
Array-based reduction operations for a parallel
adaptive FEM

Martina Balg1, Jens Lang2, Arnd Meyer1, Gudula Rünger2

1 Department of Mathematics, Chemnitz University of Technology, Germany
{martina.balg|arnd.meyer}@mathematik.tu-chemnitz.de

2 Department of Computer Science, Chemnitz University of Technology, Germany
{jens.lang|gudula.ruenger}@cs.tu-chemnitz.de

Abstract For many applications of scientific computing, reduction opera-
tions may cause a performance bottleneck. In this article, the performance
of different coarse- and fine-grained methods for implementing the reduc-
tion is investigated. Fine-grained reductions using atomic operations or
fine-grained explicit locks are compared to the coarse-grained reduction
operations supplied by OpenMP and MPI.
The reduction operations investigated are used for an adaptive FEM.
The performance results show that applications can gain a speedup by
using fine-grained reduction since this implementation enables to hide
the reduction between calculation while minimising the time waiting for
synchronisation.

1 Introduction

For applications of parallel scientific computing, reduction operations play an
important role. In many cases, the performance of reduction operations, which
aggregate data located on different processors to a common result datum using a
specified operation, is crucial to the overall performance of the application. One
example is the adaptive Finite Element Method (FEM) [1] applied to deformation
problems (1) which is considered in this article.

div(σ(u)) + ρ f = 0 with appropriate boundary conditions. (1)

In the adaptive FEM, the created mesh is refined stronger around critical
points which allows, compared to total refinement, more exact results within the
same execution time. In order to being able to process large problems, a fast
reduction operation is needed. The basic concept of this FEM is the discretisation
of the domain Ω with hexahedral elements el and the approximation of all
functions as a linear combination of linear or quadratic ansatz functions Ψk:

u(X) ≈ uh(X) =
∑NX

k=1 u
(k)Ψk(X) . (2)

Hence, every element el consists of 6 faces, 12 edges and 8, 20 or 27 element
nodes X(k) and all Ψk(X) are defined by the degrees of freedom of each element,
i.e. by their function value in each element node. Applying this discrete ansatz
to (1) leads to a discrete linear system of equations:

Au = b (3)

Facing the Multicore-Challenge III, Lecture Notes in Computer Science Volume 7686,
Springer, 2013, pp 25–36

http://dx.doi.org/10.1007/978-3-642-35893-7 3

1

http://dx.doi.org/10.1007/978-3-642-35893-7_3

where the vector u consists of all u(k) and represents the solution u. A denotes
the system matrix, called stiffness matrix, and b the right-hand side, called load
vector. Using the restriction of the ansatz for each element, the given problem
decomposes into a sum of element-wise contributions:

A =
∑

el L
t
elAelLel and b =

∑
el L

t
elbel (4)

with appropriate projections Lel and Lt
el . So, it is convenient to just compute all

Ael and bel instead of assembling the whole stiffness matrix and load vector.
The adaptive FEM investigated executes the following steps consecutively

until a given accuracy is reached: (I) adaptive, instead of total, mesh refinement,
(II) assembly of the stiffness matrices, (III) solution of a linear system of equations
with the conjugate gradient method which involves a reduction operation, and
(IV) error estimation for next refinement. Steps (II) and (III) are available in a
parallel implementation. Step (III) is investigated in this article.

The main goal of this article is to optimise the execution time of the FEM. The
contribution of this article is the optimisation in the reduction phase of step (III)
by introducing fine-grained reduction. Several implementations of the reduction
are investigated in isolation, as well as in the context of the adaptive FEM.
Examining the background shall enable to generalise the findings for transfer
to related problems. Section 2 describes the parallel solution of linear systems
of equations. Section 3 proposes variants of the fine-grained reduction. Their
implementations in OpenMP are given in Sect. 4. Section 5 shows experimental
results. Section 6 discusses related work and Sect. 7 concludes the article.

2 Solution of linear systems of equations

Step (III) of the adaptive FEM is performed as follows [1]: The conjugate gradient
method [9] is used for solving the linear system of equations (3). This iterative
method minimises the residuum r[n] := Au[n] − b along a corresponding search
direction in each step starting from an initial solution u[0]. Each iteration produces
a correction term which generates an improved approximated solution u[n].

According to Formula (4), the matrix A is composed of the element stiffness
matrices Ael . This leads to a sparse structure that is exploited to compute
products of the type

y[n] = Au[n] . (5)

The projector Lel converts u[n] into a vector uel containing only those entries
that belong to the nodes of el, i.e.:

uel = Lelu
[n] . (6)

Ael is applied to uel in order to create the element solution vector y
el

:

y
el

= Aeluel . (7)

The vector y
el

is then interpolated to the whole length of y by applying the

transposed projector Lt
el and added to the overall solution vector y[n]:

y[n] =
∑

el L
t
elyel . (8)

2.1 Data structures

Each element stiffness matrix Ael is symmetric and is stored column-wise as a
packed upper triangular matrix (BLAS format TP [2]). The values for the nodes
are stored consecutively. Each node needs ndof values if there are ndof degrees of
freedom (dof). When considering three-dimensional deformation problems with 3
degrees of freedom in 27 element nodes, the element stiffness matrix has a size of
81× 81. Correspondingly, the size of the vectors xel and y

el
is 81. While the size

of the element-related data structures Ael , xel and y
el

is constant over the whole
runtime of the FEM, the size of the overall data structures u, b and y increases
with each refinement step as the number of elements increases. The size of the
overall data structures is proportional to the number of elements and can be up
to some hundreds of thousands.

The element solution vectors y
el

are added to the overall solution vector y

according to Formula (8) where the projector Lt
el defines to which entry of y

an entry of y
el

is added. For memory efficiency, the implementation does not
store the projector as a large matrix but uses a separate array for each element
el for this assignment. In Fig. 1, which illustrates this principle, this array is
represented by the arrows from the source entry in y

el
to the target entry in y.

The figure also illustrates that each node, represented by a square, consists of 3
degrees of freedom. When calculating Formula (8), the corresponding location in
y is looked up in the array for each entry of y

el
. To each entry of y, entries from

two y
el

are added if and only if this node is part of these two elements.

y

y
el1

y
el2 · · ·

Lel

Figure 1: Summation of element solution vectors y
el

to the overall solution vector
y using the projection of Lel

2.2 Parallelisation

The parallelisation of the FEM method described exploits that the calculations
of Formula (7) are independent of each other. Each element is assigned to one
processor p of the set of processors P which calculates (6) and (7). For the result
summation in (8), a local solution vector y◦, which has the same size as y, is used

on each processor. The part of non-null entries in y◦ is greater than 1
p and they

need much less memory than the element stiffness matrices so that they can be
stored in a dense format. After Formula (8) has been calculated on all processors
p ∈ P , the local solution vectors y◦ are added to the overall solution vector y, i.e.

y =
∑

p∈P y
◦,p , (9)

where y◦,p denotes the local solution vector of processor p in this summation.
Formula (9) is the reduction being optimised in this work.

The SPMD-style parallel algorithm calculating Formula (5), i.e. one iteration
of approximating the solution of (3), is shown in Alg. 1. The algorithm receives
the element stiffness matrices Ael and the projectors Lel for all elements el as well
as the approximation u for the solution of the linear system of equations (3) as
input and returns the vector y as output. In this algorithm, y is a shared variable;
all other variables are private, i.e. only accessible by the processor owning them.
After setting y to zero (Line 1), the calculation of Formulas (6) to (8) is executed
for each element (Lines 4 to 7) in a parallel section. The reduction operation at
the end of the parallel section (Lines 8 to 10) adds the local solution vectors y◦

to the overall solution vector according to (9). In order to avoid conflicts when
accessing y, this addition is performed within a critical section. The absence of
conflicts could also be ensured by other methods, for example by a global barrier
in Line 8, followed by an arbitrary reduction algorithm. In any case, after the
barrier operation, only reduction, and no computation, is performed.

Input: Ael , Lel for all el , u
Output: y

y := O // shared vector y1

begin parallel2

y◦ := O3

foreach element el do4

xel := Lelu5

y
el

:= Aelxel6

y◦ := y◦ + Lt
elyel

7

begin critical section8

y := y + y◦
9

end critical section10

end parallel11

Algorithm 1: Parallel calculation of (5)

Input: Ael , Lel for all el , u
Output: y

y := O // shared vector y1

begin parallel2

foreach element el do3

xel := Lelu4

y
el

:= Aelxel5

y◦ := LT
elyel

6

foreach entry i of y◦ with7

y◦[i] 6= 0 do

atomic add(&y[i], y◦[i])8

end parallel9

Algorithm 2: Parallel calculation of (5)
with atomic addition of y

3 Fine-grained reduction

In contrast to the coarse-grained reduction in Alg. 1, which locks the whole vector
y, the reduction can also be implemented in a fine-grained way. Fine-grained
reduction means that each update of a vector entry is synchronised separately.
This method allows to interleave reduction with computation and enables multiple
threads to access y concurrently if they are processing different entries. Blockings
due to concurrent write accesses to an entry of y may only occur for nodes shared
by elements stored on different processors. This is true only for a small part of
the nodes. Furthermore, the implementation does not need to store y◦ explicitly.
In contrast to a sequential implementation, the order of writes to y is not defined.
However, the addition is commutative and y is only read after finishing the
reduction. Hence, the order in which the elements are processed is irrelevant.

Two methods for the fine-grained synchronisation of updates of the overall
solution vector y are investigated: atomic operations and fine-grained locks.

3.1 Atomic operations

Atomic operations, which combine several semantic instructions in one non-
preemptible function, can be implemented in hardware or in software. Hardware-
supported atomic operations are generally more efficient than operations imple-
mented in software as the thread synchronisation of the software implementation
is very complex.

Use of atomic operations Let the function atomic add(double* a, double b)
be a function which adds the value of b to the value which a points to in a non-
preemptible way. Algorithm 2 uses this function for an alternative implementation
of Alg. 1: Instead of reducing the local solution vectors y◦ to the overall solution
vector y globally at the end of the parallel execution (Lines 8 to 10 in Alg. 1),
each vector entry of y◦ is now added individually to the corresponding entry of y.
Each update of an entry is synchronised by using an atomic addition operation
(Line 8 in Alg. 2).

Atomic operations using compare & swap For many operations, such as ad-
dition, subtraction or logical operations, there exist atomic hardware instructions
on most common platforms. If, however, no such atomic hardware instruction
exists for the operation required, it has to be emulated in software. For this
emulation, the atomic compare & swap instruction (CAS), which is available on
most platforms, can be used.

bool CAS(T *location, T oldVal, T1

newVal)
begin2

begin atomic3

if *location == oldVal then4

*location = newVal;5

return (*location ==6

oldVal);
end atomic7

end8

Algorithm 3: Compare & swap accord-
ing to [6]

void atomic add(double *sum,1

double a)
begin2

repeat3

double oldSum = *sum;4

double newSum = oldSum +5

a;
until CAS(sum, oldSum,6

newSum) ;
end7

Algorithm 4: Emulation of an atomic
addition using compare & swap

In this article, the compare & swap instruction as defined in Alg. 3 is used:
First, the value of the variable oldVal is compared to the value of *location. If
these values are equal, the value of newVal is written to the memory location
which location points to. The return value of CAS is the result of the comparison.

Algorithm 4 shows how any binary operation can be emulated using the
atomic CAS operation taking the addition as an example [4]: The old value of the
result, *sum, is stored in the variable oldSum. This variable is used to calculate
the new value newSum. If the memory location which sum points to has not been
altered by another processor intermediately, newSum is written to this location.
Otherwise, the operation is repeated with the current value of *sum.

int* locks[n locks]; // initialise with 01

void lock(int i)2

begin3

while (true) do4

int lock status = atomic add(5

&locks[i % n locks], 1);6

if (lock status == 0) then7

break;8

unlock(i);9

usleep(1);10

end11

void unlock(int i)12

begin13

atomic add(14

&locks[i % n locks], -1);15

end16

Algorithm 5: Implementation of the functions lock() and unlock()

3.2 Fine-grained locks

Optimising the granularity of locks for given conditions has been investigated for
a long time [10]. In this subsection, a fine-grained locking technique is presented
which uses a separate locking variable for a small number of entries of the solution
vector y instead of always locking the whole vector y as in Alg. 1. Before each
access to an entry i of y, the corresponding lock is acquired by calling lock(i);
after the access it is released by calling unlock(i). Line 8 in Alg. 2 is replaced by
the instruction y[i] := y[i] + y◦[i], surrounded by the lock and unlock statements.

The implementation of the functions lock() and unlock() is shown in Alg. 5.
n locks lock variables are stored in the array locks. The parameter of lock() and
unlock() is the index of the data array entry to be accessed. The current thread
attempts to acquire the lock corresponding to the given index by incrementing
the lock variable. If this is successful, lock status is equal to zero. Otherwise, the
attempt is undone by calling unlock() and another attempt to acquire the lock
is made. The function unlock() releases the lock by atomically decrementing
the value of the lock variable by 1. Section 5.2 investigates which values should
be chosen for n locks. The instruction usleep(1) in Line 9 avoids livelocks by
suspending the current thread for one microsecond if acquiring the lock fails.

4 Implementation

Solving the linear system of equations (3) is implemented in the function ppcgm
in the FEM investigated. The parallel section of the OpenMP implementation is
shown in Listings 1 and 2. In Listing 1, the reduction of the private array Y is
performed by OpenMP when leaving the parallel section. In contrast, in Listing 2
each access to the shared array Y is performed in an atomic way so that the
reduction operation at the end of the parallel section can be avoided.

The loop in Line 6 of the source code of the Listings 1 and 2 runs over all
elements which have been assigned to the current processor. The calculation of

1 real*8 Y(N),U(N),El(N,Nnod*Ndof)
2 real*8 Uel(Nnod*Ndof),Yel(Nnod*Ndof)
3 integer L(N),i,j,k,Kn,N,Ndof ,Nel ,Nnod
4 Y = 0d0
5 !$omp parallel reduction (+:Y)
6 do k=1,Nel
7 call UtoUel(Ne0 ,Ndof ,Uel ,U)
8 call DSPMV(’l’,Nnod*Ndof ,1.0d+0,

El(k),Uel ,1,0D+0,Yel ,1)
9 do i=1,Nnod

10 Kn = L(i)*Ndof
11 do j=1,Ndof
12

13 Y(Kn+j) = Y(Kn+j) + Yel(Ndof
*(i-1)+j)

14 end do
15 end do
16 end do
17 !$omp end parallel

Listing 1: Implementation of ppcgm in
OpenMP using coarse-grained
reduction

1 real*8 Y(N),U(N),El(N,Nnod*Ndof)
2 real*8 Uel(Nnod*Ndof),Yel(Nnod*Ndof)
3 integer L(N),i,j,k,Kn,N,Ndof ,Nel ,Nnod
4 Y = 0d0
5 !$omp parallel
6 do k=1,Nel
7 call UtoUel(Ne0 ,Ndof ,Uel ,U)
8 call DSPMV(’l’,Nnod*Ndof ,1.0d+0,

El(K),Uel ,1,0D+0,Yel ,1)
9 do i=1,Nnod

10 Kn = L(i)*Ndof
11 do j=1,Ndof
12 !$omp atomic
13 Y(Kn+j) = Y(Kn+j) + Yel(Ndof

*(i-1)+j)
14 end do
15 end do
16 end do
17 !$omp end parallel

Listing 2: Implementation of ppcgm in
OpenMP using fine-grained reduction
with atomic addition

xel (Line 5 in Alg. 1) is shown in Line 7 in the source code. The following matrix-
vector multiplication is performed by the BLAS routine DSPMV. The addition of
the y

el
to y◦ (Line 7 in Alg. 1) is performed in lines 9 to 15 of the source code.

The variable Kn (Line 10) contains the index of Y to which the current node of
Yel is added. This assignment, which is defined by Lel in Alg. 1, is stored in the
array L in the source code. The private arrays Y of all threads, that contain the
intermediate results, are added to the shared array by OpenMP at the end of the
parallel section in Line 17. This section corresponds to the lines 8 to 10 in Alg. 1.

In contrast, Y is a shared variable in Listing 2. In Line 13, each thread writes
its results directly to the shared array Y without using an intermediate array. The
write operation is synchronised by the atomic OpenMP statement in Line 12
which corresponds to Line 8 in Alg. 2.

5 Experiments

In synthetic tests, the execution time of the different implementation variants
of the reduction operation have been investigated. Also, the actual implementa-
tion of the FEM was investigated using an example object as input to explore
which speedup can be achieved if the reduction performed by the different im-
plementation variants and in order to find a suitable number of locks for the
implementation variant presented in Sect. 3.2.

For the experiments a 24-core shared-memory Intel machine with 4 × Intel
Xeon X5650 CPUs @ 2.67 GHz and 12 GB of RAM and a 24-core AMD machine
with 4 × AMD Opteron 8425 HE CPUs @ 2.1 GHz and 32 GB of RAM have been
used. For the tests with the actual FEM implementation, the example object

bohrung, which represents a cuboid with a drill hole, has been used, see Fig. 2.
The object initially consist of 8 elements and hence of 32 nodes.

Figure 2: Example object bohrung in initial state and after 3 refinement steps

5.1 Synthetic tests

A first test investigated how many CPU clock cycles the AMD machine needs
for performing an integer addition a := a+ b in the following scenarios: (i) a is
a private variable for each thread, (ii) a is a shared variable updated without
synchronisation, possibly leading to a wrong result, (iii) a is a shared variable
with updates synchronised by (iii-a) an atomic hardware operation, (iii-b) an
atomic operation emulated using compare & swap, or (iii-c) explicit locks. A
loop performing 100 000 additions was used for the measurement. This loop
was executed once by a single thread and once by 24 threads in parallel. The
execution time of the loop was measured using hardware performance counters
accessed via the PAPI library [3].

The results of this test are shown in Fig. 3a. The value for using a single
thread shows how many clock cycles are needed in any case for performing the
addition and, if applicable, the synchronisation operation. The value for using 24
threads shows the behaviour of the execution time when there are concurring
accesses. If private memory is used, the execution time decreases to 1

24 of the
original value as the addition can be performed in parallel without any conflicts.
If shared memory is used without synchronisation, the execution time increases
as the updated value of the variable has to be propagated to the caches of
all processors, i.e. they have to be kept coherent. If the atomic add hardware
instruction is used, the execution time increases as all writes to the result have
to be serialised. The increase of the execution time for the emulated atomic
instruction using the compare & swap operation is even larger as in the case
of conflicts, one thread has to wait using busy waiting for the other threads to
finish their write operations. If explicit locks are used, only short waiting times
occur, resulting in an execution time decrease to approximately 1

15 .
In a second test on the same AMD machine, a certain amount of computation

was performed between two addition operations. The duration of this additional
computation was varied. The results for the scenarios (i)–(iii-c) as defined above
are shown in Fig. 3b. The curves show the execution time needed by 24 threads

0

20

40

60

80

100

120

(i)

(ii)

(iii-a)
(iii-b)
(iii-c)

ex
ec

u
ti

o
n

ti
m

e
p

er
d

a
tu

m
[c

y
cl

es
]

1 thread

24 threads

(a) Number of clock cycles needed
by the addition for different imple-
mentation variants

0

1

2

3

4

5

6

7

0 200 400 600 800 1000
ex

ec
u

ti
o
n

ti
m

e
[s

ec
o
n

d
s]

clock cycles of additional calculation

(i)

(ii)

(iii-a)

(iii-b)

(iii-c)

(b) Execution time for addition operations
with additional computation between two
operations

Figure 3: Execution times for addition operations on a single memory location:
(i) using private memory, (ii) with unsynchronised access, (iii) with synchronised
access using (iii-a) an atomic add machine instruction, (iii-b) compare & swap,
(iii-c) locks

for 15 million addition operations on one variable including the time for the
additional computation. The time for the additional computations is shown in
the abscissa. The use of private memory, i.e. without synchronisation, results in
a straight line. Compared to that, the synchronised or unsynchronised access
to a shared variable causes extra costs. The results indicate that no substantial
extra costs are introduced if the atomic hardware operation is used with an
additional computation of at least 300 clock cycles or, if the atomic operation
using compare & swap is used, with an additional computation of at least 700
clock cycles between two operations. In contrast, the execution time increases
rapidly when using the explicit lock.

5.2 Fine-grained explicit locks

The method of using fine-grained explicit locks presented in Sect. 3.2 has been
investigated concerning the execution time of the function ppcgm when varying
the number of lock variables with the example object bohrung. Figure 4 shows
the execution times for three refinement levels of the FEM consisting of 28 152,
58 736 and 84 720 nodes with data array sizes of 84 456, 176 208 and 254 160,
respectively: For all array sizes, the execution time decreases rapidly with an
increasing number of lock variables until a value of approximately 240 is reached,
whereas it remains nearly constant afterwards. In order to minimise memory
consumption, it seems reasonable not to provide more than 240 lock variables.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

ex
ec

u
ti

o
n

ti
m

e
[s

ec
o
n

d
s]

number of locks

28152 nodes
58736 nodes
84720 nodes

Figure 4: Execution time of the function ppcgm depending on the number of lock
variables used for different array sizes

5.3 Reduction operations in the FEM implementation

The reduction operation for solving the linear system of equations (3) has been
implemented in the function ppcgm FEM investigated in the following variants:

(a) coarse-grained reduction according to Alg. 1
– using a distributed memory model in MPI (MVAPICH2 1.5.1),
– using a shared memory model in OpenMP (GNU Fortran 4.4.7),

(b) fine-grained reduction
– with atomic addition operation using compare & swap according to Alg. 2,
– with explicit locks,
– without synchronisation (potentially producing wrong results).

As there is no hardware instruction for adding double precision floating point
numbers atomically on the available hardware, that variant could not be used.
The results obtained with the example object bohrung for the Intel and the
AMD machines are shown in Fig. 5. The execution times of the OpenMP variant
obtained with GNU Fortran did not differ significantly from results obtained
using the commercial Intel Fortran compiler.

For the parallel implementation of the function ppcgm, which does contain
both, sequential and parallel parts, a speedup between 4 and 6 is achieved for the
variants with coarse-grained reduction, independent of the memory model used.
For the variants with the fine-grained implementation of the reduction using
compare & swap or explicit locks, a speedup of approximately 8 is achieved. This
speedup is equal to the speedup of the variant with an unsynchronised addition
of the results. The results for the variants with fine-grained reduction show that
no additional execution time is required for avoiding memory access conflicts.
As it appears, the time intervals between two write accesses to an element are
large enough to hide the reduction operation between calculations as shown in
Sect. 5.1. The waiting time which occurs when using the coarse-grained reduction
can be eliminated nearly completely by using fine-grained reduction operations.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

sp
ee

d
u

p
(2

4
co

re
s)

refinement step

OpenMP

MPI

compare & swap

locks

unsynchronised

(a) AMD machine

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14
sp

ee
d

u
p

(2
4

co
re

s)

refinement step

OpenMP

MPI

compare & swap

locks

unsynchronised

(b) Intel machine

Figure 5: Speedup of the function ppcgm when using the different implementation
variants of the reduction operation

6 Related work

Recent works which deal with reductions investigate the reduction of scalars in
most cases. They often achieve a runtime benefit by combining operations for
implementing the barrier needed by the reduction with the calculation of the
reduction result [11,12]. [12] performs a tree-like reduction which synchronises
sibling nodes in the tree using busy waiting. Yet, it does not need atomic read-
modify-write or compare & swap instructions. [11] introduces a novel concept of
phaser accumulators which achieves a runtime benefit by separating phases of the
reduction in order to enable overlap between communication and computation.

A molecular dynamics particle simulation, which calculates forces between
a number of atoms, is investigated in [8]. The forces are stored in an array and
each processor calculates a part of each force acting on a particle. The partial
forces are added to the total force acting on the respective particle using a
reduction. Among the investigated implementation variants, the variant utilising
the OpenMP statement atomic performs worst. The variant using the OpenMP
statement reduction performs better, but still worse than two other variants, one
using a private array and one using the BLAS routine DGEMV. The results of [8]
are contrary to the results of this article, where the application benefits from
atomic add instructions to shared arrays. One can assume that this is due to the
memory access pattern of the particle simulation which has more frequent write
operations to the same memory location than the reduction in the FEM. Similar
results where array privatisation yields a performance benefit are, e.g., presented
in [5] and [7].

7 Conclusion

This article investigated several implementation variants of a reduction of arrays
on shared-memory machines. A fine-grained reduction has been compared to
existing implementations of coarse-grained reductions in OpenMP and MPI.

A result of this work is that the operations needed for synchronising write
accesses to a shared vector can be hidden between computations if there is enough
time between the write accesses. In the parallel routine investigated in detail, the
vector being reduced has non-null values for each entry only on a small number
of processors and the write operations to the result vector can be interleaved
with computations. Thus, the condition mentioned above is fulfilled, and using
fine-grained reduction improves the runtime of the adaptive FEM. The results of
Sect. 5.3 show that, in contrast to other works which commonly suggest array
privatisation, also writing directly to shared arrays can be efficient if fine-grained
reduction operations are used.

Acknowledgement: This work is supported by the cluster of excellence Energy-
Efficient Product and Process Innovation in Production Engineering (eniPROD) funded
by the European Union (European Regional Development Fund) and the Free State of
Saxony. This work is also part of a project cooperation granted by the German Research
Foundation DFG-PAK 97 (ME1224/6-2 and RU591/10-2).

References

1. Beuchler, S., Meyer, A., Pester, M.: SPC-Pm3AdH v1.0 – Programmer’s manual.
Preprint SFB393 01-08, TU Chemnitz (2001, revised 2003)

2. Basic linear algebra subprograms technical (BLAST) forum standard (2001)
3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming

interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000)

4. Case, R., Padegs, A.: Architecture of the IBM System/370. Commun. ACM 21(1),
73–96 (1987)

5. Gao, D., Schwartzentruber, T.: Optimizations and OpenMP implementation for
the direct simulation monte carlo method. Comput. Fluids 42(1), 73–81 (2011)

6. Greenwald, M.: Non-blocking synchronization and system design. Ph.D. thesis,
Stanford University, Stanford, CA, USA (1999)

7. Liu, Z., Chapman, B., Wen, Y., Huang, L., Weng, T., Hernandez, O.: Analyses for
the translation of OpenMP codes into SPMD style with array privatization. LNCS,
vol. 2716, p. 26–41. Springer (2003)

8. Meloni, S., Federico, A., Rosati, M.: Reduction on arrays: comparison of perform-
ances between different algorithms. In: Proc. EWOMP’03 (2003)

9. Meyer, A.: A parallel preconditioned conjugate gradient method using domain
decomposition and inexact solvers on each subdomain. Comput. 45, 217–234 (1990)

10. Ries, D., Stonebraker, M.: Effects of locking granularity in a database management
system. ACM Trans. Database Syst. 2(3), 233–246 (1977)

11. Shirako, J., Peixotto, D., Sarkar, V., Scherer, W.: Phaser accumulators: A new
reduction construct for dynamic parallelism. In: Proc. IPDPS (2009)

12. Speziale, E., di Biagio, A., Agosta, G.: An optimized reduction design to minimize
atomic operations in shared memory multiprocessors. In: Proc. IPDPS, Workshops
and PhD Forum (2011)

