
An Interface for the Execution of Distributed Hierarchical Workflows

Daniel Beer1, Raphael Kunis1, Gudula Rünger

Chemnitz University of Technology, Department of Computer Science
09107 Chemnitz, Germany

E-mail: {dbeer,krap,ruenger}@informatik.tu-chemnitz.de

1. Introduction

The usage of business process software enables compa-
nies to perform their increasing amount of work in a more
effective, transparent, and flexible way. Additionally, dis-
tributing the business workflows results in the possibility to
both interact with external companies and balance the load.
However, there is a lack of support for the distributed exe-
cution of workflows in free open-source workflow manage-
ment systems (WfMSs).

In this paper we present a concept and implementation
of an interface to support distributed workflow execution
based on the standards defined and proposed by the Work-
flow Management Coalition (WfMC). In particular, these
standards are the Workflow Reference Model [1], the In-
teroperability Abstract Specification [2], Wf-XML [7], and
XPDL [3].

The objective of our work is to enable the automation of
distributed workflow execution. Workflow designers should
be able to provide their workflow processes to be requested
for execution by a remote WfMS just by defining additional
interfaces. Our approach enables designers of business pro-
cesses to include the external process(es) as part of their
overall process. Hence, the design of large hierarchical
workflow process definitions is much easier by using the
presented interface.

The contribution of this paper is the definition and real-
ization of a lightweight interface derived from an open stan-
dard protocol that can be used for the automated commu-
nication of workflow management systems to facilitate the
execution of distributed hierarchical workflow processes.

2. Interoperability model

Our current approach requires to model external work-
flow processes as subprocesses of a parent process. This
is achieved by a hierarchical definition of workflows. Two

1supported by “Bundesministerium für Bildung und Forschung”
(BMBF), the German Ministry for Education and Research, project
RAfEG (reference architecture for e-Government)

processing models defined in the Interoperability Abstract
Specification [2] have to be considered: (a) chained pro-
cesses (model one) and (b) nested subprocesses (model
two). Two processes are chained, if a parent process initial-
izes and starts the child process and then continues its own
execution taking no further interest in the execution of the
child process. In contrast to model one the parent process
in model two does not continue its execution until the child
process is completed and the result is returned. Examples
of the models are shown in Figures 1 and 2.

A1 A2

A3 A4

B1 B2 B3

parent process child process

Figure 1. Chained processes (model one)

B1 B2 B3

A4A3

A1 A2
child processparent process

Figure 2. Nested subprocesses (model two)

3. Architecture

3.1. General overview

Our concept is based on a client/server architecture that
uses asynchronous communication. This is necessary be-
cause the result of remote procedure calls (i.e. the exe-
cution of a child process) may return after a long period
of time (up to months). For this purpose the concept of
the Asynchronous Service Access Protocol [6] (ASAP) is
adapted. ASAP defines a scheme how to communicate with
services that run asynchronously by utilizing three main
components (Observer, Factory, and Instance) that had to
be redesigned to be suitable for workflow execution. An



overview of these three components as well as an additional
Application Agent, is shown in Figure 3. In our concept the
parent process is executed by the client system WfMS1 and
the child process is executed by the server system WfMS2.

A
pp

lic
at

io
n 

A
ge

nt

local method call remote method call

create new Instance (1)

state changed (6)

creates (2) creates (4)

(3)

(5)

(8)

(7)

(10)

Factory

Observer Instance

W
or

kf
lo

w
 M

an
ag

em
en

t S
ys

te
m

 1
(W

fM
S1

)

(W
fM

S2
)

instance completed (9)

in
vo

ca
tio

n
in

te
rf

ac
e

ad
m

in
in

te
rf

ac
e

ad
m

in
 in

te
rf

ac
e

W
or

kf
lo

w
 M

an
ag

em
en

t S
ys

te
m

 2

calling system (Client) called system (Server)

Figure 3. Overview of the main components.

The interface requires that the participating workflow
management systems implement the interfaces for adminis-
tration and application invocation defined in the Workflow
Reference Model.

3.2. Main components

• The Application Agent: The Application Agent is a
client object which requests the execution of the child
process. It is invoked by an activity inside the par-
ent process. The request is sent (step (1)) to a Fac-
tory server object that will be described later. The con-
text (input and output data of the external process) is
also provided by the activity that invokes the Applica-
tion Agent. After the start of the child process an Ob-
server is created that waits for information about state
changes of the child process (step (2)).

• The Factory: The Factory server object represents a
workflow process that can be executed as a nested
subprocess or chained process. After the start a Fac-
tory server object waits for requests from Application
Agents to create, instantiate and start the execution of
the child process by WfMS2 (step (3)). In the case of
a chained process the Factory processes only step (3)
whereas a nested subprocess additionally requires the
creation of an Instance object (step (4)).

• The Instance: The Instance object is the client object
that informs the Observer about events during the ex-
ecution of a nested subprocess, i.e. suspend, resume,
complete. The Instance receives information on state
change events in step (5) and the result of the child
process in step (8) from WfMS2. The events are sig-
nalled to the Observer in steps (6) and (9). The data
sent in step (6) comprise the new and the old state. Ev-
ery nested subprocess is associated with exactly one

newly created Instance. The Instance is terminated af-
ter the successful completion of the subprocess (sig-
naled by WfMS2 in step (8)) and the transmission of
the return values to the Observer (step (9)).

• The Observer: The Observer is a server object that
waits for the transmission of information about events
related to a nested subprocess. Information on state
changes are forwarded to the parent process executed
by WfMS1 in step (7) and the return values are for-
warded in step (10). A child process has its own Ob-
server object when it is a nested subprocess.

4. Implementation
Our current implementation uses Java as programming

language and RMI as Middleware solution. The first im-
plementation uses Enhydra Shark [5], but it is planned to
extend the interface to work with other WfMSs. To store
information and data on state changes we use an SQL-based
database. The storing of information is especially necessary
when one of the server objects is temporarily unreachable
and we are able to prevent failures caused by this.

5. Application area
Our primary application area is the administration of

business process execution inside and between authorities
[4] where we deal with special procedures, i.e. the official
approval of building plans. We are developing a software
system that provides support for the distributed execution
of these procedures. The procedures contain strictly defined
guidelines that declare which authorities have to execute
which part of the procedure and the order of the execution of
the associated workflow process. Because of the participa-
tion of separated authorities (spatial as well as structural) it
is mandatory that the involved workflow management sys-
tems are able to cooperate and to fulfill the requirement of
a distributed workflow execution.

References

[1] D. Hollingsworth. The Workflow Reference Model. WfMC,
Jan 1995.

[2] M. Marin. Workflow Standard - Interoperability Abstract
Specification. WfMC, Nov 1999.

[3] R. Norin. Workflow Process Definition Interface – XML Pro-
cess Definition Language. WfMC, Oct 2002.

[4] reference architecture for e-Government (RAfEG)
http://www.rafeg.de.

[5] Shark 1.1 documentation
http://shark.objectweb.org/doc/1.1/index.html, 2005.

[6] K. Swenson, J. Ricker, and M. Krishnan. Asynchronous Ser-
vice Access Protocol (ASAP). OASIS, Jun 2004.

[7] K. D. Swenson, M. D. Gilger, and S. Predhan. Wf-XML 2.0
- XML Based Protocol for Run-Time Integration of Process
Engines. WfMC, Nov 2004.


