
Cluster Computing manuscript No.
(will be inserted by the editor)

SEParAT: Scheduling Support Environment for Parallel
Application Task Graphs

Jörg Dümmler · Raphael Kunis · Gudula Rünger

Received: date / Accepted: date

To cite this version:
Dümmler, J.; Kunis, R.; Rünger, G.: SEParAT: Scheduling Support Environment for
Parallel Application Task Graphs. In: Cluster Computing, Bd. 15, Nr. 3: S. 223-238.

Springer – ISSN 1386-7857, 2012. DOI: 10.1007/s10586-012-0211-1

Abstract Programs using parallel tasks can be represented by task graphs so that scheduling
algorithms can be used to find an efficient execution order of the parallel tasks. This article
proposes a flexible, component-based and extensible scheduling framework called SEParAT
that supports the scheduling of a parallel program in multiple ways. The article describes
the functionality, and the software architecture of SEParAT. The flexible interfaces enable
the cooperation with other programming tools, e.g., tools exploiting a specification of the
parallel task structure of an application. The core component of SEParAT is an extensible
scheduling algorithm library that provides an infrastructure to determine efficient schedules
for task graphs. Homogeneous as well as heterogeneous platforms can be handled. The
article also includes detailed experimental results comprising the evaluation of SEParAT as
well as the evaluation of a variety of scheduling algorithms.

Keywords Parallel Programming · Scheduling · Task graph · Mixed parallelism · Tool
support · Distributed Memory

1 Introduction

Programming with parallel tasks is a suitable programming technique to implement parallel
applications consisting of a set of well-defined submodules. Examples are environmental

J. Dümmler
Chemnitz University of Technology, 09107 Chemnitz, Germany
E-mail: djo@cs.tu-chemnitz.de

R. Kunis
Chemnitz University of Technology, 09107 Chemnitz, Germany
E-mail: krap@cs.tu-chemnitz.de

G. Rünger
Chemnitz University of Technology, 09107 Chemnitz, Germany
E-mail: ruenger@cs.tu-chemnitz.de

2

simulations, aircraft design applications, or large image processing applications. Using par-
allel tasks, a modular application can be coded as a parallel program with mixed parallelism
in which the submodules are implemented as parallel tasks each of which can be executed
on one or more processors of a parallel target platform. The processors executing a parallel
task start together at a specific start time and execute their parts of the parallel tasks simulta-
neously until all processors finish their computations by an implicit barrier synchronization.
Internally, a parallel task consists of a sequence of parallel instructions comprising com-
putation as well as communication operations. The communication operations may include
collective communication operations, which have a high influence on the execution time,
especially on distributed memory platforms.

The execution of a parallel task application is based on a schedule that assigns each
parallel task a start time and a set of processors of the parallel target platform for execu-
tion. A major advantage of the programming with parallel tasks is the flexibility to select
an appropriate schedule depending on the number of processors and the communication and
computation performance of the target platform. Based on the general parallel task speci-
fication, a schedule can be selected such that a machine-specific efficient implementation
results. Thus, a portability of efficiency is provided by the programming model.

The schedule of a parallel application can either be specified by hand, which can be
error-prone and complex especially for large parallel applications, or can be computed by a
scheduling algorithm. The computation of an optimal schedule is a strongly NP hard prob-
lem and, thus, scheduling algorithms based on heuristics and approximation algorithms are
used. Due to the large variety of parallel applications and scheduling algorithms, it is a chal-
lenge for the application programmer to decide which algorithm is suitable for which kind
of parallel application to achieve good efficiency results. Thus, a software tool that supports
the scheduling of parallel tasks with a variety of algorithms is desirable. Until now, schedul-
ing tools exist only for parallel applications consisting of tasks that are restricted to run
on a single processor, e.g., Parallax [23] and CASCH [1]. This article presents the schedul-
ing framework SEParAT (Scheduling Support Environment for Parallel Application Task
Graphs), which provides scheduling support for parallel tasks with precedence constraints.
An earlier version of SEParAT has been proposed in [13].

SEParAT offers a uniform interface to a variety of static scheduling algorithms for ho-
mogeneous as well as for heterogeneous platforms. Heterogeneous platforms especially ben-
efit from the programming with parallel tasks. An example for such platforms are clusters
of clusters, i.e., a heterogeneous cluster consisting of multiple homogeneous subclusters.
Clusters of clusters usually offer a much higher communication performance within the ho-
mogeneous subclusters than between different subclusters. The fine grained data parallel
computations inside a parallel task can be mapped to the same subcluster. Communication
between different subclusters is then only required between the execution of data dependent
parallel tasks occurring at a much coarser granularity.

Two modes of operation are supported by SEParAT: it can be used as an auxiliary tool
with a command line interface or as a stand-alone application with a graphical user interface.
The command line interface enables the cooperation with other tools that require scheduling
decisions. Examples for such tools are parallelizing compilers, or transformation tools that
create executable code from a parallel specification, such as the TwoL system [34] or the
CM-task compiler [15]. Despite being mainly focused on static scheduling, SEParAT might
also be used to provide scheduling support for applications at runtime. The graphical user
interface supports the evaluation of existing scheduling algorithms and the development of
new scheduling algorithms by a visualization of many internal states, such as intermediate
steps of scheduling algorithms. SEParAT also supports the comparison of different schedul-

3

ing algorithms using benchmarks on a set of synthetic scheduling problems that can be
created internally for different user-defined parameters.

The contributions of this article include the definition of the underlying parallel pro-
gramming model, the description of the interfaces and structure of SEParAT, and a detailed
investigation of different kinds of sophisticated scheduling algorithms for parallel tasks with
dependencies. The parallel programming model assumed by SEParAT establishes a uniform
basis for different approaches of parallel task models and scheduling algorithms. In this
model, an application is represented by a hierarchical task graph with annotated cost infor-
mation. These costs are provided in form of symbolic runtime formulas [6,18] and, thus,
provide the flexibility to adopt a variety of cost models. The programming model supports
homogeneous as well as heterogeneous target platforms, such as clusters of clusters. The
software architecture of SEParAT is component-based and designed for extensibility. Each
of the components can be replaced to adapt SEParAT to specific requirements. For example,
the input component can be replaced to support another input format required. The schedul-
ing algorithms are decomposed into phases that are implemented separately as reusable code
fragments. This facilitates the implementation of new algorithms, since phases from exist-
ing algorithms can be reused. The scheduling algorithm library of SEParAT can be extended
with new algorithms using the plugin mechanism provided. An additional feature of SEP-
arAT is its support for several optimizations for existing scheduling algorithms to improve
the behavior of the algorithms in terms of the resulting schedules.

This article is organized as follows. The programming model with parallel tasks is de-
fined in Sect. 2. Section 3 gives an overview on scheduling support tools and describes the
main functionality of SEParAT. Section 4 outlines the structure of SEParAT and presents the
main components and interfaces. Section 5 discusses experimental results. Section 6 con-
cludes the article.

2 Programming model for parallel tasks with dependence constraints

The parallel programming model of SEParAT assumes an application task graph consisting
of parallel tasks and their dependencies, a parallel target platform with distributed memory,
and a cost model, as described in the following.

Application task graph The structure of a parallel application is represented by a hierarchi-
cal annotated directed acyclic graph G = (V,E). The node set V of G consists of a unique
entry node q that precedes all other nodes of the graph, a unique exit node r that succeeds
all other nodes of the graph, and a set M =V \{q,r} of inner nodes. The entry node and the
exit node are not associated with computations and represent the input and the output of the
application, respectively.

The set M of inner nodes represents the parallel tasks of the application where each par-
allel task is assumed to be executable on an arbitrary number of processors of a distributed
memory platform. Each parallel task v ∈ V defines a set of input parameters Iv that have to
be available for the execution of v, and a set of output parameters Ov that are available when
v finishes its execution. Each parameter a∈ Iv∪Ov has a fixed data type that specifies its size
and memory layout, and a data distribution type that defines how the individual elements of
a are distributed over the set of processors executing the parallel task v.

A parallel task can either be basic or complex. Basic parallel tasks are implemented
directly by the application developer, e.g., by using a message passing library, such as MPI.
Thus, their internal structure is not visible to SEParAT. For each basic parallel task, there

4

may exist multiple implementation variants (also called module variants) that share the same
interface consisting of input and output parameters and their associated data types. Different
module variants of the same parallel task might define different data distribution types for the
parameters or might have a different execution time. Complex parallel tasks are composed of
other parallel tasks and are represented by an application task graph leading to a hierarchical
structure.

The set E of edges of the application task graph represents control and data dependencies
between the parallel tasks that have to be taken into account for a correct execution of the
application. A control dependency defines that a node of the task graph needs to be finished
before another node of the task graph can start. A data dependency edge e = (v1,v2) ∈ E
between parallel tasks v1 and v2 denotes that v1 produces one or more output parameters
that are required as an input for v2, i.e., Ov1 ∩ Iv2 6= /0. Data dependencies might lead to
data re-distribution operations at runtime of the application, if v1 and v2 are executed on
different sets of processors, or if v1 produces its output in a different data distribution than
it is expected by v2 for its input.

Target platform The parallel target platform is a distributed memory machine, which can
be either homogeneous, e.g., a single cluster, or heterogeneous, e.g., a cluster consisting of
multiple homogeneous subclusters. A homogeneous parallel platform consists of P identical
processors that are interconnected by a homogeneous communication network so that the
communication performance is identical between each pair of processors. The average time
to execute an arithmetic operation is denoted as tC in the following. The communication
performance of the interconnection network is characterized by its startup time tS and its
byte transfer time tB.

In this article, a heterogeneous parallel platform is composed of c homogeneous sub-
clusters C1, . . . ,Cc that are connected by a heterogeneous network. Cluster Ci consists of Pi

identical processors and its computation and communication performance is captured by the
average processing time t i

C of one operation, the network startup time t i
S and the network

byte transfer time t i
B of the network, i = 1, . . . ,c. The interconnection between subclusters

Ci and C j is defined by the network startup time t(i, j)S1 on Ci, the startup time t(i, j)S2 on C j and

the byte transfer time t(i, j)B , 1≤ i, j ≤ c, i 6= j.

Cost model The nodes of the application task graph are annotated with a cost function that
provides an estimation of the execution time of the corresponding parallel task depending on
the set of executing processors. For homogeneous target platforms, these costs are described
by a function

Tpar : V × [1, . . . ,P]→ R+

where Tpar(v, p) denotes the execution time of parallel task v ∈V executed on p processors.
The cost functions for basic parallel tasks are symbolic formulas in closed form that are
specified by the user. These formulas can be derived by fitting measured execution times
to an appropriate function prototype, or by adopting a cost model like BSP [17], LogP [10],
or LogGP [2], see also [6,18] for more information on obtaining such runtime formulas.
Depending on the approach taken, the function Tpar may require further parameters. The
cost functions of complex parallel tasks are derived by SEParAT based on the corresponding
task graph given for the application.

For heterogeneous target platforms, SEParAT restricts the execution of one parallel task
to subsets of processors of the same homogeneous subcluster. This assumption is reasonable,

5

since the interconnection network within a subcluster is usually much faster compared to the
interconnection between different subclusters. The costs for executing a parallel task on a
heterogeneous platform depend on the executing subcluster and the number of processors
used for the execution. This is captured by an annotation of the task graph such that each
node is annotated with a set of functions

T i
par : V × [1, . . . ,Pi]→ R+

where T i
par(v, p) denotes the execution time of parallel task v ∈V executed on p processors

of subcluster Ci, i = 1, . . . ,c.
The edges of the application task graph are associated with communication costs that

result from data re-distribution operations. These costs depend on the amount of data to be
transferred from the source task node to the target task node and on the sets of processors
used to execute the source and target parallel task, respectively. The amount of data is zero
for control dependency edges and is usually larger than zero for data dependency edges. For
homogeneous platforms these costs are captured by a function

TRe : E× [1, . . . ,P]× [1, . . . ,P]→ R+

where TRe((v1,v2), p1, p2) denotes the data re-distribution costs between source parallel task
v1 ∈V executed on p1 processors and target parallel task v2 ∈V executed on p2 processors.
For heterogeneous platforms, the specific subclusters used to execute the source and target
parallel tasks need to be taken into account. Thus, the data re-distribution costs are captured
by a set of functions

T (i, j)
Re : E× [1, . . . ,Pi]× [1, . . . ,Pj]→ R+

where T (i, j)
Re ((v1,v2), p1, p2) denotes the communication cost between parallel task v1 ∈ V

executed on p1 processors of subcluster Ci and parallel task v2 ∈V executed on p2 proces-
sors of subcluster C j, i, j = 1, . . . ,c.

Scheduling The execution of a parallel application consisting of parallel tasks is based on
a schedule S that assigns each node v ∈ V of the application task graph a subset PGv of
processors (also called processor group of v) and a starting point in time STv. This is denoted
as S(v) = (PGv,STv). In case of a heterogeneous platform the processor group also encodes
the subcluster on which a parallel task is executed, e.g., by using a consecutive numbering
of all processors of the platform. The finish time FTv of a node v ∈ V is the point in time
when the corresponding parallel task terminates its execution. For homogeneous platforms
it is computed by FTv = STv + Tpar(v, |PGv|), and for heterogeneous platforms by FTv =
STv +T i

par(v, |PGv|) where v is executed on subcluster Ci.
A schedule is called feasible if it fulfills the following constraints. First, a feasible sched-

ule has to guarantee for each parallel task v that all predecessors of v have finished their
execution and that all necessary data re-distribution operations have been finalized before
the execution of v is started. For two parallel tasks v,u ∈ V that are connected by an edge
(v,u) ∈ E this constraint can be captured by the condition STu ≥ FTv +TRe(v,u) (homoge-
neous platforms), or STu ≥ FTv +T (i, j)

Re (v,u) (heterogeneous platforms assuming v is exe-
cuted on subcluster Ci and u is executed on subcluster C j). Additionally, a feasible schedule
has to define disjoint subsets of processors for parallel tasks with overlapping execution
time intervals, i.e., if [STv,FTv]∩ [STu,FTu] 6= /0 then PGv ∩PGu = /0 for all v,u ∈ V . This
condition ensures that at any point in time each processor executes one parallel task at most.

6

1 2 3 4
processors

tim
e

entry

v1 v2 v3

v4

exit

v1

v2
v3

v4

0

2

4

5

6.25

Fig. 1 Task graph of a parallel application (left) and a feasible schedule represented as a Gantt-chart (right).
Edges are considered to be control dependencies and have a communication cost zero.

The makespan Cmax(S) of a schedule S is defined as the finish time of the exit node
r ∈ V , i.e., Cmax(S) = FTr. This corresponds to the point in time when all parallel tasks
have been executed and the data re-distribution operations for the output parameters have
been performed. The determination of a feasible schedule with a minimum makespan is
called scheduling problem for parallel tasks with dependencies. This scheduling problem
is strongly NP hard even for the special case of precedence constraints in the form of
chains [11].

An example for a task graph with a corresponding feasible schedule represented as a
Gantt chart is shown in Fig. 1. In this schedule, node v1 is scheduled to processor group
{1,2,3,4} starting at time 0. Afterwards, the nodes v2 and v3 are executed concurrently on
disjoint processor groups {1,2} and {3,4}. The successor node v4 of the nodes v1 and v2 is
scheduled to processor group {1,2,3,4}; the execution starts at the finish time FTv2 = 5 of
node v2. The makespan of the schedule corresponds to the finish time FTv4 = 6.25 of node
v4.

Scheduling algorithms Different approaches have been proposed for scheduling parallel
tasks with dependencies. Most algorithms for homogeneous target platforms belong to one
of the following three categories. Allocation-and-scheduling-based algorithms [12] consist
of two phases: an allocation phase that determines the number of processors for each parallel
task and a scheduling phase that maps the parallel tasks to the target platform and defines the
start time for each parallel task. Examples for such algorithms are Critical Path and Area-
based Scheduling (CPA) [30], Critical Path Reduction (CPR) [29], Two Step Allocation and
Scheduling (TSAS) [31], and the approximation algorithms proposed in [21] and [22].
Layer-based algorithms [14] consist of four phases that (i) simplify the task graph, (ii) de-
termine sets of independent tasks of the task graph (also called layers), (iii) schedule the
independent tasks of each layer, and (iv) combine the layer schedules to the schedule of
the entire task graph. Examples for layer-based algorithms are TwoL-Level [32], TwoL-
Tree [33]. Using the layer-based approach, scheduling algorithms for independent parallel
tasks can be extended to support dependencies, since these algorithms can be adopted in
phase (iii). Examples for scheduling algorithms for sets of independent parallel tasks are
Approx-2 [24], Approx-

√
3 [25], and Approx- 3

2 [26].
Configuration-based algorithms use predefined configurations of processors to schedule the
task graph in a single step. The scheduling algorithm OneStep [7] belongs to this category.

7

Heterogeneous algorithms are designed for heterogeneous cluster of clusters platforms.
Examples are Heterogeneous Critical Path and Area-based (H-CPA) [27] and the two
scheduling algorithms proposed in [9] called Mixed-Heterogeneous Earliest Finish Time
(M-HEFT1 and M-HEFT2). H-CPA extends CPA with support for heterogeneous target
platforms. The algorithms M-HEFT1 and M-HEFT2 are an adaptation of the algorithm Het-
erogeneous Earliest Finish Time (HEFT) [37] with concepts of configuration-based algo-
rithms [7].

3 Related work and usage of SEParAT

This section discusses related work on parallel programming tools with scheduling support
and includes an overview of the usage scenarios of SEParAT showing the new functionali-
ties.

3.1 Related work

Although many static scheduling algorithms for parallel applications with precedence con-
straints have been proposed in the literature, e.g., [5,22,27,29–31], very few scheduling
frameworks exist. The existing frameworks mainly support a single algorithm or a very
small set of algorithms. To the best of our knowledge there is no framework that supports
the scheduling of parallel tasks with is based on a unifying programming model and includes
a variety of scheduling algorithms for homogeneous and heterogeneous platforms.

Parallax [23] is a scheduling tool that incorporates multiple scheduling heuristics. It en-
ables the comparison of the heuristics for real-world applications and parallel machines. The
input program must be given as a task graph, as in our scheduling framework. The main dif-
ference is that Parallax supports only single processor tasks, i.e., tasks that are executed on
a single processor of the target platform. Another scheduling tool for single processor tasks
is CASCH [1]. It is an integrated programming environment that reads a sequential pro-
gram (C program with annotations) and generates parallel code based on the annotations.
The sequential program is internally transformed into a task graph. Similar to SEParAT and
Parallax, it has a library of scheduling algorithms.

HyperTool [39] and PYRROS [40] are tools that automatically produce parallel code
from sequential programs. They use a scheduler internally. None of them considers parallel
applications with parallel tasks. Furthermore, these tools do not allow the adaption of the
scheduling algorithm to the needs of the application, as it is our goal. Also, they do not
provide a visualization of the produced schedules to allow a deeper analysis and comparison
by the programmer.

PARADIGM [4] and the Spar/Java-Compiler [35] are examples for parallelizing com-
pilers that consider parallel tasks with dependencies. The input of a parallelizing compiler is
a sequential program and the output is an automatically parallelized version of the sequen-
tial program. However, parallelizing compilers typically provide either no static scheduling
support or restrict the scheduling to the use of one built-in algorithm. In contrast, SEParAT
provides multiple algorithms and, thus, the most appropriate algorithm for a given schedul-
ing problem can be selected.

Another related field is Grid scheduling. A Grid can be seen as a special type of clus-
ter, that is composed of many independent loosely coupled computers or cluster systems
that are connected by a heterogeneous network. Typically, a grid middleware includes a

8

Input

Scheduling
problem

SEParAT

Software
components

Feasible
schedule

Intermediate
results

Evaluation
support

Output

Output file

Gantt-chart

Visualization

Comparison charts
Runtime
Makespan
Speedup
Processor idle time

Notation: File Software Data structure Visual output

Fig. 2 Overview of SEParAT and its interfaces. SEParAT processes a given scheduling problem and com-
putes a feasible schedule using an appropriate scheduling algorithm. Various further steps are possible.

scheduling component needed to decide which program should be executed on which part
of the Grid. Examples are Condor [36], Grasp [20], and ProActive [3]. Most of the schedul-
ing techniques on Grid systems refer to job scheduling where a job is a whole application,
independent of other jobs, and coarse-grained. In contrast, the programming model of the
proposed scheduling framework SEParAT is based on task scheduling for a single appli-
cation where the tasks have dependencies and the application is modeled as a task graph,
supporting coarse-grained as well as fine-grained parallelism. There are additional circum-
stances in Grid systems that may influence scheduling decisions, such as service level agree-
ments, accounting and billing, and security [16]. These services are irrelevant for SEParAT,
since it considers clusters and clusters of clusters.

The prediction of the runtime and performance of parallel tasks plays an important role
for scheduling, since the scheduling algorithms compute a schedule based on this cost infor-
mation. There are different approaches of performance modeling, which include analytical
modeling, simulation modeling, and measurement. In most cases a combination of the three
approaches is performed. Examples for the analytical modeling used in SEParAT are given
in [18,38].

3.2 Usage scenarios of SEParAT

SEParAT is flexible, extensible and provides a set of software components with well-defined
interfaces to allow the adaptation to a large variety of needs of parallel application program-
mers. A coarse overview of SEParAT and its interfaces is depicted in Fig. 2. The flexibility
is illustrated by a variety of usage scenarios, see Fig. 3 for an overview. The usage scenarios
can be divided into three main categories: Scheduling, Evaluation support, and Scheduling
algorithm development. In the following, these usage scenarios are described in detail.

Scheduling usage scenarios deal with the computation of a feasible schedule for a given
scheduling problem provided either by a parallel programming tool or by an application
developer.

9

(a) Execution of a single scheduling pass

Software
components

Scheduling
problem

Feasible
schedule

Output file

(b) Determination of the best schedule

Software
components

Scheduling
problem

Set of feasible
schedules

Best feasible
schedule

Selected scheduling algorithm

(c) Visualization of the scheduling process

Software
components

Scheduling
problem

Feasible
schedule

Intermediate
results

Gantt-chart

Visualization

(d) Comparison of scheduling algorithms

Software
components

Scheduling
problem

Set of feasible
schedules

Runtime
information

Evaluation
support

Comparison
charts
Runtime
Makespan
Speedup
Processor idle time

(e) Characterization of a single scheduling algorithm

Software
components

Set of
scheduling
problems

Set of feasible
schedules

Runtime
information

Evaluation
support

(f) Development of a new scheduling algorithm

Software
components

New schedul-
ing algorithm

Scheduling
problem Feasible

schedule

Is schedule
feasible?

Output file

Gantt-chart

Fig. 3 Illustration of possible usage scenarios of SEParAT.

In usage scenario (a) from Fig. 3, the parallel application programmer already knows
the scheduling algorithm that fits best his needs and provides this information as part of the
input. In usage scenario (b) from Fig. 3, the appropriate scheduling algorithm is selected
by SEParAT. In this case, the user can provide a specific criterion, e.g., the minimization
of the schedule makespan. For the determination of the best schedule, SEParAT evaluates
the structure of the given parallel application task graph and applies a single scheduling

10

algorithm or a small selection of scheduling algorithms to the scheduling problem. The best
solution found as well as the scheduling algorithm used are delivered as an output.

Evaluation support usage scenarios deal with the comparison of scheduling algorithms for
different kinds of input scheduling problems.

The usage scenario Fig. 3 (c) visualizes the layout of the schedules computed by differ-
ent scheduling algorithms and the available intermediate results. Intermediate results help to
get further insights into scheduling algorithms and to identify possible aspects for improve-
ment. Intermediate results may include the number of processors computed for each node
of the task graph before assigning the final processors, or the sets of independent nodes that
are computed when executing a layer-based scheduling algorithm, see [14].

Usage scenario (d) from Fig. 3 compares a set of scheduling algorithms by applying
them to a single scheduling problem. The resulting charts enable the analysis of the schedul-
ing performance when changing the parameters of a scheduling problem or the scheduling
algorithm and help developers to decide, which scheduling algorithm to choose for which
task graph-target platform combination. SEParAT supports the following different compar-
ison criteria: the execution time of a scheduling algorithm, the makespan of the computed
schedule, the speedup of a parallel execution over a sequential execution on one processor,
and the processor idle time of the computed schedule.

The evaluation support usage scenario Fig. 3 (e) applies a single scheduling algorithm to
a set of scheduling problems. The aim is to compare different characteristics, e.g., the exe-
cution time of the scheduling algorithm, the makespans of the computed schedules, and the
processor utilization of the computed schedules for large sets of scheduling problems. The
set of appropriate scheduling problems is generated by SEParAT for different customizable
task graph characteristics.

Scheduling algorithm development usage scenarios enable users to implement new
scheduling algorithms. The integration of new scheduling algorithms is an integral part of
SEParAT. A user-provided scheduling algorithm can then be used and evaluated like the
pre-implemented scheduling algorithms of SEParAT. An illustration of this usage scenario
is given in Fig. 3 (f).

4 Functionality of SEParAT

SEParAT exhibits a component-based structure where the components implement different
functionalities, see Fig. 4 for an overview of the structure and the steps performed in a single
scheduling pass. In the following, the functionality is described in detail. The specification
mechanisms are described in Subsect. 4.1, the internal processing and transformation is cov-
ered in Subsect. 4.2, and the user interface is described in Subsect. 4.3.

4.1 Specification mechanisms

The main interfaces of SEParAT in terms of input and output structures were chosen ac-
cording to the definition of the parallel programming model in Sect. 2. The specification
of an input scheduling problem is described in Subsect. 4.1.1 and the output produced by
SEParAT is explained in Subsect. 4.1.2.

11

User interface

Input / Ouput

Internal components

Scheduling
algorithm

library

Graph
generator

Formula
evaluator

Internal
graph

processor
Validator

Input parser Output generator

Graphical user interface Command line

Scheduling problem
Task graph

Machine description

Additional information

Feasible schedule
Output file

1

2

3
4

5

Scheduling pass Usage

Fig. 4 Functionality and organization of SEParAT. A scheduling pass consists of the following steps: 1
creation of the internal structures from the input specification, 2 transformation and simplification of the
internal structures, 3 application of a scheduling algorithm, 4 postprocessing of the computed schedule, and
5 generation of the output files. The scheduling pass is managed via the User interface.

4.1.1 Scheduling problem specification

The specification of a scheduling problem for SEParAT consists of three parts: the parallel
application task graph, the properties of the target platform, and (optional) additional infor-
mation that define parameters for a specific problem instance, e.g., the input data size of the
application to be scheduled. The independence of the task graph from the problem size and
from the number of processors is an important property for task graph models [8]. The input
in form of a task graph decouples SEParAT from specific programming languages and, thus,
enables SEParAT to cooperate with a variety of other tools.

The application task graph is specified in an input file consisting of four parts: exter-
nal parameter declarations, data type definitions, definitions of the parallel tasks, and the
specification of a distinguished complex parallel task that represents the entire application.
An example is shown in Fig. 5. The external parameters declared in lines 1-3 are provided
either in the machine description or in the additional information input files. The data types
of the input and output parameters of the parallel tasks are defined in lines 5-9. Each data
type has one or more data distribution types. SEParAT supports a predefined set of regu-
lar data types, e.g., arbitrary multi-dimensional arrays, and regular data distribution types,
such as block-cyclic distributions. The parallel tasks are defined by specifying a set of input
and output parameters with the corresponding data types and a set of implementation vari-
ants. Each implementation variant defines the data distribution types of the parameters of
the corresponding parallel task. Implementations of basic parallel tasks additionally contain

12

1 <!-- definition of external parameters -->
2 <ProblemParam Name="n" DefaultValue="1024"/>
3 <MachineParam Name="t_C"/> <!-- computing power -->
4

5 <!-- data type and data distribution type definitions -->
6 <DataType Name="myMatrix" DataType="matrix"
7 C-Type="double" Dimension="2" Size="n;n">
8 <DataDistrib Name="block" Description="BLOCK"/>
9 </DataType>

10

11 <!-- example for a basic parallel task definition -->
12 <Module Name="myNode" Id="1">
13 <Param Name="in" Id="1" Type="myMatrix"/>
14 <Param Name="out" Id="2" Type="myMatrix"/>
15 <Implementation Name="module1_block" Id="1">
16 <Distrib ParamRef="1" Type="block"/>
17 <Distrib ParamRef="2" Type="block"/>
18 <BasicModule>
19 <Runtime Formula="T_par(p,n,t_C)=0.1*t_C*n^2
20 +(0.9*t_C*n^2)/p"/>
21 </BasicModule>
22 </Implementation>
23 </Module>
24

25 <!-- example for a complex parallel task definition -->
26 <Module Name="task graph" Id="2">
27 <Param Name="in" Id="1" Type="myMatrix"/>
28 <Param Name="out" Id="2" Type="myMatrix"/>
29 <Implementation Name="main impl" Id="1">
30 <Distrib ParamRef="1" Type="block"/>
31 <Distrib ParamRef="2" Type="block"/>
32 <ComplexModule>
33 <!-- nodes of the task graph -->
34 <StartNode Name="entry" Id="1"/>
35 <Node Name="myNode#1" Id="2" ModuleRef="1"/>
36 <StopNode Name="exit" Id="3"/>
37 <!-- edges of the task graph -->
38 <Edge Id="1" SourceNodeId="1" SourceParamId="1"
39 TargetNodeId="2" TargetParamId="1"/>
40 <Edge Id="2" SourceNodeId="2" SourceParamId="2"
41 TargetNodeId="3" TargetParamId="2"/>
42 </ComplexModule>
43 </Implementation>
44 </Module>
45

46 <!-- definition of the root complex parallel task -->
47 <MainModule ModuleRef="2"/>

Fig. 5 Example for an input file describing a parallel application task graph.

a symbolic runtime formula that defines the execution time depending on the number of
processors p, see lines 18-21. Lines 32-42 show the implementation of a complex parallel
task that contains an application task graph consisting of a set of nodes and a set of edges.
Each node refers to a parallel task defined in the input and each edge connects an output
parameter of the source node with an input parameter of the target node.

The properties of a homogeneous platform are provided in form of constants, e.g., the
time needed to execute an arithmetic operation, and functions, e.g., the time required to

13

1 <!-- specification of the homogeneous subclusters -->
2 <Machines>
3 <Machine Id="0" Name="Subcluster1" Processors="8">
4 <Constant Name="t_C" Value="6.9E-8"/>
5 <Constant Name="t_S" Value="2.0E-6"/>
6 <Constant Name="t_B" Value="1.2E-9"/>
7 <Function Name="t_sendrecv"
8 Formula="t_sendrecv(n,t_S,t_B) = t_S + t_B * n"/>
9 </Machine>

10 <Machine Id="1" Name="Subcluster2" Processors="16">
11 <!-- properties of Subcluster2 -->
12 </Machine>
13 </Machines>
14

15 <!-- specification of the interconnections between
16 the subclusters -->
17 <MachineConnections>
18 <Connection Endpoint1="0" Endpoint2="1">
19 <Constant Name="t_S1" Value="0.000002"/>
20 <Constant Name="t_S2" Value="0.000004"/>
21 <Constant Name="t_B" Value="0.0000000012"/>
22 </Connection>
23 </MachineConnections>

Fig. 6 Example for the specification of a parallel platform.

1 <ProblemParamDesc>
2 <!-- problem size -->
3 <Constant Name="n" Value="1024"/>
4 </ProblemParamDesc>

Fig. 7 Example for an input file providing additional information.

execute a broadcast operation depending on the number of participating processors and the
amount of data to be transmitted. A heterogeneous platform specification consists of a set of
definitions of homogeneous platforms and the definition of the communication performance
of the interconnection between each pair of homogeneous subclusters. An example for the
specification of a heterogeneous platform consisting of two homogeneous subclusters is
shown in Fig. 6.

The additional information is provided in a third input file. This file consists of a collec-
tion of user-defined constants and functions that may be used in the data types and symbolic
runtime formulas specified with the application task graph. An example for such an input
file is given in Fig. 7. SEParAT combines the information given in the task graph specifica-
tion and in the additional information input file into an annotated task graph that is used in
further processing steps.

4.1.2 Output structure of SEParAT

The output of SEParAT is given in a file output as well as a visual output. The file output
contains a feasible schedule for a specific application on a specific target platform. The
schedule produced can be processed by other tools, e.g., to execute the parallel tasks on
the specified platform, or to generate coordination code that controls the execution of the
parallel application. Prior to producing the output file an optional validation step can be

14

1 <Schedule Id="2" Makespan="0.0287">
2 <DataRedistribution Id="1" Name="E(1)[1->2]"
3 StartTime="0.0" FinishTime="0.00519">
4 <SourceProcessorGroup>1 2 3 4 5 6 7 8
5 </SourceProcessorGroup>
6 <TargetProcessorGroup>1 2 3 4</TargetProcessorGroup>
7 </DataRedistribution>
8 <ModuleCall Id="2" Name="myNode#1" ModuleRef="1"
9 ImplementationRef="1"

10 StartTime="0.00519" FinishTime="0.0287">
11 <ProcessorGroup>1 2 3 4</ProcessorGroup>
12 </ModuleCall>
13 </Schedule>

Fig. 8 Example for a schedule produced by SEParAT.

performed. For each node and data dependency edge, the output file contains the following
information: the start time of the node or data dependency edge, the processor group(s) on
which the node or data dependency edge is executed, the finish time of the node or data
dependency edge, and the module variant of each node that should be used when executing
the parallel application.

An example is shown in Fig. 8. Lines 2-7 contain a data re-distribution operation that
transfers data from processor group {1,. . . ,8} to processor group {1,2,3,4} in the time in-
terval from 0.0 to 0.00519. Lines 8-12 define the execution of the node myNode#1 on pro-
cessor group {1,2,3,4} from time 0.00519 to time 0.028704. It has a type of myNode
(ModuleRef=1) and its module variant module1 block (ImplementationRef=1) is used. The
ModuleRef and ImplementationRef refer to the Id specified in the module definition and
the implementation definition, respectively, in the input file, see Fig. 5.

When running SEParAT as a stand-alone application, visual output is also possible and
includes a computed schedule as Gantt-chart, intermediate results, e.g., the layered task
graph of layer-based scheduling algorithms [14], or comparison charts. This is important to
track the scheduling process and to identify performance bottlenecks.

4.2 Internal processing and transformation steps

SEParAT provides internal mechanisms to compute a feasible schedule for a given schedul-
ing problem, and to validate computed schedules. Also, large sets of scheduling problems
for the comparison and analysis of scheduling algorithms can be created.

4.2.1 Formula evaluation

The formula evaluator handles the symbolic runtime formulas used to define computation
and communication costs. This component stores all formulas, variables, and constants of
the scheduling problem and provides support for the verification, simplification, and evalu-
ation of formulas.

4.2.2 Graph generation

SEParAT provides support for the creation of synthetic scheduling problems with user-
defined parameters. These parameters can influence the structure of the task graph, the

15

in-tree out-treeseries-parallelarbitrary dag

Fig. 9 Graph structures supported by SEParAT. If the graph structure in-tree (out-tree) is chosen, an extra
entry node (exit node) is added to generate a valid task graph.

amount of module variants created, and the cost model used. As graph structures series-
parallel graphs, in-trees, out-trees, and arbitrary directed acyclic graphs (dags) are supported,
see Fig. 9. Series-parallel graphs are a common representation of parallel applications con-
sisting of sequential and parallel parts. The tree structures represent divide-and-conquer al-
gorithms where the control flow proceeds bottom-up (in-tree) or top-down (out-tree). Each
graph structure can be parameterized with the number of dependencies to create and the
information whether to prefer flat or deep task graphs.

The cost models supported by SEParAT include unit costs (identical costs for all parallel
tasks), table costs (the costs are read from a predefined table) and random costs (the costs
are completely random). Additionally, there are two more sophisticated models:

– In Amdahl’s model the computation costs are defined using the formula

Tpar(P) = α ∗Tsequ +(1−α)∗
Tsequ

P

where Tpar(P) is the parallel execution time of a parallel task on P processors, α is
the sequential fraction of the parallel task, and Tsequ is the sequential execution time of
the parallel task. The sequential fraction and the sequential execution time are selected
randomly inside a user-defined range.

– In the model used in [28,19], three different types of computation with different com-
putational complexities are considered; image processing (b ∗ n), array sorting (b ∗ n ∗
log(n)) and matrix-matrix multiplication (b ∗ n

3
2). The parameter b is picked randomly

from a user-defined range. The value n is determined by the data sizes of the input pa-
rameters. The sequential execution time is computed by multiplying the resulting values
with the inverse of the flop rate of the parallel target platform. The parallel execution
time is computed via Amdahl’s model and a random sequential fraction for each paral-
lel task.

4.2.3 Graph transformation

Internally, SEParAT transforms an annotated task graph that was either built up from input
files or generated randomly into a simple task graph, which is then the input of the schedul-
ing algorithm library. The simple task graph is flat, i.e., it contains only basic parallel tasks

16

Internal graph processor

Annotated
task graph

Annotated
task graphs

Selected
Annotated
task graph

Simple
task graph1

2a

2b

3

Graph generator

Input parser
Scheduling
algorithm

library

Fig. 10 Transformation of an annotated task graph into a simple task in four steps: (1) removal of hierarchies,
(2a and 2b) selection of a specific module variant for each parallel task, and (3) creation of the simple task
graph.

with dependencies, and defines a single module variant for each parallel task. The processing
steps performed are illustrated in Fig. 10.

First, the hierarchies of an annotated task graph are removed by a recursive algorithm
that runs over the nodes of the annotated task graph. When the algorithm encounters a com-
plex node, it first handles the node recursively, and afterwards replaces the node with the
corresponding task graph (excluding the entry and the exit nodes). The edges are adjusted
accordingly.

Step (2a) converts the resulting flat task graph into a set of annotated task graphs such
that each node has only a single module variant. This step assumes that the same module
variant is used for all parallel tasks with the same type. Based on this assumption, all possible
combinations of module variants for parallel tasks with different types are considered. Since
an application usually contains only a small number of different parallel tasks, the number
of task graphs constructed is reasonable.

Afterwards, one of the annotated task graphs is selected based on a user-defined criterion
(2b). Examples for such a criterion are to use the smallest execution time of each node’s
module variant on one processor, or to determine the best matching for the data distributions
of data dependent nodes. At last, step (3) creates the simple task graph by computing the data
re-distribution costs for the data dependency edges based on the module variants chosen.

4.2.4 Scheduling algorithm library

The scheduling algorithm library of SEParAT provides a set of 16 scheduling algorithms
for homogeneous parallel machines as well as heterogeneous parallel machines. Additional
user-defined scheduling algorithms can be added to the library.

Four categories of scheduling algorithms are provided for homogeneous parallel target
platforms: basic algorithms, allocation-and-scheduling-based algorithms, layer-based algo-
rithms, and configuration-based algorithms, see also the overview given in Sect. 2. The
two basic algorithms Data and Task compute a pure data parallel schedule, or a sched-
ule where each parallel task is restricted to run on a single processor, respectively. These
algorithms can be used to show the benefit of a mixed parallel execution. Allocation-
and-scheduling-based algorithms are CPA [30], CPR [29], TSAS [31], and the approxi-
mation algorithms [22] and [21]. The allocation phase and the scheduling phase are imple-
mented separately, see Fig. 11 (top) for an illustration. Layer-based algorithms are TwoL-
Level [32], TwoL-Tree [33], Approx-2 [24], Approx-

√
3 [25], and Approx- 3

2 [26]. These al-

17

Scheduling algorithm library

Choose heuris-
tics for list
scheduling

Scheduling algorithm library

Choose way
to build lay-
ers

Apply Move-
blocks?

Allocation-and-scheduling-based algorithms

Simple
task graph

Internal
machine
description

Allocation phase

Scheduling phase

Feasible
Schedule

(CPR)

Layer-based algorithms

Simple
task graph

Internal
machine
description

Simplify
task graph

Determine
layers Schedule

layers

Combine
layer
schedules Feasible

Schedule

Notation: Data structure Scheduling algorithm step

Application of optimization Software component

Fig. 11 Phases executed by allocation-and-scheduling-based algorithms (top) and layer-based algorithms
(bottom). The phases where an optimization can be applied are highlighted in red.

gorithms proceed in four steps, see Fig. 11 (bottom). Configuration-based algorithms use
predefined configurations of processors to schedule the task graph in a single step [7]. To
achieve good results the definition of the configurations is important. In SEParAT, the con-
figurations can be specified based on fractions of the number of available processors. The
fifth category of scheduling algorithms consists of algorithms designed for heterogeneous
target platforms. The algorithms H-CPA [27], M-HEFT1 [9], and M-HEFT2 [9] belong to
this category.

SEParAT supports various optimizations and fine tunings of the scheduling algorithms
implemented, see Fig. 11. The scheduling phase of the allocation-and-scheduling-based al-
gorithms is based on a modified list scheduling algorithm that uses a priority function defin-
ing the order in which the parallel tasks are scheduled. SEParAT supports different priority
functions for this step, e.g., smallest or largest execution time first, earliest possible start time
first, smallest bottom/top level first, and largest number of successors first. For layer-based
scheduling algorithms there are two optimizations implemented. First, the decomposition of
the task graph into layers of independent parallel tasks can be influenced by the restriction
of the number of nodes per layer and the selection of a decomposition heuristic. The second
optimization is the application of the algorithm Move-blocks [19], which is able to reduce
the makespan of layer-based scheduling algorithms by a smart combination of the schedules
computed for each layer into the final schedule for the entire task graph.

4.2.5 Validation

SEParAT supports the validation of computed schedules and, thus, helps to ensure the cor-
rect execution of user-implemented scheduling algorithms. The validation process also gath-
ers information that help developers to get further insights into the schedules computed.

18

These information include the overall number of data re-distributions, the total costs for the
data re-distribution operations, the number of consecutive parallel tasks that are executed on
the same processor group, and the communication to computation ratio.

4.3 User interface

The user interface allows a direct interaction with SEParAT (graphical user interface) or
the automated execution of the scheduling process (command line interface). The graphi-
cal user interface controls the input and output, and displays the annotated task graph, the
internal machine description as well as additional information. Intermediate results, com-
puted schedules, validation results of computed schedules, and comparison charts can also
be visualized.

Figure 12 shows some aspects that are covered by the graphical user interface. An an-
notated task graph as it is created from the input specification is shown in Fig. 12 (a). A
layered task graph, which is an intermediate result of a layer-based scheduling algorithm, is
shown in Fig. 12 (b). Inner nodes of the task graph with the same color belong to one layer.
Figure 12 (c) shows a computed schedule with unit scale time axis. The schedule contains
data re-distribution operations (green) and activations of parallel tasks (yellow tones for the
first layer, and gray tones for the second layer). The unit time scale allows the visualization
of schedules with highly varying execution times by considering the start time and finish
time of node and edge executions as discrete events. An example for a comparison chart is
given in Fig. 12 (d) using five scheduling algorithms (from left to right: Task, Data, CPA,
TwoL-Level, and Approx-2). The scheduling algorithms have been applied to a generated
task graph with 50 nodes and a homogeneous parallel machine with 16 processors. SEParAT
also supports the comparison of the optimizations applied to the scheduling algorithms by a
suitable visualization.

The command line interface of SEParAT is intended for an automated execution, e.g.,
for the cooperation with external tools or for running benchmarks. In this case, SEParAT
is controlled via two files. The first file includes configuration options for the scheduling
algorithm to be used, e.g., the optimizations that should be used. An example is shown
in Fig. 13. The second file specifies the input and output, e.g., the set of input files for a
benchmark run. A simplified example is shown in Fig. 14. The information provided lead
to benchmarks for task graphs with 100 to 1000 nodes with a step size of 100. For each
number of nodes 400 different task graphs are considered, which are read from the directory
workspace/testSet ALL extended format.
The considered target platforms comprise 8 to 32 processors with a step size of 8. The results
are stored to the file test.out.

5 Experimental evaluation

In this section, different aspects of SEParAT are evaluated. The aspects covered in Sub-
sect. 5.1 are the time needed to read in different types of scheduling problems, the memory
consumption of the internal graph data structures, and the execution time of a scheduling
pass for two scheduling algorithms. Results concerning the scheduling algorithms are given
in Subsect. 5.2.

Benchmark results were obtained by compiling SEParAT with Java 1.6.0 20 (64 bit
version) and running it on an AMD Opteron Dual-Core “Egypt” system clocked at 1.8 GHz

19

(a)

(b)

(c)

(d)

Fig. 12 Examples of the display in the graphical user interface of SEParAT: (a) an annotated task graph,
(b) a layered task graph, which is an intermediate result of layer-based scheduling algorithms, (c) a schedule
with unit scale time axis, and (d) a makespan comparison chart.

20

1 # select a layer-based algorithm (category 1 out of 5)
2 algorithmCategory=1
3 # select algorithm TwoL-Level (algorithm 10 out of 16)
4 algorithm=10
5 # enable the computation of data re-distribution costs
6 considerRedistributionCosts=true
7 # construct layers based on a topological sort
8 # (layerBuilder 1 out of 4)
9 layerBuilder=1

10 # Combine layer schedules with the Move-blocks algorithm
11 moveBlocks=true

Fig. 13 Example for the specification of scheduling algorithm options.

1 graphsPerNodeNumber=400
2 nodesFrom=100
3 nodesStep=100
4 nodesTo=1000
5 outputFileName=test.out
6 procsFrom=8
7 procsStep=8
8 procsTo=32
9 testSetDir=workspace/testSet_ALL_extended_format

Fig. 14 Example for the specification of benchmarking options.

and 4 GiB RAM. The task graphs were synthetic task graphs generated by SEParAT. The
graph type was chosen as series-parallel graph and the runtime model was based on the
model in [28]. The number of nodes in a task graph ranged from 50 to 1000. For each
number of nodes, 400 different task graphs were created and the arithmetical mean was
computed and reported in the following figures.

5.1 Evaluation of SEParAT

The following results show that the overhead in terms of time and memory is small when
using the framework SEParAT. Figure 15 shows the time needed to read in generated task
graphs with different numbers of module variants for the nodes. The maximum number of
module variants per node was set to three. The fraction of module variants was set to 0.1,
0.5, and 0.9 resulting in task graphs where each 10th, 2nd and almost all nodes had more
than one module variant. The time needed to read in the task graphs is linear in the number
of nodes. The results show that reading in task graphs is fast. For task graphs with 1000
nodes and a high fraction of module variants it took less than one second.

Figure 16 shows the memory consumption for the annotated task graphs (top) and sim-
ple task graphs for the homogeneous case (bottom left) as well as the heterogeneous case
(bottom right). The task graphs considered were generated with a fraction of module variants
of 0.5 and at most three module variants per node were created. The size of the input files of
the parallel application task graphs ranged from 0.1 MByte in average for task graphs with
100 nodes to 1.13 MByte in average for task graphs with 1000 nodes.

The memory consumption for the annotated task graphs was small with at most 3.24
MByte in average for graphs with 1000 nodes. The transformation of an annotated task
graph into a simple task graph selects a single module variant for each parallel task and

21

50 150 300 500 750 1000
0

0.25

0.5

0.75

1

number of nodes per task graph

tim
e

in
se

co
nd

s

Input Reader

sp mv0.1 sp mv0.5
sp mv0.9

Fig. 15 Time needed to read in generated task graphs of type series-parallel graph. The task graphs comprise
nodes with a low (sp mv0.1), a medium (sp mv0.5), and a high (sp mv0.9) fraction of module variants.

removes information on the input and output parameters of the parallel tasks. The memory
usage of a simple task graph depends on the type of target platforms. For homogeneous
target platforms, the cost information is stored in a lookup table of size P×N where P is
the number of processors of the platform and N is the number of nodes in the task graph.
As a consequence, the memory consumption depends also on the number of processors,
see Fig. 16 (bottom left). SEParAT does not construct such a cost table for heterogeneous
platforms and, thus, the amount of memory used is smaller than for homogeneous platforms
and independent from the number of processors, see Fig. 16 (bottom right). The maximum
memory consumption measured was 4.07 MByte for a simple task graph with 1000 nodes
on a homogeneous platform with 512 processors.

Figure 17 shows the time needed to execute an entire scheduling pass for the scheduling
algorithms Task and CPA. A scheduling pass comprises the parsing of the input file, the in-
ternal transformations, the scheduling, and the generation of an output file. The task graphs
consisted of 100 to 1000 nodes with a step size of 100. Homogeneous target platforms with
a low number of processors (8 and 32), a medium number of processors (128), and a high
number of processors (512) were used. The scheduling algorithm Task is based on a very
simple mechanism and, thus, mainly reflects the overhead resulting from the handling of the
input and output files, and the creation of the internal data structures. For a low number of
processors the execution time of the scheduling pass was small and resulted in execution
times between 150 milliseconds (100 nodes, 8 processors) and 1.55 seconds (1000 nodes,
32 processors). In average, the time to execute the scheduling pass took approximately 750
milliseconds for both numbers of processors. For larger parallel target platforms the exe-
cution time was 818 milliseconds (medium number of processors) and 1052 milliseconds
(high number of processors) in average.

The scheduling algorithm CPA uses a more sophisticated mechanism to compute the
schedules. However, for small numbers of processors the execution time of the scheduling

22

200 400 600 800 1,000
0

1

2

3

4

number of nodes per task graph

m
em

or
y

co
ns

um
pt

io
n

in
M

B
yt

e

Annotated task graph

P=8
P=32
P=128
P=512

200 400 600 800 1,000

1

2

3

4

number of nodes per task graph

m
em

or
y

co
ns

um
pt

io
n

in
M

B
yt

e

Simple task graph (homogeneous)

P=8
P=32
P=128
P=512

200 400 600 800 1,000

0.05

0.1

0.15

number of nodes per task graph

Simple task graph (heterogeneous)

P=8
P=32
P=128
P=512

Fig. 16 Memory consumption of the graph data structures depending on the number of nodes per task graph
and on the number of processors of a parallel target platform.

pass is similar to that of the scheduling algorithm Task. This result shows that for small num-
bers of processors the overhead for additional operations beside the scheduling prevails. For
a higher number of processors the time needed for executing the scheduling algorithm CPA
became much higher. On a medium number of processors the execution of the scheduling
pass took 921 milliseconds in average and for a high number of processors it took 2075 mil-
liseconds. This shows that the impact of the overhead of the additional operations becomes
less relevant when considering large parallel target platforms. Nevertheless, the time needed
to execute the scheduling pass is reasonable for static scheduling, since usually the sched-
ule is computed only once and used for several executions of the mixed parallel application
afterwards.

23

Execution time scheduling pass

200 400 600 800 1000

1

2

3

4

5

number of nodes per task graph

av
er

ag
e

ru
nt

im
e

in
se

co
nd

s

Task

P=8
P=32
P=128
P=512

200 400 600 800 1000

1

2

3

4

5

number of nodes per task graph

CPA

Fig. 17 Execution time of a scheduling pass for the scheduling algorithms Task and CPA. Task graphs with
100 to 1000 nodes were considered and schedules for homogeneous target platforms with 8, 32, 128, and 512
processors were computed.

5.2 Comparison of scheduling algorithms

In the following, a comparison of selected scheduling algorithms for homogeneous parallel
machines in terms of executions time and makespans of the schedules computed is pre-
sented. The comparison uses the algorithms Task, Data, CPA, TSAS, TwoL-Level, Approx-
2, and OneStep without any optimizations. For the benchmarks, 400 different series-parallel
task graphs have been created for each number of nodes in the range from 50 to 350 with a
step size of 50. The arithmetical mean of the results for each number of nodes is reported.

Figure 18 shows the runtimes of the scheduling algorithms for homogeneous target plat-
forms with 8, 128, and 512 processors. For all scheduling algorithms, the runtime increases
with an increasing number of nodes per task graph and fixed number of processors. Except
for TSAS and OneStep, the runtime also increases with an increasing number of processors
and a fixed number of nodes. The runtime of TSAS mainly depends on the convergence rate
of the convex optimization problem that has to be solved in the allocation step.

The results show that the simple algorithms Data and Task have the lowest runtimes.
The scheduling algorithm Task needed between 9.5 milliseconds (8 processors) and 15.3
milliseconds (512 processors) in average. The scheduling algorithm Data needed between
9.4 milliseconds (8 processors) and 32.2 milliseconds (512 processors) in average. The
layer-based algorithms TwoL-Level and Approx-2 needed approximately the same time to
compute a schedule. The reason is the overhead of the phases (i), (ii), and (iv) that are iden-
tical for all layer-based algorithms. Both scheduling algorithms were just slightly slower
compared to the simple algorithms. With average runtimes between 22.4 milliseconds and
91.9 milliseconds (TwoL-Level) and between 22.8 milliseconds and 103.7 milliseconds

24

50 100 150 200 250 300 350

1

10

100

1000

10000

100000

number of nodes per task graph

ru
n
ti
m
e
in

m
il
li
se
co
n
d
s

Number of processors = 8

50 100 150 200 250 300 350

number of nodes per task graph

Number of processors = 128

50 100 150 200 250 300 350

number of nodes per task graph

Number of processors = 512

Data Task
CPA TSAS

TwoL-Level Approx-2

Onestep

Fig. 18 Runtimes of the scheduling algorithms for task graphs with 50 up to 350 nodes and homogeneous
target platforms with 8, 128, and 512 processors.

(Approx-2) they were still fast. The allocation-and-scheduling-based algorithms CPA and
TSAS require the highest runtime. Although CPA is competitive for target platforms with 8
processors its performance decreases considerably with an increasing number of processors.
The scheduling algorithm TSAS was extremely slow. The average runtime ranges from 16.5
seconds (8 processors) to 25.8 seconds (128 processors). The runtime of the configuration-
based algorithm OneStep was the second highest when the number of processors of the
target platform was 8. For target platforms with 128 and 512 processors, the runtime of
OneStep was similar to that of the simple algorithms.

Figure 19 shows the makespan of the computed schedules for homogeneous target plat-
forms with 8, 128, and 512 processors. The results show that the makespan increases when
the number of nodes per task graph increases and drops when the number of processors is
increased. An exception is CPA where the makespan increases when the number of proces-
sors of the target platform is increased from 128 to 512. This is due to the relatively simple

25

50 100 150 200 250 300 350

1000

2000

3000

4000

5000

6000

7000

number of nodes per task graph

m
a
k
es
p
a
n
in

se
co
n
d
s

Number of processors = 8

50 100 150 200 250 300 350
number of nodes per task graph

Number of processors = 128

50 100 150 200 250 300 350
number of nodes per task graph

Number of processors = 512

Data Task

CPA TSAS

TwoL-Level Approx-2

Onestep

Fig. 19 Makespan of the computed schedules for task graphs with 50 up to 350 nodes and target platforms
with 8, 128, and 512 processors.

approach used to determine the number of processors for each node, see also [5] which pro-
poses an improvement for this behavior.

The disadvantage of the algorithms Data and Task is the only slight improvement when
the target platform was changed from 128 to 512 processors. The makespans produced by
OneStep are also much higher than that of the allocation-and-scheduling algorithms and the
layer-based algorithms. This may be improved with a scheduling problem specific way to
build the configurations.

The layer-based algorithms produce very good makespan results. For a target platform
with 8 processors, TwoL-Level creates the lowest makespan followed by Approx-2. For tar-
get platforms with 128 and 512 processors, only TSAS computes schedules with a lower
makespan. The average makespan of the schedules computed by TSAS for a target platform
with 512 processors is 479 seconds. In contrast, the average makespan of the simple algo-

26

rithms Data and Task is 1791 seconds and 2843 seconds, respectively. This illustrates the
improvement capabilities when choosing an appropriate scheduling algorithm.

The computation of a feasible schedule with minimal makespan depends highly on the
scheduling problem and the scheduling algorithm chosen. As can be seen from the run-
time and makespan results the algorithm that computes the best result varies. Although,
allocation-and-scheduling-based algorithms compute very good schedules they need much
more time to execute the scheduling process. The layer-based algorithms have shown to
compute competitive schedules with a comparatively low runtime for the synthetic task
graphs considered.

6 Conclusion

The computation of schedules that allow an efficient execution of parallel application task
graphs is a crucial point when dealing with large mixed parallel applications. The support
by a scheduling environment enables developers to avoid the error-prone and complex de-
termination of such a schedule by hand. In this article, we have proposed SEParAT, which
is a flexible scheduling framework offering a large variety of features needed when solv-
ing scheduling problems. The fully automated execution allows the usage of SEParAT as
additional component for other parallel programming tools that include a scheduling step.
The user driven execution allows the analysis of scheduling algorithm behavior for given
scheduling problems. The design of the component-based software-architecture provides
the benefit to extend/substitute components and to use the components within other tools.
The key component of SEParAT is the scheduling algorithm library for homogeneous as
well as heterogeneous target platforms. The application of different optimizations to the
scheduling algorithms is a new feature.

A detailed evaluation of SEParAT has shown that SEParAT allows fast scheduling with-
out adding a significant overhead and that it is applicable to large parallel application task
graphs. A selection of the scheduling algorithms has been compared in terms of the runtime
of the scheduling algorithms and the parallel execution time of the computed schedules. The
results show that the mixed parallel approach outperforms a pure data and a pure task parallel
execution. However, the results also show that the selection of an advantageous scheduling
algorithm for a parallel application task graph depends on both the specific parallel appli-
cation and target platform and, thus, is a tedious process. As a consequence, support by
SEParAT is especially valuable in these cases.

Acknowledgements This project was supported by Deutsche Forschungsgemeinschaft (DFG) grants
RU591/9-1 and RU591/9-2.

References

1. I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu. Casch: A tool for computer-aided scheduling. IEEE
Concurrency, 8:21–33, 2000.

2. A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman. LogGP: Incorporating long messages
into the LogP model for parallel computation. Journ. of Parallel and Distr. Computing, 44(1):71–79,
1997.

3. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici. Grid Computing:
Software Environments and Tools, chapter Programming, Deploying, Composing, for the Grid, pages
205 – 229. Springer-Verlag, January 2006.

27

4. P. Banerjee, J. Chandy, M. Gupta, E. Hodge, J. Holm, A. Lain, D. Palermo, S. Ramaswamy, and E. Su.
The Paradigm Compiler for Distributed-Memory Multicomputers. IEEE Comp., 28(10):37–47, 1995.

5. S. Bansal, P. Kumar, and K. Singh. An improved two-step algorithm for task and data parallel scheduling
in distributed memory machines. Parallel Computing, 32(10):759–774, 2006.

6. K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, and J.C. Sancho. Using Performance
Modeling to Design Large-Scale Systems. IEEE Computer, 42(11):42–49, 2009.

7. V. Boudet, F. Desprez, and F. Suter. One-step algorithm for mixed data and task parallel scheduling
without data replication. In IPDPS ’03: Proc. of 17th Int. Symp. on Parallel and Distr. Processing, page
41.2. IEEE Comp. Society, 2003.

8. J. Cao, A. T. Chan, Y. Sun, S. K. Das, and M. Guo. A taxonomy of application scheduling tools for high
performance cluster computing. Cluster Computing, 9(3):355–371, 2006.

9. H. Casanova, F. Desprez, and F. Suter. From Heterogeneous Task Scheduling to Heterogeneous Mixed
Parallel Scheduling. In Marco Danelutto, Domenico Laforenza, and Marco Vanneschi, editors, Proc.
of 10th Int. Euro-Par Conf. (Euro-Par’04), volume 3149 of LNCS, pages 230–237, Pisa, Italy, Au-
gust/September 2004. Springer.

10. D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel computation. In Principles Practice of Parallel
Programming, pages 1–12, 1993.

11. J. Du and J.Y.-T. Leung. Complexity of Scheduling Parallel Task Systems. SIAM Journal on Discrete
Mathematics, 2(4):473–487, 1989.

12. J. Dümmler, R. Kunis, and G. Rünger. A Comparison of Scheduling Algorithms for Multiprocessor-
tasks with Precedence Constraints. In Proc. of the 2007 High Performance Computing & Simulation
(HPCS’07) Conference, pages 663–669. ECMS, 2007.

13. J. Dümmler, R. Kunis, and G. Rünger. A Scheduling Toolkit for Multiprocessor-Task Programming with
Dependencies. In Proc. of the 13th International Euro-Par Conference, volume 4641 of LNCS, pages
23–32. Springer, 2007.

14. J. Dümmler, R. Kunis, and G. Rünger. Layer-Based Scheduling Algorithms for Multiprocessor-Tasks
with Precedence Constraints. In Parallel Computing: Architectures, Algorithms and Applications: Proc.
of the Int. Conf. ParCo 2007, volume 15 of Advances in Parallel Computing, pages 321–328. IOS Press,
2007.

15. J. Dümmler, T. Rauber, and G. Rünger. A Transformation Framework for Communicating
Multiprocessor-Tasks. In Proc. of the 16th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP ’08), pages 64–71. IEEE, 2008.

16. E. Frachtenberg and U. Schiegelshohn. New Challenges of Parallel Job Scheduling. In Eitan Frachten-
berg and Uwe Schwiegelshohn, editors, Proceedings of the 13th Job Scheduling Strategies for Parallel
Processing, volume 4942 of Lecture Notes in Computer Science (LNCS), pages 1–23. Springer, April
2008.

17. M. Hill, W. McColl, and D. Skillicorn. Questions and Answers about BSP. Scientific Programming,
6(3):249–274, 1997.

18. M. Kühnemann, T. Rauber, and G. Rünger. Performance modelling for task-parallel programs. Perfor-
mance Analysis and Grid Computing, pages 77–91, 2004.

19. R. Kunis and G. Rünger. Optimizing layer-based scheduling algorithms for parallel tasks with depen-
dencies. Concurrency and Computation: Practice and Experience, 23(8):827–849, 2011.

20. O.-K. Kwon, J. Hahm, S. Kim, and J. R. Lee. Grasp: A grid resource allocation system based on ogsa.
In 13th Int. Symp. on High-Performance Distr. Comp., pages 278 – 279, 2004.

21. R. Lepere, G. Mounie, and D. Trystram. An approximation algorithm for scheduling trees of malleable
tasks. European Journ. of Operational Research, 142:242–249, 2002.

22. R. Lepere, D. Trystram, and G.J. Woeginger. Approximation algorithms for scheduling malleable tasks
under precedence constraints. Int. Journ. of Foundation of Comp. Sci., 13(4):613–627, 2002.

23. T. Lewis and H. El-Rewini. Parallax: A tool for parallel program scheduling. IEEE Parallel Distr.
Technol., 1(2):62–72, 1993.

24. W. Ludwig and P. Tiwari. Scheduling Malleable and Nonmalleable Parallel Tasks. In SODA ’94: Proc.
of 5th annual ACM-SIAM Symp. on Discrete Algorithms, pages 167–176. SIAM, 1994.

25. G. Mounie, C. Rapine, and D. Trystram. Efficient approximation algorithms for scheduling malleable
tasks. In SPAA ’99: Proc. of 11th annual ACM Symp. on Parallel algorithms and architectures, pages
23–32. ACM Press, 1999.

26. G. Mounie, C. Rapine, and D. Trystram. A 3
2 -Approximation Algorithm for Scheduling Independent

Monotonic Malleable Tasks. SIAM Journ. on Computing, 37(2):401–412, 2007.
27. T. N’Takpe and F. Suter. Critical Path and Area Based Scheduling of Parallel Task Graphs on Hetero-

geneous Platforms. In Proc. of 12th Int. Conf. on Parallel and Distr. Syst. (ICPADS06), pages 3–10,
Washington, DC, USA, 2006. IEEE Comp. Society.

28

28. T. N’Takpe, F. Suter, and H. Casanova. A Comparison of Scheduling Approaches for Mixed-Parallel
Applications on Heterogeneous Platforms. In Proc. of 6th Int. Symp. on Parallel and Distr. Computing
(ISPDC ’07), pages 35–42. IEEE Comp. Society, 2007.

29. A. Radulescu, C. Nicolescu, A.J.C. van Gemund, and P. Jonker. CPR: Mixed Task and Data Parallel
Scheduling for Distributed Systems. In Proc. of 15th Int. Parallel & Distr. Processing Symp. (IPDPS01),
pages 39–48. IEEE Comp. Society, 2001.

30. A. Radulescu and A.J.C. van Gemund. A Low-Cost Approach towards Mixed Task and Data Parallel
Scheduling. In Proc. of 2001 Int. Conf. on Parallel Processing, pages 69–76. IEEE Comp. Society, 2001.

31. S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A framework for exploiting task and data parallelism on
distributed memory multicomputers. IEEE Trans. Parallel Distr. Syst., 8(11):1098–1116, 1997.

32. T. Rauber and G. Rünger. Compiler Support for Task Scheduling in Hierarchical Execution Models.
Journ. Syst. Archit., 45(6-7):483–503, 1998.

33. T. Rauber and G. Rünger. Scheduling of Data Parallel Modules for Scientific Computing. In Proc. of 9th
SIAM Conf. on Parallel Processing for Scientific Computing (PPSC). SIAM, 1999.

34. T. Rauber and G. Rünger. A Transformation Approach to Derive Efficient Parallel Implementations.
IEEE Transactions on Software Engineering, 26(4):315–339, 2000.

35. H.J. Sips and K. van Reeuwijk. An Integrated Annotation and Compilation Framework for Task and Data
Parallel Programming in Java. In Parallel Computing: Software Technology, Algorithms, Architectures
and Applications, PARCO 2003, Dresden, Germany, pages 111–118. Elsevier, 2003.

36. T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor – a distributed job scheduler. In Thomas
Sterling, editor, Beowulf Cluster Computing with Linux. MIT Press, October 2001.

37. H. Topcuoglu, S.H., and M.-Y. Wu. Task Scheduling Algorithms for Heterogeneous Processors. In
HCW ’99: Proc. of 8th Heterogeneous Computing Workshop, page 3, Washington, DC, USA, 1999.
IEEE Comp. Society.

38. A.J.C. van Gemund. Symbolic performance modeling of parallel systems. IEEE Trans. Parallel Distrib.
Syst., 14(2):154–165, 2003.

39. M.Y. Wu and D.D. Gajski. Hypertool: A programming aid for message-passing systems. IEEE Trans.
Parallel Distr. Syst., 1(3):330–343, 1990.

40. T. Yang and A. Gerasoulis. Pyrros: Static task scheduling and code generation for message passing
multiprocessors. In 6th ACM Int. Conf. on Supercomputing, pages 428–437, 1992.

