A Component Based Software Architecture for E-Government Applications

Daniel Beer!, Raphael Kunis!, Gudula Riinger

Chemnitz University of Technology, Department of Computer Science
09107 Chemnitz, Germany
E-mail: {dbeer,krap,ruenger}@informatik.tu-chemnitz.de

Abstract

The raising need for e-government applications leads to
many new approaches in this sector. To fulfill the require-
ment for a flexible government-to-government (G2G) soft-
ware system being adaptable for the usage in many sectors
of e-government applications we introduce the reference ar-
chitecture for e-government (RAfEG) in this paper. The key
features of the system are flexibility, security, adaptability
and interoperability between authorities. The efficient us-
age of heterogeneous systems and heterogeneous hardware
platforms, respectively, allows the execution of large in-
teractive applications in e-government. Because security
is a critical issue in e-government applications our solu-
tion uses different types of authentication and authorization
methods and also supports secure communication between
the interoperating heterogeneous systems. Due to the fact
that the electronically supported execution of government
procedures is the main aspect of the RAfEG system, an ap-
proach where these procedures are modeled as workflows
and executed by an underlying workflow management sys-
tem (WfMS) is the solution we present in this paper. Al-
though many e-government applications exist at present, the
RAfEG system is a new approach because it is able to cope
with a wide range of internal official procedures and also
highly adaptable to new procedures within e-government.

1. Introduction

The goal of our work is the implementation of a soft-
ware architecture for the support of the electronic mapping
of long running authority internal official procedures. These
official procedures are associated with a lot of paperwork
and in many cases more than one employee is involved.
Additionally many official procedures are not restricted to
a single authority, leading to the need for a distributed exe-

'supported by “Bundesministerium fiir Bildung und Forschung”
(BMBF), the German Ministry for Education and Research, project
RAfEG (reference architecture for e-government)

cution of these. This requires a system that is able to share
tasks of such procedures and also task associated documents
between authorities.

In this paper, we present a new software architecture
based on workflows to fulfill the requirement for a soft-
ware system that is adaptable to a wide range of official
procedures within authorities. By the new approach of inte-
grating workflow processing into e-government systems the
efficiency of e-government applications can be increased.
Every official procedure that is executed by an authority
consists of several tasks that have to be executed by employ-
ees of this authority or external authorities and institutions.
This is exactly what the term workflow stands for, the elec-
tronically supported execution of business processes. So the
preferred solution is to model all procedures as workflows
and implement a system that can cope with these instead
of hard coding special procedures. This approach makes it
possible to use the reference architecture for e-government
(RAFEG) in all authorities executing procedures that can be
modeled as workflows.

The main objectives of RAfEG include the provision of
a system that can cope with security standards that are nec-
essary in authorities and mechanisms to allow a distributed
execution of workflows involving different workflow man-
agement systems (WfMSs). Due to the fact that security is
of profound importance in security critical environments the
system is flexible in choosing the security mechanisms. The
security component can be exchanged to adapt the system
to use existing and established mechanisms. This means
that the system is able to allow an adjustment to existing
security restrictions.

The goals of the RAfEG project are both, the design of
a suitable e-government solution based on workflows and
the design of a software system according to modern stan-
dards for open source software. Specifically, the RAfEG
software system offers a component based software archi-
tecture and the usage of open source components and for-
mats. This approach enables authorities to exchange all
main software components in order to adapt the RAfEG
system to their specific needs and requirements. There are

other e-government solutions but most of them are commer-
cial products which use proprietary formats. One example
is the eGov-Suite by Fabasoft [4] in the ELAK project [1]
in Austria. The basic functionality is similar to the RAfEG
system, however there are differences concerning flexibil-
ity, since the internal design is not visible. In contrast, the
component based design of RAfEG allows access to spe-
cific components. Thus, the system is adaptable to specific
software situations of authorities and allows a stepwise im-
plementation of the system. It also enables the integration
of custom components to fit extra requirements, e. g. high
security needs.

Our implementation is tested on basis of official approval
of building plans within the regional board of Leipzig. An
official approval of a building plan consists of several steps
modeled within a workflow. These steps include the incom-
ing and preliminary survey of a building plan, the distri-
bution of the plan to all involved authorities and external
institutions, the check of the plan by these authorities and
institutions and the adaption of the plan with returned sug-
gestions for changes.

Further details on the reference architecture can be found
in Section 2. Section 3 deals with issues concerning the in-
teroperability between arbitrary authorities when executing
procedures with distributed responsibilities. In Section 4
details on security mechanisms of our implementation are
given and Section 5 concludes the paper.

2. The reference architecture for e-government

In this section details on the layout of our system archi-
tecture are given. The architecture can be divided into three
main parts: the RAfEG core system, the frontend system
and the backend system. These parts as well as their com-
ponents and the deployed protocols are shown in Figure 1.

The RAfEG core system includes methods to gain a se-
cure system through authentication and authorization, to log
information of the other three RAfEG core system compo-
nents, to mediate requests between the presentation compo-
nent and the workflow management system component and
to allow unified access to the document management server.
The frontend system deals with interaction by users. This
interaction includes the use by employees to work with the
system, the use by administrators to monitor and control the
system and also by workflow modelers to integrate new pro-
cedures modeled as workflows into the RAfEG core system.
Furthermore, some nonelectronic communication methods
need to interoperate with the system through the frontend
system. The backend system contains third party compo-
nents needed by our system, e. g. the underlying database
needed by the WEMS as well as by the RAfEG kernel com-
ponent.

The RAEG system is based on several technologies that

were chosen for the following reasons:

o the software should be executable on all established
operating systems,

o the software should be easy to expand and adapt,

e distribution of system components on heterogeneous
platforms as well as the distributed execution of offi-
cial procedures should be possible,

e the security features should allow a highly secure sys-
tem by using up-to-date security software solutions
and protocols,

e nonelectronic communication should be supported,

e various output formats like HTML pages, PDF docu-
ments and WML (Wireless Markup Language) pages
should be supported and new output formats should be
easy to add,

e the third party software should be free and easily ex-
changeable and

To reach these goals the following technologies are utilized
directly within our system and as third party modules in the
backend system. Java is used as programming language,
because many operating systems are able to execute Java
bytecode. To allow the system to be flexible by exchang-
ing components and to allow a distribution of the RAfEG
core components to different servers, we have decided to
implement them using the Enterprise JavaBeans technol-
ogy [3, 11] and to use an application server (AS) to pro-
vide them. JBoss AS [7] has been the choice because it
is mature, free, open source and Java based. The database
management system used by the core system and the WfMS
has to be Java Database Connectivity (JDBC) based to sup-
port a wide range of relational database systems. To ac-
cess the document management system the WebDAV (Web-
based Distributed Authoring and Versioning) [19] protocol
is utilized. We have decided to assemble our own sys-
tem that can be accessed via this protocol, because exist-
ing free document management solutions did not fit our
needs. This needs are versioning of documents, access
via the WebDAV protocol and authentication, authorization
support. Our solution is based on an Apache web server
with LDAP (Lightweight Directory Access Protocol) [17]
and Subversion (SVN) support.

Due to the fact that the output formats should be easy to
expand our decision has been to use an XML based interim
representation that is generated by the components after re-
quests, e. g. worklist data by a request to the workflow man-
agement system component. This representation contains
no layout information. The presentation component of the
RAfEG core system transforms this data XML documents
to the final output. The underlying WfMS should corre-
spond to the workflow management standards defined and

]
=
=
=}

zatuon

authentication/ < >
28}

, HTTPS 1| | web server
| wap WAP server

virtual post office

communication component

FAX server
mobile gateway

|
backend system ! !

workflow management system

r
I
! -
| g
s> | &
~
! ="
GIS Map , HTTP | £ logging
Service %‘ °
R e ||
document I =
mar WebDAV|
server S | workflow
| | management \
| |

component

|
I
|
I | process modelling
|
|

visualization

\ | system

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

" frontend system

Figure 1. Structure of the reference architecture for e-government

proposed by the Workflow Management Coalition (WfMC)
and the Object Management Group (OMG). Although many
different standards are available in this sector we have cho-
sen this solution because these standards are implemented
in many of the available free WfMS and interoperability in-
terfaces and methods are well specified. In particular, these
standards are the Workflow Reference Model [6], the Inter-
operability Abstract Specification [8], Wf-XML [16] and
XPDL [12]. Although free WfMSs use existing WfMC
standards, the interoperability interfaces have not been im-
plemented yet. So we implemented them ourselves. Details
on the mechanisms implemented are given later in detail.
Our implementation supports two free WfMSs at present.
These are Enhydra Shark [15] developed by the Enhydra
group and WfMOpen developed by the Danet GmbH [18].

As communication and especially secure and traceable
communication are important, the solution implemented
in the reference architecture is a combination of OSCI-
Transport (Online Services Computer Interface) [13] and a
self implemented interface for nonelectronic communica-
tion. OSCI-Transport fulfills the needs of communication
in e-government applications and is proposed in SAGA [5]
by the German Federal Government Co-ordination and Ad-
visory Agency for IT in the Federal Administration.

2.1. Core system components

The core RAfEG system consists of four components:
the kernel component, the presentation component, the
communication component and the workflow management
system component. The kernel component itself is com-
posed of smaller subcomponents. Below, the separate com-
ponents are discussed in detail.

2.1.1. Kernel component. The kernel component is re-
sponsible for allowing or refusing access from end users to
the system, for coordinating access to the workflow man-
agement component for each user, for logging to allow a
traceable history of all tasks and for the access to the doc-
ument management server. Authentication and authoriza-
tion is reached by the implementation of a security com-

ponent. JBoss AS as well as other application servers sup-
port the definition of security permissions by implement-
ing a special module that provides functions for checking
username/password combinations. This module is used to
authorize access to Enterpise JavaBeans. These Enterprise
JavaBeans are the components of the core system that are
remotely accessible. The logging ability of the kernel com-
ponent is needed to allow the monitoring of all actions done
by the user as well as the system and a failure analysis if
problems occur during the execution of a procedure. The
document management is especially important for the in-
sertion of new forms, requests and texts of law. These
are needed to allow an update of the system when proce-
dures are updated or new ones are issued by the govern-
ment. Furthermore, when a procedure is executed docu-
ments are edited, have to be read when a task is done or
have to be inserted and checked when submitted by external
requesters. By the use of electronic document processing
the paperwork is profoundly reduced. To allow a rollback
of a procedure it is also important that every version of a
document is available. The kernel workflow component is
also the connection point between the workflow manage-
ment system component and the presentation and commu-
nication component.

2.1.2. Workflow management system component. In the
reference architecture, official procedures are modeled as
workflows as mentioned earlier. To support a wide range
of WfMSs the workflow management system component
is built as a standardized layer between the RAfEG kernel
component and the underlying WfMS. The function of this
component is mainly the provision of methods to access
worklists, to integrate new procedures modeled as work-
flows and to update existing ones, to start workflows and
to accept, execute and complete tasks by employees. Addi-
tionally, some features that are not implemented by work-
flow management systems are added to this component.
Firstly, the mechanism for appending documents to work-
flows, because in official procedures most tasks include
document processing. Secondly, the possibility of adding
memos to tasks is also needed. This helps employees to

pass on special execution notices for later processed tasks
and also to read the notices of tasks processed earlier dur-
ing the workflow execution. These memos are bound to the
workflow they are created in. As this component is a layer
around the actually utilized WfMS and the other RAfEG
core system components, the WfMS can be easily replaced.
This is especially important if the authority already has a
specific WEMS in use and does not want to replace it.

2.1.3. Communication component. = Communication
should be secure, protocol independent and traceable. Se-
cure means that it should allow an encrypted and userde-
pendent transport of information within authorities as well
as between authorities and other institutions. The crite-
ria of protocol independence is needed, because to involve
a large number of different authorities the RAfEG system
must be able to deal with arbitrary equipment. Some of-
fices may only support communication via HTTP(S), via
email (simple mail transport protocol (SMTP)) and some
may only support fax or even normal mail as they do not
have an internet connection. In e-government the traceabil-
ity of messages is an important factor that has to be con-
sidered. These three criteria lead us to the approach us-
ing the OSCI-Transport protocol which is proposed by the
German government [5] to fulfill e-government communi-
cation standards between two RAfEG systems. By the use
of this component encrypted messages can be sent between
two RASEG core systems and also between RAfEG systems
and other governmental systems implementing this proto-
col. Additionally an own implementation of a mechanism to
allow nonelectronic communication has been realized. This
means in particular that a possibility for data extraction, the
sending via nonelectronic communication methods and the
import of returned data is possible.

2.1.4. Presentation component. The presentation compo-
nent deals with the dynamic generation of the user interface
(UI). When a new page is requested by the user interface the
kernel component uses this component to create according
output data in an own XML based format. This XML reply
passes a processing chain. In the processing chain the data
is at first parsed for errors, then transformed several times
and finally serialized (transformed into the output format,
e.g. HTML, WML or PDF).

The following example outlines this procedure. At first
the workflow component creates an XML representation of
the data that has to be displayed. This XML format with-
out layout information is transformed via XSLT into a new
XML document including layout information. After that in-
ternationalization is done using an i18n transformer and fi-
nally the XML is serialized into the specific output format,
e. g. a web page. The Apache Cocoon framework [2] is the
solution we have chosen for realizing that processing chain

because it is easy to integrate into JBoss AS, it is freely us-
able and it supports the outlined mechanisms for converting
XML into different output formats. Figure 2 shows the out-
put of a worklist as web page in a web browser.

2.2. Frontend components

The main frontend component is the visualization sys-
tem of the user interface. To allow a widespread usability
of the system a web-based Ul was preferred, because a web
browser is available for many operating systems. The pages
presented to the user are dynamically generated by the pre-
sentation component when requested by a web browser. It
also enables users to administrate the system, provided that
they have the appropriate authorization.

Another important component is the process model-
ing tool. A widely accepted modeling tool is the ARIS
Toolset. With the help of ARIS, Event-Driven Process
Chains (EPCs) which are developed by Scheer [14] can be
designed in a concise way. For the purpose of editing the
EPCs with additional tools an intermediary format is gen-
erated first, i. e. EPC Markup Language (EPML) proposed
by Mendling and Niittgens [10]. The transformation of the
ARIS XML export (ARIS Markup Language — AML) into
EPML is done via the AML2EPML [9] XSL script. In or-
der to feed the workflow management system with the pro-
cesses, EPML is converted using XSLT into the utilized
workflow description language (in our case XML Process
Definition Language — XPDL) in the next step. Finally it
can be uploaded into the system via the user interface.

2.3. Backend components

The backend system is needed to provide additional
functionality for the central system. The software used here
is mainly third party. The components of this system can be
easily exchanged to adapt it to work with existing software
in authorities. These components are:

e the user management needed by the authorization
module of the central system,

o the GIS map service needed especially for the test pro-
cedure, official approval of building plans, to provide
maps and plans,

e the document management needed for the execution
of procedures with linked forms, requests, texts of law
and

e the database needed for saving configuration values,
logging information and as data storage of the WfMS.

RAfEGDbela

Your worklist! Choose the tasks you want to execute by clicking on them.

execule

state priority title

normal

Portal

running

check building plan

milestones

created

Logout | Login/Portal || Intranet | Help

‘Workflow Administration \‘ g
User management —
Users

Groups

January 15th, 2005
acception deadline:
not set
execution deadline
not set

Package overview funning

Process overview
Archivated memos
‘Workflow management

system users
‘Worklist

Configuration
General properties

©2005 Ghemnitz University of Tachnolboay, Departmant af Gomputer Seiencs | download as (attention

high

created
January 17th, 2006
acception deadline:
not set
execution deadline:
January 30th, 2006

inform concemed citizens
by letter

a new windaw is apanad): POF

Figure 2. Output of a worklist in a web browser

3. Mechanisms for the support of distributed
procedures

Interoperability is necessary between two or more
RAfEG systems within different authorities as well as be-
tween authority internal systems and systems that are ac-
cessible from external sites. External sites are citizens that
can participate in governmental procedures and public au-
thorities as well as external institutions. In our specific test
procedure, the official approval of building plans, such in-
stitutions are agencies of urban planning. Interoperability
is needed due to the fact that many official procedures are
executed involving two or more authorities and institutions
with their own IT infrastructure. These procedures are mod-
eled as workflows and processed by the underlying work-
flow management system. Each workflow definition con-
tains a description of all tasks that have to be executed and
their dependencies. Every task has a performer or a group of
performers that defines which person/persons have to per-
form the task. Additionally there are also tasks that are
executed by the system itself. These tasks are particularly
important for the start of an external part of the workflow.
In RAfEG distributed workflows are modeled as an over-
all hierarchical workflow containing subflows that describe
the external parts of a procedure. Every subflow can be ex-
ecuted by an external authority. The definition which au-
thority and external company, respectively, has to execute a
specific part is defined within the workflow of the procedure
itself. This means that the subflow has additional informa-
tion on the address of the corresponding system. To allow
an easy rearrangement without changes to the workflow it-
self this information is a generic name that is mapped to the
actual real address at runtime via a configuration file.

An example for the first part of a workflow of an official
approval of a building plan procedure is shown in Figure

3. An official approval of a building plan starts with the
receiving of a plan. The authority that received the plan
forwards this plan to all concerned communes. This is the
point in the workflow where communication between the
authority and all involved communes takes place. The com-
munes check the plan they received and make requests for
changes if necessary. This checking of the plan is a work-
flow that can consist of one ore more tasks and is executed
within the communes. The requests are sent back to the
authority. The authority checks this requests and includes
them in the received original plan if possible.

As outlined in the example, the sharing of data and the
distribution of tasks between authorities and other institu-
tions takes place on workflow level. Because free workflow
management systems have not yet implemented the inter-
operability features proposed by the WIMC, RAfEG has its
own interoperability component that can easily be adapted
to WEMC conform WfMSs. The implementation is com-
pleted for Enhydra Shark at present and work on the adap-
tation for WfMOpen is in progress. The realization is based
on a client/server architecture. Figure 4 illustrates the core
components of the architecture and shows the steps that are
necessary when an external subflow is executed.

When the execution of a procedure reaches the point
where an external subflow should be executed, a system
task is started which starts an application agent. This ap-
plication agent communicates with a server object called
FactoryserverBean to start the subflow on the child
workflow system. The terms child and parent workflow
system refer to the involved workflow management system
components. Parent means that this system is executing the
overall workflow and child means that this system is execut-
ing the subflow. The FactoryserverBean is an Enter-
prise JavaBean object that contains a set of factory objects.
A factory object is the representation of an existing work-

authority 1

commune 1 ..n

Workflow Management System 1 (WfMS1)

,,,,,,,,,,,,,,,,

receive
plan

include L oo
advices

Workflow Management
Systems 2 .. n+1 (WfMSx

- ’7 checkplan |~ 7

[activity B subflow

1 workflow process

Figure 3. Example: the first part of the workflow for the approval of a building plan with distributedly

executed subflows

flow definition in a WEMS that can be invoked remotely. Ev-
ery factory object has a unique key that is part of the address
defined in the subflow of the parent system to allow the di-
rect communication between application agent and factory
object. All information necessary to start the process within
the client workflow system are stored in the specific fac-
tory object. When starting an external workflow, all rele-
vant workflow data are sent to the FactoryserverBean
(step (a)). The FactoryserverBean communicates di-
rectly with the underlying WEMS of the authority it belongs
to. After initializing and starting the workflow (step (b))
and the creation of an instance object, it returns information
on the successful creation. This information is mainly the
key (identifier) of the instance needed for the parent sys-
tem to associate received messages with a specific subflow.
The application agent also creates an observer object (step
(c)) within an internal ObserverserverBean. This ob-
server is the object that receives information on the exe-
cution of the subflow and will be described later. Due to
the fact that a factory object is only the representation of a
workflow definition and starts the workflow when a request
from an application agent is received another component
is needed to inform the parent system about state changes
and returns data after completion of the process. There-
fore, the factory object creates an instance object for each
workflow started. The progress of the subflow is reported
to the instance by the child workflow system. The instance
forwards this information to the observer object (step (d))
and this object forwards it to the parent workflow system
(step (e)). The observer object is created by the application
agent at the creation time of the external subflow within the
ObserverserverBean to create a connection endpoint
for the instance to send progress information and return val-
ues. As described earlier by the creation of an instance ob-
ject every started external subflow creates its own observer
object. When the subflow is completed the return data is

signalled to the instance and forwarded to the observer ob-
ject (step (f)). As by the transmission of progress informa-
tion the observer forwards the return values to the parent
WEMS which writes them back into the parent subflow rep-
resentation (step (g)) and completes the subflow.

In addition to the start of the external subflow many
procedures in e-government have documents like requests,
forms and texts of law associated with tasks. To fulfill the
requirements of exchanging the needed documents, other
components than the workflow management system com-
ponent are also involved in the external execution. Figure
5 shows these components of RAfEG and the steps that are
taken by starting an external subflow. As one can see, the
first step when an external subflow is executed is to start and
initialize the external subflow (1). This step was described
in the previous paragraph in detail. After starting the exter-
nal subflow, all documents that are needed for execution in
the external authority and company, respectively, are read
from the document management system (2). After that, the
documents are internally sent to the communication com-
ponent (3). This component sends the documents using the
transport method/protocol defined for communication with
the communication component of the child system (4). The
communication component of the child system notifies the
created instance of incoming documents (5) and at last the
instance retrieves the documents and saves them in the doc-
ument management system of the child system (6).

4. Security mechanisms

During execution of a procedure a large number of par-
ticipants are involved. They are located in different parts
of the network. Firstly, there are participants working in
the same authority (organization). They share one system.
Secondly, there are participants in other spatially separated
authorities using their own system. In this case it has to be

Observer ServerBean

interface 3

application agent

| create new

| _observer @)

OK1
OK2

observerl

observer2

Factory ServerBean
create

workflow (b)

FK | factory
1K

instancel_1

IK

S

instancel_2

parent workflow system

write return values (g)

pass on state changes (e)

interface 5

- = > local bean method call
---= remote method call

interface 5

child workflow system

1 = create new subflow (a)

2 = inform on state changes (d)
3 = send completion information (f)

Figure 4. Necessary steps during the execution of an external subflow

parent system child system
" kernel workflow

. kernel workflow management component
management component

Factory ServerBean

FK1

kernel
5 document
| management
component

kernel
document

© management
component

: communication

component

: communication

: 4
: component

1 = start of the external process

2 = read documents needed by the subflow

3 = commital of the documents and send request
4 = transmission via OSCI

5 = notification of incoming documents

6 = saving of the documents

Figure 5. Workflow interoperability core com-
ponents and necessary execution steps
when starting an external subflow

considered whether the authority lies within or outside of
the intranet-zone. Thirdly, there are several external partic-
ipants like citizens. These three cases implicate different
levels of security risks and must thus be handled separately.

4.1. Mechanisms for internal security

As already mentioned, all system components are re-
motely accessible by utilizing an application server and the
Enterprise JavaBeans technology. In consequence the com-
ponents can be distributed across several computers inside
the organization. Communication between components is
managed by the application server itself. Internally, Remote
Method Invocation (RMI) is utilized.

To secure the access to remote Enterprise Beans, each
bean is associated with a role. The role assigned to each
user is stored in the user management system and is read out
after a successfull login. If the caller of a bean does not have

the specified role, a security exception is raised. Roles can
even be attached to single methods of a bean. Thus, a fine
granularity is reached. The security manager integrated into
the application server is responsible for doing these checks
and protects the application against unauthorized access.

The web based user interface (UI) is not only intended
for handling the application but also for administration pur-
poses. Hence, it has to provide different functionalities de-
pending on the role of the user logged on. That way a “nor-
mal” employee is not able to, e.g., modify the system con-
figuration which is reserved for administrators only. This
is realized by a role filter which filters the navigation ele-
ments of the Ul generated by the presentation component.
In the processing chain of the UI generation the role filter
is placed between content generation and subsequent XML
transformation.

4.2. Mechanisms for external security

4.2.1. Intranet communication. The communication be-
tween different systems is mainly used to trigger the start of
external subflows of the whole workflow. During this op-
eration forms and documents (e.g. a building application)
as well as workflow specific data (context data) is trans-
mitted. In most cases the calling system has to wait for a
reply (e.g. the filled request). This type of communication
inside the intranet is done via a secure and reliable com-
munication protocol. The protocol OSCI-Transport [13] is
the protocol of our choice. This has two reasons. Firstly, it
is the prescribed protocol for federal e-government applica-
tions in Germany. The use of this protocol will ensure a high
compatibility with other applications in e-government. Sec-
ondly, the benefits of OSCI-Transport are the capabilities of
the protocol to grant integrity, authenticity, confidentiality
and traceability of the messages sent. Furthermore, OSCI-
Transport has the ability to select between different encryp-
tion and authentication mechanisms depending on the secu-
rity level needed.

4.2.2. Communication between citizens and the system.

The web-portal forms the user interface for the system.
It would be possible to share the web-portal between the
employees of the authority and participating citizens. This
would be beneficial because of the simplified management
of data. However it implies that the hosting server would be
accessible from outside the intranet. This comprises a very
high security risk. A potential attacker could possibly take
over the web server and gain access to the naturally sealed
off intranet and all its critical data. Hence the public part
of the web-portal as well as the user interface for external
participants have to be located on a separate server not con-
nected to the intranet.

Synchronization of data between the external server and
the system can be done in different ways. In the last re-
sort data transport can be realized via an electronic storage
medium like a CD or similar. But also a secure internet
connection initiated by the system is possible.

Still, the risk of hostile take-over of the external server
exists, but it is not possible for an attacker to gain access to
the system located inside the intranet. A potential attacker
could at the utmost modify workflow relevant data or could
pretend a fake identity. That must be checked manually.

5. Conclusion

The lack of e-government software systems that are flex-
ible, adaptive, applicable in a wide range of e-government
procedures and equipped with up to date security function-
ality has been the reason for us to implement the reference
architecture for e-government. The reference architecture
enables authorities to execute their procedures computer-
assisted and thus efficiently. By the use of a workflow man-
agement system and the modeling of procedures as work-
flows the system gains highest independence from specific
application areas and is widely usable in authorities. Due to
the fact that all documents are included in the system and
can be filled out via the frontend, the paperwork is omitted.
The component based design of the RAfEG system and the
use of open source software components and formats en-
ables authorities to adapt the system to individual require-
ments. Additionally it supports inter authority procedure
execution and authority to external institution procedure ex-
ecution. The goal has been to implement a system that can
cope with up-to-date security restrictions in e-government
that are proposed in the “Standards and Architectures for e-
Government Applications" (SAGA) our system can be also
installed in high security critical authorities.

References

[1] Austrian Federal Ministry of public service and sport - work-
ing group ELAK. Der Elektronische Akt (ELAK), 2001.
http://www.cio.gv.at/elektronischerAkt/.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]
[15]

[16]

(17]

(18]
[19]

B. Brogden, C. D’Cruz, and M. Gaither. Cocoon 2 Pro-
gramming: Web Publishing with XML and Java. Sybex, 1st
edition, 2002.

L. G. DeMichiel, L. U. Yalcnalp, and S. Krishnan. Enter-
prise JavaBeans Specification, Version 2.0, 2001. http:
//java.sun.com/products/ejb/docs.html

Fabasoft. eGov-Suite, 2005. http://www.fabasoft.at/
html/eGov/egov-produkt.htm.

German Federal Government Co-ordination and Advisory
Agency for IT in the Federal Administration. Standards
and Architectures for e-Government Applications (SAGA)
2.0,2003. http://www.kbst .bund.de/Anlage304417/
Saga_2_0_en_final.pdf.

D. Hollingsworth. The Workflow Reference Model (TCO0-
1003). WIMC, Jan 1995. nhttp://www.wfmc.org/
standards/docs/tc003v1l.pdf
JBoss Application Server, 2005.
com/products/jbossas.

M. Marin. Workflow Standard - Interoperability Abstract
Specification (WfMC-TC-1012). WIMC, Nov 1999.
http://www.wfmc.org/standards/docs/TC-1012_
Nov_99.pdf.

J. Mendling and M. Niittgens. Transformation of ARIS
Markup Language to EPML. In Proc. of the 3rd GI Work-
shop on Event-Driven Process Chains (EPK 2004), Luxem-
bourg, Luxembourg, 2004.

J. Mendling and M. Niittgens. EPC Markup Lan-
guage (EPML). Technical report, Vienna University
of Economics and Business Administration, 2005.
http://wi.wu-wien.ac.at/home/mendling/
publications/TRO5-EPML.pdf.

R. Monson-Haefel. Enterprise JavaBeans. O’Reilly, 4th
edition, 2004.

R. Norin. Workflow Process Definition Interface — XML
Process Definition Language (WfMC-TC-1025). W{MC,
Oct 2002. http://www.wfmc.org/standards/docs/
TC-1025_xpdl_2_2005-10-03.pdf.

OSCI Leitstelle. OSCI-Transport 1.2, 2002. http://www.

osci.de/materialien/osci-specification_1_2_

http://www. jboss.

english.pdf.

Scheer, A.-W. Business Process Engineering, Reference
Models for Industrial Enterprises. Springer, Berlin, 1994.
Shark 1.1 documentation, 2005. http://shark.
objectweb.org/doc/1.1/index.html.

K. D. Swenson, M. D. Gilger, and S. Predhan. Wf-XML
2.0 - XML Based Protocol for Run-Time Integration of Pro-
cess Engines. WEMC, Nov 2004. http://www.wfmc.org/
standards/docs/WEXML20-200410c.pdf.

M. Wahl, T. Howes, and S. Kille. RFC 2251: Lightweight
Directory Access Protocol (v3), 1997. ftp://ftp.
rfc-editor.org/in-notes/rfc2251.txt

Wifmopen, 2005. http://wfmopen.sourceforge.net
E. J. Whitehead, Jr. and Y. Y. Goland. WebDAV: A network
protocol for remote collaborative authoring on the web. In
Proc. of the Sixth European Conf. on Computer Supported
Cooperative Work (ECSCW’99), pages 291-310, Copen-
hagen, Denmark, 1999.

