system
as well as the potentials pi. Apart from the energy (which is only a single scalar
value), the amount of input and output data depends on the number of particles
n of the system.

During the computations the system of particles is hierarchically subdivided
into boxes which are enumerated according to a space filling curve scheme. De-
pending on the positions of the particles, each one is located in a certain box and
labeled with the corresponding box number. By sorting the particles according
to their box numbers, the locality of the subsequent computations is increased
resulting in a more efficient processing of the input data. To preserve the initial
ordering of the system, the original indices of the particles (addresses) are stored.
These address values can be used to restore the initial ordering of the particles
by sorting them according to their addresses. This allows for an integration of



the FMM implementation as a flexible subroutine in various simulations. Table 1
summarizes the data associated with each particle with the particular data types
and sizes.

particle data data types and sizes bytes per particle

input
positions 3× double 24

charges 1× double 8

output
gradient 3× double 24

potentials 1× double 8

administrative
box numbers 1× integer 8

addresses 1× integer 8

Table 1. Input, output, and administrative data per particle.

Regarding the number of bytes per particle, one can see that the size of the
system is limited by the amount of memory available. For example, a system
with about 1 billion particles occupies about 64 GB memory only for input/out-
put data and at least 80 GB including the required administrative data. Even
though it is possible to perform these computations with a serial implementation
in reasonable time, a parallel shared memory system with about 128 GB main
memory has to be used because of the memory requirements. To avoid a further
limitation of the size of the system to be computed, the parallel sorting method
should be able to work with limited memory usage.

3 A parallel radix sort algorithm

The choice of a suitable sorting algorithm is strongly influenced by the require-
ments of the specific application. Because the FMM is an O(n) algorithm, it is
desirable that the sorting algorithm has time complexity O(n), too. Due to the
big amount of data to be sorted, the algorithm should not rely on the availabil-
ity of a second fully sized output buffer. Moreover, it should be able to operate
in-place and to adapt to the actual amount of memory available. These require-
ments have to be met for the sequential as well as for the parallel case and limit
the number of methods available. ZZ-sort [7] for example, as a true parallel in-
place sorting method, has a larger time complexity than required. In general,
comparison based methods are unsuitable, because they provably require n log n
operations in the worst case [1]. Integer sorting in linear time can be achieved
using radix sort methods. But recent parallel radix sort methods [8,9] pay no
attention to limited memory usage. Due to probabilistic partitioning strategies
and all-to-all communication schemes they can hardly be implemented in-place.

A parallel sorting method meeting the requirements described above is a
merge-based parallel sorting algorithm as described by Tridgell et al. [10]. Fig-
ure 1(a) illustrates the two major steps:
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Figure 1. (a) merge-based parallel sorting with 3 processes, (b) batchers-merge-
exchange network for 8 processes, (c) one single merge-exchange operation

1. An arbitrary sequential sorting method executed by all processes in parallel
creates locally sorted sequences.

2. The sorted sequences are merged in parallel to form the globally sorted order.

For the in-place sequential sorting method a recursive most-significant-digit-
first radix sort based on American Flag sort [11] is used in this paper. In every
recursion step, a set of contiguous keys (starting with all keys) is sorted into bins
according to a specific part of the bits of the key values. This is repeated with the
keys in the single bins using the radix width r as the number of bits processed
in one step. The recursion stops if the number of keys in a bin is below a certain
threshold value t. The sorting is finished with an algorithm that is faster for small
numbers of keys. The time complexity of this sequential sorting method results
from the number of exchange operations for every key. Sorting b-bit integers
results in a maximum depth of recursion of d b

r e. Each key is exchanged in every
recursion step and at most t times according to the fast algorithm finishing the
sorting. This results in d b

r e+ t exchange operations per key and time complexity

O(ns(d b
r e + t)) for sorting a set of ns keys. The constants r and t have a strong

effect on the performance of the sorting method and their optimal values strongly
depend on the hardware system.

The parallel merge step is comprised of several single merge-exchange opera-
tions with two participating processes at a time. These pairs of processes are de-
termined using classical sorting networks like batchers-merge-exchange network
shown in Figure 1(b) for 8 processes. The arrows represent single merge-exchange
operations executed from left to right. The network consists of 6 consecutive
stages denoting the maximum number of merge-exchange operations for every
process. For a number of p processes, batchers-merge-exchange network consists
of 1

2dlog2 pe(dlog2 pe + 1) consecutive stages [1].
The merge-exchange operation between two processes is shown in Figure 1(c).

The exact number of keys to exchange is determined using a bisection method,
followed by the exchange of the keys with point-to-point communication (e.g., in-
place with MPI_Sendrecv_replace). This reduces the merge-exchange operation



to two independent local merge operations, one for each process. Table 2 lists
several algorithms with varying memory requirements implemented for the local
merge. Depending on the size of the subsequences (n0 and n1, n0 + n1 = ns) to
be merged and the amount of memory available the fastest one is chosen.

algorithm space time

Two-way Merge [1] O(min(n0, n1)) O(n0 + n1)
Tridgell & Brent [10] O(

√
n0 + n1) O(n0 + n1)

Huang & Langston [12] O(1) O(n0 + n1)

Table 2. Space and time complexity of algorithms implemented for the local merge.

With each of these algorithms, one merge-exchange operation has time com-
plexity O(ns). In every stage of the sorting network, the processes execute their
merge-exchange operations in parallel resulting in O(nsdlog2 pe2) for the parallel
merge step. A total number of n keys, equally distributed over p processes results
in ns = n

p keys per process. For the overall parallel sorting method, consisting of

local sorting and parallel merging, this results in time complexity O(n
p dlog2 pe2).

4 A parallel sorting library approach

The previous description shows that efficient and suitable parallel sorting is an
expensive and complex task. Instead of a one-fits-all method there is a need
for a variety of efficient implementations of different algorithms. For example,
the parallel sorting method described in Section 3 consists of (1) a sequential
sorting algorithm, (2) a sequential merge algorithm, (3) a sorting network, and
(4) functions combining these parts in an appropriate way. The main purpose
of the sorting library presented in this paper is to provide implementations of
algorithms that can be easily used as or assembled to complete parallel sorting
methods.

The sorting library supports sorting of generic elements consisting of a key
component and associated data components. Each of these components can be
organized in a separate array with a distinct location in memory. A list of ele-
ments is fully specified by the number of elements and the base addresses of the
single component arrays. The sequential parts of the library rely on simple mem-
ory access only, while the parallel routines involve calls to MPI. A distributed
list of elements is comprised of the arbitrarily sized local lists of processes par-
ticipating in a parallel operation, where a global order is determined by their
ranks within a given MPI communicator.

Because sorting a list of elements mainly consists of comparing and copying
elements, it is necessary to perform these two operations as efficiently as possible.
Since this relies on application specific properties (e.g., the type of the elements
to be sorted), the sorting library features a separate configuration step before



compile time to create new versions of the library especially adapted to the
element type of the current application. The library functions can handle the key
and data components simultaneously. Besides the instruction to copy a single key
value additional instructions are inserted to copy the associated data components
as well. While the library is widely configurable, this approach is far more efficient
than a configuration at runtime with user-defined copy/comparison functions or
many conditional statements. The code generated by the configuration step is
less parametrized providing good conditions for compiler optimizations.

4.1 Configuration of the library

The configuration of the library is made by creating header files with appropriate
definitions of preprocessor symbols (macros). At least one main header file is
necessary to specify the type of the elements to be sorted. Listing 1.1 shows
a small example of a configuration for sorting elements consisting of the input
data of the particles from Table 1 according to their associated box numbers.

Listing 1.1. Sample configuration (input.h)

1 #define SL_USE_MPI

3 /* key section */ /* box numbers */
4 #define sl_key_type_c long
5 #define sl_key_type_mpi MPI_LONG
6 #define sl_key_size_mpi 1
7 #define sl_key_integer

9 /* data section */
10 #define SL_DATA0 /* positions */
11 #define sl_data0_type_c double
12 #define sl_data0_size_c 3
13 #define sl_data0_type_mpi MPI_DOUBLE
14 #define sl_data0_size_mpi 3

16 ...

With SL_USE_MPI (line 1) the MPI based parallel parts of the library are
enabled. The key component is specified with the sl_key_... symbols (lines
4-7) defining the appropriate C and MPI data types and sizes. The symbol
sl_key_integer is used to signal an integer based key and enables routines like
radix sort requiring bitwise operations on key values. Similar symbols are used
to specify up to four associated data components that have to be rearranged
in the same way as the key value they belong to. For example, the positions of
the particles are located in a separate array (three consecutive double values
per particle) and have to be rearranged together with the box numbers during
the sorting. Symbol SL_DATA0 (line 10) enables an associated data component
and sl_data0_... (lines 11-14) are used to define the particular data types and
sizes. Additional symbols can be used to adapt the comparison operation of key
values or the copy operation for a certain component.

A second header file is used to define algorithm specific parameters that
may depend on the configuration or the actual hardware. In this header file,
performance critical parameters, like the radix width r or the threshold value t



for the radix sort method from Section 3, can be adapted. The exact values can
be specified manually, for example, derived from runtime observations or specific
knowledge about the hardware system.

By calling a separate configuration script, a new instance of the library is
created incorporating the given configuration. This new version of the library
contains code that corresponds directly to the specific type of the elements to be
sorted. To support multiple elements with different types in a single application,
it is possible to create multiple configurations in separate header files. For each
one (e.g., input.h and output.h) a separate version of the library is created.
Identifiers, like library function names etc., are prefixed with the name of the
configuration file (e.g., input_... and output_...) to distinguish between the
different library versions.

4.2 Assembling the parallel sorting method

After the configuration there exist one or several versions of the sorting library,
each one especially adapted to a certain kind of elements to be sorted. The
main interface for all library functions processing a list of elements is a structure
called elements. It contains a field (size) holding the number of elements in the
list and appropriate fields for the memory addresses of the key (keys) and the
data components (data0, data1, . . . ). To distinguish between different kinds
of elements, the name of the structure is prefixed too (e.g., input_elements,
output_elements).

Because the FMM application from Section 2 is written in Fortran and, there-
fore, unable to support call-by-value or the elements structure, it is necessary
to create appropriate wrapper functions in C. Listing 1.2 shows a sample routine
implementing the parallel sorting method from Section 3.

Listing 1.2. Sample routine assembling the parallel sorting method

1 #include "sl_input.h"

3 void sort_input(long *n, long *box , double *xyz , double *q, void *m, long *ms)
4 {
5 int size , rank;
6 input_elements s, sx;

8 MPI_Comm_size(MPI_COMM_WORLD , &size); MPI_Comm_rank(MPI_COMM_WORLD , &rank);

10 input_elements_alloc_from_block (&sx, m, *ms);

12 s.size = *n; /* number of elements */
13 s.keys = box; /* box numbers */
14 s.data0 = xyz; /* positions */
15 s.data1 = q; /* charges */

17 input_sort_radix (&s, NULL , -1, -1, -1);

19 input_mpi_mergek (&s, input_sn_batcher , NULL ,
20 input_merge2_memory_adaptive , &sx, size , rank , MPI_COMM_WORLD );
21 }

In line 1 the automatically generated header file from the sample configu-
ration in Section 4.1 is included. The parameters of the routine (n, box, xyz,



q) are used to initialize the number of elements as well as the key and the
data components within an input_elements structure named s (lines 12-15).
The merge-based parallel sorting is done by calling the local radix sort method
(line 17) followed by the parallel merge step (lines 19-20) using batchers-merge-
exchange network (input_sn_batcher). Two more parameters (m, ms) of the
routine are used to allocate a second list of elements (line 10) serving as tempo-
rary buffer for the merge algorithms. Depending on the size of the subsequences
to be merged and the amount of memory available, the given merge operation
(input_merge2_memory_adaptive) selects one of the algorithms from Table 2
at runtime.

5 Performance results

For demonstrating the efficiency of the parallel sorting algorithms implemented
in the sorting library, we present performance results on a BlueGene/L sys-
tem [13]. The BlueGene/L supercomputer is a massively parallel architecture
with up to 65,536 dual-processor nodes and a peak performance of 360 ter-
aflops. The system features several networks including a 3D torus interconnect
for low-latency (100 ns per hop), high-bandwidth (175 MB/s per link and direc-
tion) point-to-point communication. Each node possesses two 700 MHz PowerPC
based processors (one dedicated for communication) and 512 MB main memory.
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Figure 2. Runtimes for parallel integer sorting.

Figure 2 shows the results for sorting equally distributed random integer val-
ues. On the left, individual runtimes for the local radix sort and the parallel
merge (with the two-way merge algorithm) are shown using 125 million val-
ues (maximum problem size on a single node). The runtimes of both parts of



the parallel sorting method decrease for an increasing number of processes. For
smaller numbers of processes the most time consuming part is the local radix
sort, while for an increasing number of processes the overall runtime is more and
more dominated by the parallel merge part. Scaling this problem size to 1024
processes, we obtain a parallel efficiency of about 32%.

Figure 2 (right) shows runtimes for strong scaling (constant problem size)
with a total number of 230 values and weak scaling (constant problem size per
process) with 222 values per process. In general, one can see that the parallel
sorting method scales well. The strong scaling runtimes constantly decrease while
for weak scaling there is a moderate increase resulting from the growing number
of stages in the sorting network. Regarding the runtimes of the different merge
algorithms used, a clear dependency on the memory usage exists. The fastest
parallel sorting is done with the two-way merge algorithm requiring the biggest
amount of memory. Using the algorithm of Tridgell et al., the runtimes slightly
increase, while with the algorithm of Huang et al., the parallel sorting is at least
two times slower. The same applies to the parallel efficiency when going from
32 to 1024 processes. While with the first two algorithms the efficiency remains
above 50%, it falls below 40% with the algorithm requiring almost no additional
memory.
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Figure 3. Runtimes for parallel sorting within the FMM application.

Figure 3 (left) shows runtime results for sorting the input data of the FMM
application, using the configuration from Listing 1.1. Runtimes are added up
for 10 subsequent sorting steps within one FMM calculation with 230 particles.
Sorting data within this application confirms the good scaling results as well
as the dependency on the memory usage. Figure 3 (right) shows runtimes for
varying amounts of memory available. Only in the worst case, where almost no
additional memory is available, the runtime is very high. With already 2% of
additional memory (100% corresponds to a second fully sized output buffer) the
runtimes drop to a lower level and another slight decrease occurs only at 50%.
Thus, the memory adaptive parallel sorting method provides complete sorting
in the worst case while maintaining good performance in all other cases.



6 Summary

In this paper, we have presented a parallel sorting library, which adapts sorting
algorithms to the types of the elements to be sorted and the amount of memory
available. With this library we have assembled a parallel radix sort method
consisting of various algorithms implemented in the sorting library. We have
used an FMM application to exemplify the main aspects of the configuration and
the usage of the sorting library. To provide good performance for very different
applications, new versions of the sorting library can be created automatically
in a separate configuration step before compile time. Each of them is especially
adapted to a certain kind of elements to be sorted. For sorting random data as
well as real data from our sample application, we have achieved good scaling
results and have demonstrated the ability of the sorting method to adapt to the
amount of memory available.
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