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Abstract—The Fast Multipole Method (FMM) is an efficient,
widely used method for the solution of N-body problems.
One of the main data structures is a hierarchical tree data
structure describing the separation into near-field and far-
field particle interactions. This article presents a method for
automatic tuning of the FMM by selecting the optimal FMM
tree depth based on an integrated performance prediction
of the FMM computations. The prediction method exploits
benchmarking of significant parts of the FMM implementation
to adapt the tuning to the specific hardware system being used.
Furthermore, a separate analysis phase at runtime is used to
predict the computational load caused by the specific particle
system to be computed. The tuning method was integrated
into an FMM implementation. Performance results show that
a reliable determination of the tree depth is achieved, thus
leading to minimal execution times of the FMM algorithm.

I. INTRODUCTION

The Fast Multipole Method (FMM) [1] is a popular method
for solving the N-body problem, which calculates interactions
between a set of particles, e.g. Coulomb forces between
charges or gravitational forces between masses. Solving the N-
body problem for systems of thousands to millions of particles
is an essential part of simulations in the fields of molecular
dynamics, astrophysics, electrostatics and many more. The
significance of the Fast Multipole Method in today’s research
is shown by the existence of many implementations for
different platforms, e.g. for massively parallel distributed
memory machines [2], for GPUs [3]], and for clusters of
GPUs [4]. The competitiveness of an FMM implementation
in comparison to other solution methods strongly depends
on the optimal choice of several FMM specific parameters.
These parameter settings are influenced by the computing
capabilities of the hardware system being used as well as
by the specific particle problem to be solved. This leads to
ongoing efforts to further increase the efficiency of the FMM
based on both algorithmic and programming levels.

The direct calculation of interactions between n particles
has an execution time O(n?) since each particle interacts with
each other. The FMM achieves an execution time O(n) by
dividing the interactions into near-field interactions and far-
field interactions and calculating them separately. Interactions
between particles in close proximity represent the near-field

interactions and their contributions are still calculated directly.
Interactions between distant particles represent the far-field
interactions and are calculated by dividing the particles
hierarchically into groups based on the spatial positions of
the particles. The contributions of particles within the same
group are then approximated using multipole expansions
such that the overall far-field interactions can be calculated
with a significantly smaller number of interactions between
whole groups of particles. The hierarchical subdivision of
particles into groups is represented by a tree data structure
where the chosen depth of the FMM tree determines the
separation into near-field and far-field interactions.
Although the time complexity of the FMM is already
very competitive, the actual execution time can vary due
to implementation details. Our goal is to provide very fast
implementations, especially for large simulations and for
particle systems with homogeneous as well as arbitrary
inhomogeneous particle distributions. The work is based
on the FMM implementation presented in [5], incorporating
a two-stage error estimation scheme to achieve a reliable
control of the errors induced by the usage of finite multipole
expansions. The contribution of this article is to present
a method for determining the depth of the FMM tree
automatically in such a way that the overall execution
time of the near-field and far-field computations achieves
a minimum. Determining this optimal tree depth is based
on a precise performance prediction method integrated into
the FMM implementation. A benchmark phase is used to
adapt the parameters of the performance prediction to the
actual hardware system being used. At runtime of the FMM
algorithm, an additional analysis phase is performed to predict
the load of the different computational parts of the FMM
depending on the specific particle system to be computed.
Experimental results for different particle systems, e.g. from a
laser plasma simulation, show the performance improvements
achieved when exploiting the automatic tuning method.
The rest of this article is organized as follows: Section
gives an overview of the Fast Multipole Method. Section
describes the determination of the optimal FMM tree depth.
Experimental results are presented in Sect. Related work
is discussed in Sect. [V} and Sect. [VI] concludes the article.
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II. THE FAST MULTIPOLE METHOD

The Fast Multipole Method (FMM) uses a hierarchical
subdivision of the particle system to achieve a separation
of the particle interactions into near-field interactions and
far-field interactions. In the following, it is assumed that all
particles are located inside a unit cube called system box and
that the FMM is used to calculate the total energy of the
system of interacting particles.

The main data structure of the FMM is an octree whose
nodes represent boxes of particles resulting from the hier-
archical subdivision of the system box on different levels.
The root node of the octree at level O represents the overall
system box. Boxes at level 1 of the octree represent the eight
child boxes of the system box that are created by dividing
the system box into two halves along each of the three
dimensions. This subdivision is repeated recursively with all
newly created boxes until an optimal tree depth d of the
octree is reached. The boxes of the last level d are called
leaf boxes. Each leaf box contains only a small number of
particles, which is usually less than 10.

After the construction of the octree and the subdivision of
particles into boxes, the FMM algorithm is performed with
the following five passes:

I. In the first pass, pseudo particles are built: All par-
ticles within the same leaf box are treated as being
concentrated in one pseudo particle, which is located
at the centre of the leaf box. To create a pseudo
particle, a multipole expansion is used. The length of
the multipole expansion, i.e. the number of multipole
moments used, has an influence on the precision and
on the computational costs of the FMM. Starting with
the multipole expansions of the leaf boxes, new pseudo
particles for boxes up to level 2 are created by shifting
the multipole expansions of child boxes towards the
centres of their parent boxes. This pass is also called
the multipole-to-multipole translation.

II. The second pass computes box-box interactions using a
well-separated criterion: Two boxes are well separated
if and only if they are not adjacent, that means they
share neither an edge nor a corner. Box-box interactions
are performed for each box with every other box of
the same level that is well separated to the box itself,
but whose parents are not well separated. Each of these
box-box interactions is performed by translating the
existing multipole expansions of the source box into
a local expansion of the interacting target box. This
pass is also called the multipole-to-local translation and
involves all boxes up to level 2. The system box at
level O and their child boxes at level 1 do not have any
interacting boxes in this scheme.

III. In the third pass, the contributions from the box-box
interactions are distributed to the leaf boxes. This is
performed by shifting the local expansions of parent

boxes towards the centres of their child boxes and
adding the shifted expansions to the existing local
expansions of the child boxes. This pass is also called
the local-to-local translation. The overall translation
starts at the first level which has well-separated boxes,
i.e. level 2, and ends at the leaf boxes.

IV. The contributions of the far-field interactions to the total
energy of the system are calculated by evaluating the
local expansion of each leaf box.

V. The near-field interactions are calculated directly be-
tween pairs of particles and added to the total energy
of the system. These particle-particle interactions are
performed between particles inside each leaf box and
between particles of leaf boxes that are not well-
separated.

The number of interactions performed in the far-field
passes I-IV and in the near-field pass V depend on the tree
depth of the FMM. A low tree depth results in leaf boxes with
a large number of particles and therefore the FMM algorithm
consists mainly of particle-particle interactions in the near-
field. With increasing tree depth, the number of boxes in the
octree increases and therefore also the number of box-box
interactions in the far field increases. Additionally, the size
of the leaf boxes decreases and therefore also the number
of particle-particle interactions decreases. In order to have
a fast simulation code for the FMM, the optimal tree depth
of the octree has to be chosen such that the accumulated
execution time of the near-field and the far-field computations
achieves a minimum. Pass II and pass V represent the most
time-consuming parts of the FMM algorithm and are used
in the following to determine the optimal tree depth.

Computing a single particle-particle interaction directly in
pass V consists only of few instructions for determining the
inverse distance of the two interacting particles. A single box-
box interaction of pass II represents a complex translation
operator of the FMM algorithm. The computational costs of
this operator depend on the length of the multipole expansions
used, which is governed by the maximum error bound request
for the FMM computations. The specific computational costs
of both operations depend on the actual code generated by
the compiler and the capabilities of the actual processor used.
Thus, these computational costs represent platform-specific
parameters for determining the optimal tree depth.

The exact number of particle-particle interactions and box-
box interactions for a chosen tree depth depends on the
total number of particles and on their distribution within
the system box. With homogeneous particle distributions,
there is approximately the same number of particles in all
boxes of the same level. Thus, the number of interactions
for each tree depth can be predicted very well in these cases.
For inhomogeneous particle distributions, the prediction of
the number of interactions is still a challenge. Due to the
varying number of particles per box, the number of particle-
particle interactions cannot be predicted a priori. Boxes



without particles lead to a decreasing number of box-box
interactions. Furthermore, since empty boxes do not need to
be considered, the whole tree can be unbalanced leading to
irregular execution times for traversing the tree during the
FMM passes. Thus, the actual numbers of particle-particle
interactions and box-box interactions are problem-specific
parameters that depend strongly on the individual particle
system that is computed.

III. DETERMINING THE OPTIMAL TREE DEPTH

The proposed method for determining the optimal tree
depth for the FMM algorithm is based on an integrated
prediction of the performance of far-field and near-field
computations for different tree depths. This performance
prediction consists of two steps: First, several benchmark
runs of the FMM algorithm are performed to determine
platform-specific parameters, such as the computational costs
of the FMM operators, for the specific hardware and compiler
settings used. Second, before each computational run of the
FMM for a specific particle system, a separate analysis run
is performed to determine problem-specific parameters, such

as the number of interactions required for each tree depth.

In the following, the tree traversal algorithm of the FMM is
sketched and the benchmark and analysis runs required for
the integrated performance prediction are described.

A. Tree traversal for far-field and near-field computations

1 loop over tree levels | =2...d

2 loop over all boxes b of level |

3 find parent box p of box b

4 if level | = last level d then

5 compute particle-particle interactions in
box b and between box b and all other
child boxes of parent p

6 loop over neighbour boxes n of parent p

7 loop over child boxes c of neighbour n

8 if boxes c and b are well separated

then

9 compute box-box interaction
between boxes ¢ and b

10 else if level | = last level d then

11 compute particle-particle

interactions between particles in
boxes ¢ and b

Algorithm 1: Tree traversal for pass II and pass V of
the FMM algorithm using tree depth d.

Algorithm [T] shows the nested loop structure that describes
the traversal of the octree to compute box-box interactions
and particle-particle interactions. This algorithm represents
a general scheme that is used during the benchmark runs

and the analysis run as well as for the computational run
of the FMM. However, in the computational run of FMM,
the computation of box-box interactions and particle-particle
interactions is performed in two separate passes as described
in Sect. [lIl This separation leads to a better data locality as
computing the box-box interactions in pass II accesses only
box data and computing the particle-particle interactions in
pass V accesses only particle data.

The algorithm assumes that the tree depth d is greater than
1, because otherwise the whole particle system is computed
directly with particle-particles interactions only. The first
loop in Alg. [T] (I-loop in line [T) iterates from level 2 to the
last level d of the octree. Within the [-loop, the b-loop in
line [2] iterates over all boxes b of the current level [. For
each box b within the b-loop, the parent box p is determined
and then the interactions are computed. If the current level [
is the last level d of the octree, then box b is a leaf box and
particle-particle interactions are computed for all particles
in box b as well as between particles in box b and all other
child boxes of parent p (line [5). The n-loop in line [f] iterates
over the 26 neighbour boxes n surrounding the parent box
p. This is implemented by three nested loops, i.e. one for
each direction z, y, and z. If box p is located at the border
of the system box, then neighbour boxes outside the system
box are skipped such that fewer than 26 neighbour boxes
are considered. The inner c-loop iterates over all child boxes
of a neighbour box n and checks whether a child box c is
well separated from box b or not. If boxes ¢ and b are well
separated, then a box-box interaction is performed (line ).
Otherwise, if the current level [ is the last level d of the octree,
then particle-particle interactions are computed between the
particles in the leaf boxes ¢ and b (line [IT).

Computing the interactions in lines 5} [0} and [T1] usually
requires a major part of the execution time such that it
is sufficient to consider only these computations for an
accurate performance prediction. However, if the requested
error bound leads to a small number of multipole moments
or if there exist large numbers of empty boxes due to
inhomogeneous particle distributions, all statements of Alg. [T]
need to be considered. This includes the varying overheads
of the nested loop structures as well as the different octree
operations for determining parent, neighbour, and child boxes.

B. Benchmark runs

The benchmark runs are used to determine the computa-
tional costs for computing single box-box and particle-particle
interactions as well as for executing single iterations of the
different loops of Alg. [I} The results of these measurements
for a specific platform are integrated into the FMM program
and are later used as platform-specific cost parameters to
determine the optimal tree depth of the FMM during the
analysis run. For the benchmark runs, hardware performance
counters are accessed through the PAPI library to measure the
cost parameters in terms of machine instructions executed by



the processor. Furthermore, in Sect. [[V|results for measuring
both machine instructions and clock cycles are presented and
their influence on the performance prediction is investigated.

The number of machine instructions required to compute
a single box-box interaction depends on the length of the
multipole expansions chosen in order to adhere the requested
error bound. Since this error bound is not known during the
benchmark run, all reasonable expansion lengths from 0 to
50 multipole moments are benchmarked. For each multipole
length, the translation operator from pass II is executed 1000
times with random input data and the number of instructions
measured with the hardware performance counter is used to
calculate the instruction count for a single execution.

The instruction counts for a single particle-particle inter-
action as well as for single iterations of the loops of Alg.
are determined by running the FMM algorithm with an
inhomogeneous particle system as test data set. The particles
of the test system are concentrated in the centre of the system
box, thus leading to large numbers of empty boxes as well
as to strong variations in the number of particles per box. A
more detailed description of this Xenon particle distribution
is given in Sect. Using test data with these properties
ensures that all existing loops and branches within the tree
traversal algorithm are executed several times such that their
instructions can be measured by the hardware performance
counters.

Determining the instruction counts of the nested loop
iterations is performed with a separate benchmark run for
each loop. All these runs execute Alg. [T] with a fixed tree
depth of d = 8 and with the computations of particle-particle
and box-box interactions in lines 5} 0] and [I1] disabled. The
hardware performance counters are used to count the overall
instructions executed between the beginning and the ending
of the [-loop in each run. By proceeding from the outermost
loop to the innermost loops, the b-loop, n-loop, and the c-loop
are considered one after another. For the benchmark run of
each loop, all inner loops are disabled and the overall number
of loop iterations is determined using a counter variable.

The first benchmark run determines the overall number of
iterations and instructions executed by the b-loop, thus leading
to the instruction count for a single iteration of the b-loop.
The next benchmark run determines the overall number of
iterations of the n-loop and the overall number of instructions
executed by the b-loop and the n-loop. However, since the
overall number of instructions of the b-loop is already known
from the previous benchmark run, the results are used to
calculate the instruction count for a single iteration of the n-
loop. Since the n-loop is implemented as three nested loops,
two further benchmark runs are performed for the n-loop
followed by a benchmark run for the c-loop. After considering
all nested loops, a last benchmark run is used to determine
the instruction count for a single particle-particle interaction.
This is achieved by running the separate near-field pass,
counting the instructions and particle-particle interactions,

and using the results to calculate the instruction count for a
single particle-particle interaction. The overall result of the
benchmark runs are specific values for the cost parameters
that describe the instruction counts for single box-box and
particle-particle interactions as well as for single iterations
of the nested loops.

C. Analysis run

Before each computational run of the FMM algorithm, the
given particle system is analyzed to determine the optimal tree
depth. Furthermore, this analysis is also used to implement an
error-control mechanism that determines the multipole length
required to adhere the requested error bound for the given
particle system [5]. The analysis run executes Alg. |l| with
a maximum tree depth d = 20 and with counter variables
added to accumulate the numbers of iterations of each loop.
The computation of box-box interactions (line [9) is disabled
and a counter variable is added to accumulate the numbers
of box-box interactions over all levels [ of the [-loop. The
computation of particle-particle interactions (lines [5] and
is disabled and a counter variable is added to count the
number of particle-particle interactions for each level [ as if
it were the last level with the leaf boxes. A single execution
of this modified variant of Alg. [T]is then used to predict
the performance of the FMM algorithm with different tree
depths.

The overall octree data structure required for the analysis
run is created incrementally by adding a new level at the
beginning of each iteration of the [-loop. After each iteration
of the [-loop, the current values of the counter variables and
the cost parameters determined during the benchmark runs
are used to predict the total number of instructions required
for performing the FMM algorithm with the current level [ as
the depth of the octree. If this total instruction count is smaller
then the total instruction count of the previous iteration of
the [-loop, then the [-loop is continued. However, if the total
instruction count is larger than the previous one, then the
performance prediction has discovered the minimum number
of instructions, thus leading to a maximum performance of
the FMM algorithm. In this case, the analysis run is stopped
and the level [ associated to the minimum number of total
instructions represents the optimal tree depth for the following
computational run of the FMM. Since the number of particle-
particle interactions always decreases with increasing level
[ and the number of box-box interactions always increases
with increasing level [, there can not exist local minimums
for the total number of instructions.

IV. RESULTS

This section presents the experiments that were performed
to evaluate the proposed performance prediction method
for determining the optimal tree depth of the FMM. This
includes a comparison between using machine instructions
and clock cycles for the performance prediction. Furthermore,



the influence of the nested loops within the prediction is
investigated and the precision of the prediction as well as their
computational overhead within the FMM implementation
itself is determined.

A. Experimental setting

For the experiments, three different particle distributions
were used. The homogeneous distribution consists of 8°
particles distributed regularly on a lattice in the unit cube. The
concentric spheres distribution is composed of 8 concentric
spheres of different size, each consisting of 8° particles
distributed homogeneously on the surface of the sphere. The
Xenon distribution consists of 114537 particles representing
a Coulomb explosion of Xenon, i.e. when matter transits into
plasma exited by a focused laser. The Xenon distribution
has many particles concentrated in the centre while regions

towards the border of the system are very sparsely populated.

For example, half of the particles are concentrated in 0.025 %
of the system box. This results in a very inhomogeneous
distribution with a large number of empty boxes during the
FMM algorithm.

The FMM implementation is a highly optimized Fortran
code. All following measurements were performed using
the GNU Fortran compiler with optimization flag —00. Two
different hardware systems were used: an Intel system with
a 2.67 GHz Xeon X5650 processor and 12 GB RAM, and
an AMD system with a 1.9 GHz Opteron 8347 processor
and 16 GB RAM. The PAPI library was used to access the
hardware performance counters of the processors using PAPI
events PAPT_TOT_INS and PAPTI_TOT_CYC.

B. Comparison between instruction and cycle prediction

Figure [I] (top) compares the number of instructions
predicted in the analysis run with the measured number
of instructions during the computational run of the FMM
depending on the tree depth. The results were obtained for
computing the inhomogeneous Xenon particle distribution
with an requested relative error bound of 103 using the Intel
system. The results show that the presented performance
prediction method determines the number of instructions

of the far-field computations very well for all tree depths.

Predicting the instructions of the near-field computations
matches the measured instructions only up to a tree depth of
13. With further increasing tree depth, decreasing numbers of
instructions are predicted while the measured instructions of
the FMM remain constant. This is caused by the separation
of near-field and far-field computations in separate passes
in the computational run of the FMM. The prediction of
the near-field instructions considers only the particle-particle
interactions, but not the additional instructions for the loops
required in the separate near-field pass. These differences
are only significant when the number of particle-particle
interactions becomes very small. However, in these cases
the number of far-field instructions are about an order of
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Figure 1. Comparison of the predicted and measured numbers of instructions
(top) and cycles (bottom) for the near-field and far-field computations of the
FMM with the Xenon particle distribution using an error bound of 10~3.

magnitude larger and the mispredicted near-field instructions
have no influence on the prediction of the total number of
instructions.

Figure [I] (bottom) shows results for performing the same
experiment as in Fig. [I] (top), but using cycles for the
performance prediction instead of instructions. While the
numbers of cycles are usually a little bit smaller than the
corresponding numbers of instructions, the general behavior
of the FMM algorithm and of the performance prediction
shows no difference. Comparing both the predicted near-
field and far-field instructions to the measured near-field
and far-field instructions leads to a maximum deviation of
about 4 %. The same comparison using cycles leads to a
maximum deviation of about 7 %. The difference is slightly
larger, because the measured cycles include effects such as
pipeline stalls or cache misses. However, their impact on the
FMM computations is small and thus can be neglected for
the performance prediction.

To show the necessity of repeating the benchmark runs on
every hardware system, the platform-specific cost parameters
obtained for the Intel system and for the AMD system are
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Figure 2. Comparison of the measured and predicted numbers of instructions with and without considering the nested loops with the homogeneous

distribution (left), the Xenon distribution (middle), and the concentric spheres distribution (right) using an error bound of 1071,

Xeon X5650 Opteron 8347
cost parameter counters instr.  cycles | instr.  cycles
b-loop 4680 2367 1567 | 2251 2260
n-loop, z direction 14040 14 3 14 5
n-loop, y direction | 40080 21 16 21 14
n-loop, z direction 114480 31 21 31 21
c-loop 52184 65 65 65 106
particle-particle 32838560 163 145 163 163
box-box 2436056 2583 1842 | 2529 1897

Table I

PLATFORM-SPECIFIC COST PARAMETERS MEASURED IN INSTRUCTIONS
AND CYCLES FOR THE INTEL SYSTEM AND THE AMD SYSTEM WITH AN
REQUESTED RELATIVE ERROR BOUND OF 10~3. COUNTERS OF LOOP
ITERATIONS, PARTICLE-PARTICLE INTERACTIONS, AND BOX-BOX
INTERACTIONS ARE SHOWN FOR THE HOMOGENEOUS PARTICLE
DISTRIBUTION WITH THE OPTIMAL TREE DEPTH d = 5.

listed in Table|l} For both systems, the computational costs for
computing single box-box and particle-particle interactions
as well as for executing single iterations of the different
loops of Alg. [I] measured in instructions and cycles are
shown. Furthermore, the values of the counter variables
counting loop iterations and interactions are shown for using
the homogeneous particle distribution and the optimal tree
depth d = 5. The results show that there can be significant
differences between using instructions and cycles as well as
between the different hardware systems. However, not only
the properties of the hardware system, but also compilers
and compiler optimizations can have an influence. Thus, it
is necessary to perform the benchmark runs once for the
current hardware and software environment.

C. Influence of the nested loops

Determining the computational costs of the different nested
loops of Alg. [I] requires several benchmark runs of the FMM
using an appropriate inhomogeneous particle distribution.
In comparison to that, the computational costs for box-box
and particle-particle interactions can be determined much

easier by performing only the corresponding computations
of interactions with random input data.

Figure [2] compares the measured number of executed
instructions to the predicted number of instructions with and
without considering the computational costs of the nested
loops depending on the tree depth. Results are shown for
computing the homogeneous distribution (left), the Xenon
distribution (middle), and the concentric spheres distribution
(right) with a requested relative error bound of 10~! using
the Intel system. The results show that the computational
costs of the nested loops have a significant influence on the
total number of instructions. Only if the loops are considered,
a precise prediction of the instructions close to the measured
number of instructions of the FMM is achieved.

Without considering the loops, the prediction of the
instructions for the homogeneous distribution and the Xenon
distribution does not lead to minimum. Thus, in these cases
the analysis run can determine the optimal tree depth for the
FMM only if the loops are considered for the performance
prediction. Furthermore, the results also show that the optimal
tree depth depends strongly on the particle distribution. While
the homogeneous distribution has a low optimal tree depth
of d =5, the concentric spheres distribution and the Xenon
distribution require to use a tree depth of d = 11 and d = 14,
respectively. This shows the necessity of analyzing the given
particle distribution as it is performed within the analysis run
of the presented performance prediction method. Deviating
from the optimal tree depths can lead to a significantly higher
number of instructions executed for the FMM than actually
required. For example, using the next best tree depth after
the optimal tree depth increases the instructions for the FMM
computations of about 5 % with the Xenon distribution, of
about 13 % with the concentric spheres distribution, and of
about 86 % with the homogeneous distribution.
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Figure 3. Deviation of the predicted instructions from the measured
instructions of the FMM (top) and runtime of the analysis run with respect
to the overall runtime of the FMM (bottom).

D. Precision and overhead of the performance prediction

The requested error bound for the FMM algorithm has
a significant effect on the computational costs of box-box
interactions and therefore on the overall runtime. Furthermore,
the computational costs of these box-box interactions can be
predicted more precisely than the costs of the nested loops.
Therefore, the requested error bound has an influence on
both the precision and the computational overhead of the
performance prediction method.

Figure [3] (top) shows the deviation of the predicted instruc-
tions from the measured instructions of the FMM depending
on the requested relative error bound. The deviation encloses
the instruction counts with the optimal tree depth and the
next lower and higher tree depth. The results show that
if only the instructions around the optimal tree depth are
considered, then the precision of the performance prediction
is approximately the same for all three particle distributions.
A high error bound of 10~ leads to small runtimes of the
FMM and to a deviation between the predicted and measured
instructions of up to about 23 %. Lowering the error bound

to 107 leads to increasing runtimes of the FMM and to a
more precise performance prediction that deviates only up
to 5 % from the measured instructions.

Figure [3] (bottom) shows the runtime of the analysis run
used for the performance prediction with respect to the overall
runtime of the FMM depending on the requested relative
error bound. The results show that with a high error bound
of 10~1, the analysis run can require up 20 % of the overall
runtime of the FMM. However, lowering the error bound
decreases the runtime of the analysis run below 5 % with
an error bound of 10~* and even below 0.5 % with an error
bound of 10~°. This is caused by the increasing runtimes
of the FMM computations required to provide the higher
precision while the runtime of the analysis run is independent
from the requested error bound and thus remaining constant.

V. RELATED WORK

There exists a large variety of implementations of the Fast
Multipole Method for various platforms, e.g. for parallel
computers with distributed memory [2], [6], for GPUs [3]],
for clusters of GPUs [4], and for systems of nodes connected
via MPI and each having a GPU [7]. However, none of these
implementations provide control over the accuracy of the
FMM computations. The implementation presented in [S]]
proposes a two-stage error estimation scheme and is the base
of the performance prediction presented in this article for
determining the optimal tree depth of the FMM computations.

In [8]], a model for estimating the execution time of
a parallel implementation of the FMM depending on the
number of particles, the number of processors, and the
number of boxes at the last level of the FMM tree is
presented. In [9]], this model is extended by estimations of the
computations caused by each tree node in order to improve
the load balancing. Furthermore, the communication load
and the memory usage is considered in this model. However,
these estimations do not consider the real execution times
on the hardware platform being used.

Benchmarking several existing implementation variants
on the real hardware to determine variants with minimal
execution times is known as automatic tuning. Existing frame-
works are PHiPAC [10] and ATLAS [[11] for dense linear
algebra, OSKI [[12] for sparse linear algebra, FFTW [13]] for
fast Fourier transform, and SPIRAL [14] for digital signal
processing. In the field of particle simulations, automatic
tuning is used in [15]] for the generation of FFT codes for
multipole-to-local translations in spherical harmonics. In [16],
an FMM implementation is tuned for multi-core processors.
However, the tuning is not performed automatically and
concerns mainly implementation and parallelisation aspects,
but not algorithmic optimizations.

Counting operations of algorithms is used for the prediction
of execution times. In [17], a performance model for a
specific hydrodynamics application code is developed using
hardware characteristics such as peak performance or memory



bandwidth as well as the problem size as input parameters
for the execution time prediction. However, the parameters
of the specific platform have to be determined manually.
Compiler-based approaches are mostly independent from
specific applications. In [18|], whole applications are tuned
by the compiler by extracting the most expensive loops from
the source code and applying transformations such as tiling,
unrolling or permutation. The approach presented in [[19] uses
compiled binaries of applications to derive models of their
execution times. In [20]], the execution times of scientific
applications are predicted with an accuracy of about 20 %.
This approach determines the costs of each statement in the
source code by considering the number of operations and their
respective costs for the target platform. In general, compiler-
based approaches are widely applicable and have strong
opportunities for optimizations. However, these approaches
cannot exploit application-specific knowledge or adapt to
problem-specific characteristics of the application data. In
contrast, the application-specific performance prediction
method presented in this article adapts automatically to both
platform- and problem-specific parameters.

VI. CONCLUSIONS

This article presented a method for determining the optimal
tree depth for the FMM algorithm. By balancing the execution
times of near-field and far-field computations, the total
execution time of the FMM is minimised. The approach
uses a performance prediction method integrated into the
FMM implementation. Numerical operations as well as the
computational costs of complex nested loops of the FMM tree
traversal are considered. The results show the high precision
and the low additional overhead of the prediction method.
Furthermore, it was shown that the optimal tree depth can
be determined for homogeneous as well as for arbitrary
inhomogeneous particle distributions. Using the optimal tree
depth was shown to be of great importance while slightly
differing non-optimal tree depths lead to significantly higher
execution times for the FMM.

REFERENCES

[1] L. Greengard and V. Rokhlin, “A fast algorithm for particle
simulations,” J. Comput. Phys., vol. 73, no. 2, pp. 325-348,
1987.

[2] J. Kurzak and B. M. Pettitt, “Massively parallel implementation
of a fast multipole method for distributed memory machines,”
Journal of Parallel and Distributed Computing, vol. 65, no. 7,
pp. 870-881, 2005.

[3] N. A. Gumerov and R. Duraiswami, “Fast multipole methods
on graphics processors,” J. Comput. Phys., vol. 227, pp. 8290—
8313, 2008.

[4] R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, and
K. Yasuoka, “Fast multipole methods on a cluster of GPUs
for the meshless simulation of turbulence,” Computer Physics
Communications, vol. 180, no. 11, pp. 2066-2078, 2009.

[5] H. Dachsel, “An error-controlled fast multipole method,” J.
Chem. Phys., vol. 132, no. 119901, 2010.

[6] S. Ogata, T. J. Campbell, R. K. Kalia, A. Nakano, P. Vashishta,
and S. Vemparala, “Scalable and portable implementation of
the fast multipole method on parallel computers,” Computer
Physics Communications, vol. 153, no. 3, pp. 445461, 2003.

[7] 1. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A.
Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, L. Ying,
D. Zorin, and G. Biros, “A massively parallel adaptive fast-
multipole method on heterogeneous architectures,” in Proc. of
the Conference on High Performance Computing Networking,
Storage and Analysis. ACM, 2009, pp. 1-58.

[8] L. Greengard and W. D. Gropp, “A parallel version of the fast
multipole method,” Comput. Math. Appl., vol. 20, no. 7, pp.
63-71, 1990.

[9] F. A. Cruz, M. G. Knepley, and L. A. Barba, “PetFMM —
A dynamically load-balancing parallel fast multipole library,”
Internat. J. Numer. Methods Engrg., vol. 85, no. 4, pp. 403—
428, 2011.

[10] J. Bilmes, K. Asanovi¢, C. whye Chin, and J. Demmel,
“Optimizing matrix multiply using PHiPAC: a Portable, High-
Performance, ANSI C coding methodology,” in Proc. of Int.
Conf. on Supercomputing, 1997.

[11] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated
empirical optimizations of software and the atlas project,”
Parallel Computing, vol. 27, no. 1-2, pp. 3-35, 2001.

[12] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library
of automatically tuned sparse matrix kernels,” Journal of
Physics: Conference Series, vol. 16, p. 521, 2005.

[13] M. Frigo and S. Johnson, “The design and implementation
of FFTW3,” Proc. of the IEEE, vol. 93, no. 2, pp. 216-231,
2005.

[14] M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code
generation for DSP transforms,” Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and
Adaptation”, vol. 93, no. 2, pp. 232-275, 2005.

[15] J. Kurzak, D. Mirkovic, B. M. Pettitt, and S. L. Johnsson,
“Automatic generation of FFT for translations of multipole
expansions in spherical harmonics,” Int. J. High Perform.
Comput. Appl., vol. 22, no. 2, pp. 219-230, 2008.

[16] A. Chandramowlishwaran, S. Williams, L. Oliker, 1. Lashuk,
G. Biros, and R. Vuduc, “Optimizing and tuning the fast
multipole method for state-of-the-art multicore architectures,”
in Int. Symposium on Parallel Distributed Processing (IPDPS),
2010. 1IEEE, 2010, pp. 1-12.

[17] D.J. Kerbyson, A. H. J., A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings, “Predictive performance and scalability
modeling of a large-scale application,” in Proc. ACM/IEEE
Conf. on Supercomputing. ACM, 2001, pp. 37-37.

[18] A. Tiwari, J. K. Hollingsworth, C. Chen, M. Hall, C. Liao,
D. J. Quinlan, and J. Chame, “Auto-tuning full applications:
A case study,” International Journal of High Performance
Computing Applications, vol. 25, no. 3, pp. 286-294, 2011.

[19] G. Marin and J. Mellor-Crummey, “Cross-architecture perfor-
mance predictions for scientific applications using parameter-
ized models,” SIGMETRICS Perform. Eval. Rev., vol. 32, pp.
2-13, 2004.

[20] C. Cascaval, L. DeRose, D. Padua, and D. Reed, “Compile-
time based performance prediction,” in Languages and Com-
pilers for Parallel Computing, ser. LNCS, L. Carter and
J. Ferrante, Eds.  Springer, 2000, vol. 1863, pp. 365-379.



	Introduction
	The Fast Multipole Method
	Determining the optimal tree depth
	Tree traversal for far-field and near-field computations
	Benchmark runs
	Analysis run

	Results
	Experimental setting
	Comparison between instruction and cycle prediction
	Influence of the nested loops
	Precision and overhead of the performance prediction

	Related work
	Conclusions
	References

