
To cite this version:

Dümmler, J.; Rauber, T.; Rünger, G.: Programming Support and Scheduling for Communicating Parallel

Tasks. In: Journal of Parallel and Distributed Computing, Bd. 73, Nr. 2: S. 220-234. Elsevier – ISSN

0743-7315, 2013. DOI: 10.1016/j.jpdc.2012.09.017

1

Programming Support and Scheduling for Communicating Parallel Tasks

Jörg Dümmlera,c, Thomas Rauberb, Gudula Rüngera

aChemnitz University of Technology, Department of Computer Science, 09111 Chemnitz, Germany
bBayreuth University, Angewandte Informatik II, 95440 Bayreuth, Germany

cCorresponding author, Phone: +49 (0) 371 531 31494, Fax: +49 (0) 371 531 831494,

Email: djo@cs.tu-chemnitz.de

Abstract

Task-based programming models are beneficial for the development of parallel programs for several reasons.

They provide a decoupling of the specification of parallelism from the scheduling and mapping to execution

resources of a specific hardware platform, thus allowing a flexible and individual mapping. For platforms

with a distributed address space, the use of parallel tasks, instead of sequential tasks, adds the additional

advantage of a structuring of the program into communication domains that can help to reduce the overall

communication overhead.

In this article, we consider the parallel programming model of communicating parallel tasks (CM-tasks),

which allows both task-internal communication as well as communication between concurrently executed

tasks at arbitrary points of their execution. We propose a corresponding scheduling algorithm and describe

how the scheduling is supported by a transformation tool. An experimental evaluation using synthetic task

graphs as well as several complex application programs shows that employing the CM-task model may lead

to significant performance improvements compared to other parallel execution schemes.

Keywords: Parallel Tasks, Scheduling, Mixed Parallelism, Algorithms, Scalability, Tool Support

1. Introduction

Task-based approaches have the advantage to allow a decoupling of the computation specification for

a given application algorithm from the actual mapping and execution on the computation resources of a

parallel target platform. The programmer is then only responsible for the specification of the tasks of the

application algorithm and their interactions. The mapping onto execution resources is usually based on

a runtime prediction model and supported by a compiler tool or runtime system. Thus, the programmer

is relieved from providing an explicit mapping. Moreover, the runtime system can select a suitable task

mapping depending on the characteristics of the target platform, providing a portability of the application

Preprint submitted to Parallel and Distributed Computing May 29, 2020

performance.

Many different variations of task-based programming systems have been investigated. An important

distinction is whether the individual tasks are executed sequentially on a single execution resource (called

single-processor tasks, S-tasks) or whether they can be executed on multiple execution resources (called

parallel tasks, malleable tasks, or multi-processor tasks, M-tasks). S-tasks are often used for program

development in shared address spaces, including single multi-core processors, and allow a flexible program

development. Efficient load balancing methods can easily be integrated into the runtime system. Examples

for such approaches are the task concepts in OpenMP 3.0 [25], Cilk [13], SMPSs [27], FG [6] for out of

core algorithms, the TPL library for .NET [21], or the KOALA framework [16], which provides adaptive

load balancing mechanisms. For distributed address spaces, the main challenge is to obtain a distributed

load balancing of tasks with a low communication overhead. Thus, for load exchange between different

address spaces, tasks should not be too fine-grained to avoid heavy communication traffic. An adaptive load

balancing technique for this scenario based on work stealing has been presented in [7]. An example for an

S-task runtime system for a distributed memory environment is ClusterSs [36].

Parallel tasks are typically more coarse-grained than S-tasks, since they are meant to be executed by

an arbitrary number of execution resources. These execution resources may need to exchange data during

the execution of a parallel task, and thus each parallel task may also comprise task-internal communica-

tion. In the standard parallel task model, the interactions between different parallel tasks are captured by

input-output relations only, i.e., one parallel task may produce output data that is then used as an input for

another parallel task. In this case, the two parallel tasks have to be executed one after another. Some of

the parallel tasks of the program may also be independent of each other and provide the possibility for a

concurrent execution on disjoint sets of execution resources leading to a mixed parallel execution. This

parallel programming model is used, for example, by the Paradigm compiler [30], the TwoL model [32],

and many other approaches [1, 8, 34].

In this article, we consider an extended parallel programming model called communicating M-tasks

(CM-tasks) which additionally allows communication between parallel tasks that are executed concurrently.

This additional kind of interaction between parallel tasks provides more flexibility for the structuring of a

parallel application and provides the possibility for a more efficient organization of these data exchanges.

This is especially beneficial for solvers for ordinary differential equations and multi-grid solvers. On the

other hand, it also leads to additional restrictions of the execution order, since parallel tasks communicating

3

with each other during their execution have to executed concurrently and cannot run one after another. As a

consequence, new scheduling and load balancing methods are required for CM-task programs.

The contributions of this article include a detailed discussion of the CM-task programming model along

with a comparison with standard parallel tasks and the proposal of a compiler framework that supports the

development of CM-task applications. The framework generates an efficient executable MPI program from

a CM-task specification provided by the application programmer. The core component of the framework

is the static scheduler, which includes different scheduling algorithms that have been adapted to fit the

requirements of the CM-task model. The article defines the underlying scheduling problem and describes

these algorithms in detail. An experimental evaluation for several complex application programs shows

that the scheduling algorithm for CM-tasks can lead to significant performance improvements compared

to execution schemes resulting from other schedules. Applications from scientific computing offering a

modular structure of different program components can benefit considerably from the CM-task model and

the programming support.

The rest of the article is organized as follows. Section 2 describes the CM-task programming model.

A compiler tool supporting the development of CM-task applications is presented in Sect. 3. The CM-task

scheduling problem is defined in Sect. 4 and Sect. 5 proposes an appropriate scheduling algorithm. Section 6

presents an experimental evaluation. Section 7 discusses related work and Sect. 8 concludes the article.

2. CM-task Programming Model

This section discusses the programming with CM-tasks and highlights the benefits of CM-tasks over

standard parallel tasks.

2.1. Structure of CM-task programs

The CM-task programming model exhibits two well-separated levels of parallelism: an upper level that

captures the coarse-grain task structure of the application and a lower level that expresses parallelism within

the tasks of the upper level. A CM-task program consists of a collection of CM-tasks where each CM-task

implements a specific part of the application in a way that an execution on an arbitrary number of execution

resources is possible. Each CM-task operates on a set of input variables that it expects upon its activation

and produces a set of output variables that are available after its termination. Additionally, there may be

communication phases in which data is exchanged between two or more CM-tasks that are executed at the

same time on disjoint sets of execution resources.

4

A CM-task can be a parallel module performing parallel computations (basic CM-task), e.g., a data

parallel matrix multiplication, or can have an internal structure activating other CM-tasks (composed CM-

task). The internal parallelism of basic CM-tasks is realized using an SPMD programming approach; mes-

sage passing may be used for distributed memory platforms while an implementation based on Pthreads or

OpenMP may be advantageous on clusters with large SMP nodes. In the following, we assume that each

CM-task is executed by a number of MPI processes, i.e., task-internal data exchanges are implemented with

MPI. This implies that each CM-task defines a data distribution among the executing processes for each

structured input or output variable used.

Dependencies between CM-tasks resulting from input/output variables and the communication phases

defined are captured by the following relations:

• P-relation: A P-relation (precedence relation) from a CM-task A to a CM-task B exists if A provides

output data required by B as input before B can start its execution. This relation is not symmetric and

is denoted by AδPB.

• C-relation: A C-relation (communication relation) between CM-tasks A and B exists, if A and B have

to exchange data during their execution. This relation is symmetric and is denoted by AδC B.

P-relations capture input-output dependencies between tasks and require the respective CM-tasks to be

executed one after another. Moreover, a data re-distribution operation may be required between CM-tasks

A and B with AδPB. This is the case if A and B are executed on different sets of processors or if A produces

its output data in a different data distribution then it is expected by B. C-relations capture communication

phases in which intermediate results are exchanged and enforce a concurrent execution of the respective

CM-tasks. The communication operations to realize these data transfers are included in the respective CM-

tasks, such that optimized communication patterns can be exploited. The runtime system has to provide a

common communication context for all CM-tasks participating in the same communication phase, e.g., by

providing a suitable MPI communicator.

A CM-task program can be described by a CM-task graph G = (V, E) where the set of nodes V =

{A1, . . . , An} represents the set of CM-tasks and the set of edges E represents the (C and P) relations between

the CM-tasks. The set E can be partitioned into two disjoint sets EC and EP with E = EP∪EC . EP contains

directed edges representing the P-relations defined between CM-tasks. There is a precedence edge from

CM-task A to CM-task B in EP if an input-output relation from A to B exists. EC contains bidirectional

5

(a) (b)

M1

M4M3M2

P PP

P

P

M5

M8

M9

M7

P

M6

P

P

Parallel task graph

P

P P P

(c)

P

PP

P

C

CM-task graph

P

P

CM1

CM2 CM3 CM4
C

CM5

Figure 1: (a) Example for a CM-task graph with precedence edges (annotation p) and communication edges (annotation c). (b)

Dependence structure between the tasks of a typical ODE solver in form of a standard parallel task graph using P-relations only.

(c) Possible CM-task graph for a typical ODE solver using both P-relations and C-relations.

edges representing the C-relations defined between CM-tasks. An example for a CM-task graph is shown

in Fig. 1 (a).

2.2. Comparison of CM-tasks with standard parallel tasks

The CM-task programming model supports two kinds of interactions between CM-tasks: P-relations

between data dependent tasks and C-relations between tasks that communicate with each other during their

execution. In contrast, programming models based on standard parallel tasks such as Paradigm [30] and

TwoL [32] only support P-relations between the tasks. In the following, we show that the additional C-

relations in the CM-task model allow a more flexible formulation of the tasks compared to the standard

parallel task model. As a case study, we consider time stepping methods as they are often used for the

numerical solution of systems of ordinary differential equations (ODEs).

A typical task graph for these methods using only P-relations is shown in Fig. 1 (b). This standard

parallel task graph shows two time steps where parallel tasks M2, M3, and M4 perform independent com-

putations for the first time step, and parallel tasks M6, M7, and M8 perform analogous computations for the

next time step. In between, M5 combines the results, e.g., for error control or information exchange. In the

standard parallel task model, M2 and M6 cannot be combined because the result of M2 is used by M5. As a

consequence, the parallel tasks used may be too fine-grained possibly resulting in a significant management

overhead.

In the CM-task model, however, a single CM-task can implement the computations of multiple time

steps, see Fig. 1 (c). For example, CM-task CM2 performs the computations of parallel tasks M2 and M6,

6

Application Developer

CM-task Compiler Framework

Specification

Program

Platform

Description

Coordination

Program

(C+MPI)

CM-task

Compiler

Data

Re-distribution

Library

Load

Balancing

Library

CM-task

Implementations

Figure 2: Overview of the CM-task compiler framework. The user provides specifications for the parallel application and the

parallel platform and implements the basic CM-tasks. The CM-task compiler translates the user-provided specifications into an

executable coordination program that contains an efficient implementation of the application on the target platform specified.

and also computes the results at the end of the time step along with CM-tasks CM3 and CM4. The com-

munication operations required to exchange the intermediate results at the end of the time step are cap-

tured by appropriate C-relations. For the implementation of these data transfers, orthogonal communication

patterns [31] can be exploited, which leads to a reduction of the communication overhead, see also the

benchmark results presented in Sect. 6.

3. Programming Support for CM-task Applications

A major advantage of the CM-task programming model is its flexibility to adapt the execution of an

application to the characteristics of the target platform, e.g., by selecting an appropriate execution order for

independent CM-tasks. But such an adaption may be complex and error-prone especially for large appli-

cation programs. Therefore, the CM-task compiler framework has been designed to assist the application

developer by providing scheduling and load balancing methods as well as a generator for a platform-specific

implementation of a CM-task program.

Figure 2 shows an overview of the framework. As input, the application developer has to provide

• a platform-independent specification program that describes the high-level task structure of the par-

allel application, see an example in Fig. 4,

• a platform description that defines a homogeneous target machine by specifying a number of hard-

ware parameters such as the number of processors, the speed of the processors, and the speed of the

interconnection network, and

7

• a set of basic CM-tasks that are provided as parallel functions to be executed on an arbitrary number

of processors, e.g., using C+MPI or a hybrid C+MPI+OpenMP model.

The CM-task compiler translates the specification program and the platform description into an executable

C+MPI coordination program, see Subsect. 3.3 for a detailed description of the transformation process. At

runtime, the coordination program is responsible for (i) the actual creation of the required processor groups,

(ii) the data re-distribution operations to guarantee the correct distribution of input data before starting a

CM-task, and (iii) the actual execution of the user-provided parallel functions implementing the basic CM-

tasks on the processor groups as defined by the computed schedule. The data re-distribution operations are

performed by a separate library that is provided as part of the CM-task compiler framework. Two different

approaches are supported for the generation of the coordination program.

• The static approach of the CM-task compiler uses a fixed schedule, i.e., both, the execution order

and the executing processor groups of the CM-tasks are fixed at compile time and cannot be changed

at runtime. This approach is especially suited for dedicated homogeneous platforms and requires an

accurate cost model for a good schedule. The fixed schedule enables several static optimizations, such

as the precomputation of the communication pattern for data re-distribution operations at compile

time.

• The semi-dynamic approach of the CM-task compiler combines a static schedule with dynamic

load balancing. The static schedule defines the execution order of the CM-tasks as well as the initial

processor groups used to execute the CM-tasks. The semi-dynamic coordination program produced

includes profiling code that measures the execution times of the CM-tasks at runtime of the applica-

tion. The dynamic load balancing library of the CM-task compiler framework adapts the sizes of the

processor groups based on the runtimes measured. The semi-dynamic approach is especially suited

for non-dedicated heterogeneous platforms.

The compiler approach employed is fully transparent for the user-supplied specification program and CM-

task implementations, i.e., the application developer does not need to modify the implementation when

switching from the static to the semi-dynamic approach or vice versa. In this article, we focus on the static

approach; the semi-dynamic approach is described in [9].

8

M→ seq { M1M2 . . .Mn } /* consecutive execution */

| par { M1M2 . . .Mn } /* independent computations */

| for (i = 1 : n) { M1 } /* loop with data dependencies */

| while (cond)#It { M1 } /* loop with data dependencies */

| parfor (i = 1 : n) { M1 } /* loop with independent iterations */

| if (cond) { M1 } /* conditional execution */

| if (cond) { M1 } else { M2 } /* conditional execution */

| C

C → BC (a1, . . . , an); /* execution of a basic CM-task */

| CC (a1, . . . , an); /* execution of a composed CM-task */

| cpar { C1C2 . . .Cn } /* concurrent execution */

| cparfor (i = 1 : n) { C1 } /* concurrent execution of iterations */

Figure 3: Grammar for the specification of the available task parallelism within a composed CM-task (simplified).

3.1. Specification Language

The platform-independent specification program defines the available basic CM-tasks along with a cost

estimation, the internal structure of the composed CM-tasks as well as the data types and data distribution

types used for the input and output parameters of the CM-tasks. Supported data types encompass scalars

and multi-dimensional array structures. A data distribution type can either be an arbitrary block-cyclic

distribution over a multi-dimensional processor mesh or a replicated storage on an arbitrary subset of the

processors.

The definition of a basic CM-task starts with the keyword cmtask followed by a unique name, a param-

eter list and a cost expression. The parameter list includes input and output parameters with their respective

data types and data distribution types as well as special parameters that are communicated along the C-

relations. The cost expression is defined as a symbolic formula in closed form depending on the number of

executing processors p and platform specific parameters whose values are provided in the separate machine

description input, see Subsect. 3.2 for a more detailed discussion of the cost model.

Composed CM-tasks are defined by using the keyword cmgraph followed by a name, a parameter list

similar to basic CM-tasks, and a hierarchical module expression. One distinguished composed CM-task rep-

resents the entire application; this CM-task is denoted by using the keyword cmmain instead of cmgraph.

The module expression consists of activations of (basic or composed) CM-tasks and predefined operators

9

1 c o n s t K=8; / / number o f s t a g e v e c t o r s

2 c o n s t n = . . . ; / / ODE s y s t e m s i z e

3

4 / / d a ta t y p e and d a ta d i s t r i b u t i o n t y p e d e f i n i t i o n s [. . .]

5

6 / / b a s i c CM− t a s k d e f i n i t i o n s

7 cmtask i n i t s t e p (x , h : s c a l a r : out) runtime [. . .] ;

8 cmtask pabmstep (k : i n t , x , h : s c a l a r : in , y k : v e c t o r : i n o u t : b lock ,

9 y k1 : v e c t o r : in : b lock , o r t : v e c t o r :comm) runtime [. . .] ;

10 cmtask u p d a t e s t e p (x , h : s c a l a r : i n o u t) runtime [. . .] ;

11

12 / / composed CM− t a s k d e f i n i t i o n s

13 cmmain pabm (X: double , y : v ecs : i n o u t : r e p l i c) {

14 / / d e c l a r a t i o n o f l o c a l v a r i a b l e s

15 var x : s c a l a r ; / / c u r r e n t t i m e i n d e x

16 var h : s c a l a r ; / / c u r r e n t s t e p s i z e

17 var ortcomm : v ecs ; / / i n t e r m e d i a t e r e s u l t s

18 / / module e x p r e s s i o n

19 seq {

20 i n i t s t e p (x , h) ;

21 whi le (x [0] < X)#100 {

22 seq {

23 cpa r fo r (k = 0 :K−1) {

24 pabmstep (k , x , h , y [k] , y [K−1] , ortcomm) ; }

25 u p d a t e s t e p (x , h) ;

26 } } } }

Figure 4: Specification program for the PABM method.

10

which define the maximum degree of task parallelism that may be exploited by the CM-task compiler frame-

work. Operators are available to define a consecutive execution, to define a concurrent execution, and to

define data independence such that the framework can select a suitable execution order. Figure 3 gives an

overview of the available operators. The P-relations and C-relations of the CM-task program are defined

implicitly using appropriate variable names in the parameter lists of the CM-task activations.

Example Specification. As an example application we consider the implicit parallel Adams-Bashforth-

Moulton (PABM) method [37] which is suitable for solving stiff systems of ordinary differential equations

(ODEs) [15]. The PABM method performs a large number of time steps that have to be executed one af-

ter another due to data dependencies between successive steps. Within a time step, K stage vectors are

computed and then combined to the final approximation of this step.

Figure 4 shows an appropriate CM-task specification program. The data type and data distribution type

definitions have been omitted to improve readability. Three basic CM-tasks are defined in lines 7-10: the

CM-task initstep initializes the first time step, the CM-task pabmstep computes one of the K stage

vectors for a single time step, and the CM-task updatestep updates the step size for the next time step.

The CM-task pabmstep has three input parameters (x and h with data type scalar, and y k1 with data

type vector and data distribution type block), one input/output parameter (y k), and one parameter that

is used to exchange data during its execution with other CM-tasks (ort). The cost expressions associated

with the basic CM-tasks are omitted and will be discussed in Sect. 3.2.

The module expression of the composed CM-task pabm defines an activation of CM-task initstep

(line 20) and a while-loop (lines 21-25) that have to be executed one after another due to the seq-operator

on line 19. The loop is executed until the current time index x reaches a predefined limit X. The term #100

on line 21 defines an estimate of the number of iterations and is used by the CM-task compiler framework

to predict the resulting execution time of the entire application. The body of the while-loop contains a

cparfor-loop which defines K activations of CM-task pabmstep that have to be executed concurrently. All

K activations are connected by C-relations, since the communication parameter ortcomm is passed to each

one. The seq-operator on line 22 defines that CM-task updatestep cannot be executed until the entire

cparfor-loop has been terminated.

3.2. Cost Model

In the specification program, the costs for basic CM-tasks are described in form of symbolic runtime

formulas [3, 20]. A symbolic runtime formula TA for a basic CM-task A is a function whose structure

11

reflects the computation and communication operations performed by A including the data exchanges along

the C-relations. TA typically has the form

TA(p) =
ops(A)

p
∗ Top + Tcomm(A, p),

where ops(A) is the number of arithmetic operations of A, Top is the average execution time of an arithmetic

operation on the execution platform, and Tcomm(A, p) is the sum of the internal communication times of A

when executed on p processors.

The communication time Tcomm(A, p) depends on the number and type of the communication operations

inside A and is specified using cost formulas for the communication primitives provided by the MPI library.

For example, the execution time of a broadcast operation that uses a binomial tree of depth log(p) can be

estimated by a function

Tbc(p, b) = (τ + tc ∗ log(p)) ∗ b,

where p is the number of processors participating in the operation, b is the amount of data to be trans-

ferred, and τ and tc are hardware-specific parameters. These formulas are provided in the separate platform

description input file.

The symbolic runtime formula for a specific basic CM-task A can either be obtained by hand, e.g., by

fitting measured execution times to a function prototype, or automatically extracted from the source code

of A by a suitable compiler tool [19]. For example, the execution time of the basic CM-task pabmstep that

computes a single stage vector in a K-stage PABM method, see Fig. 4, can be described by

Tpabmstep(p) = (I + 1) ∗ d

p
∗ Teval + (2K + 1 + 3I) ∗ d

p
∗ Top + Tag(K,

d

p
) + Tbc(K,

d

p
) + (I+) ∗ Tag(

p

K
,

d

p
).

In this formula, I denotes the number of fixed point iterations performed by the PABM method, Teval

defines the time required to evaluate a single ODE of the d-dimensional ODE system, and Tag(p, b) is a cost

prediction for the execution of a multi-broadcast (MPI Allgather()) operation depending on the number

of participating processes p and the amount of data b to be transmitted.

The costs for composed CM-tasks are built up from the costs of the basic CM-tasks and the communi-

cation times for the P-relations according to the hierarchical CM-task structure. For a concurrent execution

of CM-tasks CM1 and CM2, the maximum of their cost formulas is taken; for a consecutive execution, the

sum of the cost formulas of CM1 and CM2 and the data re-distribution costs between these CM-tasks is

used. The costs for the CM-task cmmain determine the costs for the entire application.

12

Compiler Framework

Data

Distribution

Code

Generator

Static

Scheduler

Dataflow

Analyzer

Specification

Program

Coordination

Program

(C+MPI)

Platform

Description

Figure 5: Transformation steps performed by the CM-task compiler to generate a C+MPI coordination program from a user-

provided specification program and platform description.

3.3. CM-task Compiler

The CM-task compiler performs several transformation steps to translate a specification program into

an executable C+MPI coordination program that is adapted to a specific parallel platform, see Fig. 5 for

an overview. The transformation steps include the detection of data dependencies, the computation of a

platform-dependent static schedule, the insertion of data re-distribution operations, and the translation into

the coordination program. In the following, we describe the phases in detail.

The dataflow analyzer detects the P-relations and the C-relations between the activations of the CM-

tasks. A P-relation is inserted between CM-tasks A and B that have to be executed one after another due

to a seq-operator in case A has an output parameter that is used as an input for B. A C-relation is inserted

between CM-tasks A and B that have to be executed concurrently due to a cpar- or cparfor-operator if A

and B have a common communication parameter.

The static scheduler performs the scheduling in the following three steps.

(1) The specification program is transformed into a set of CM-task graphs. A CM-task graph is con-

structed for each body of a for- or while-loop, each branch of the if-operator, and for each composed

CM-task graph. The parfor- and cparfor-loops are unrolled such that different scheduling decisions

can be made for each iteration of these loops. Note that the bounds of these loops need to be known at

compile time. The resulting CM-task graphs are organized hierarchically according to the nesting of

the corresponding operators. For example, the specification program from Fig. 4 is translated into two

CM-task graphs: an upper-level CM-task graph with two nodes representing the function initstep

and the entire while-loop, respectively, and a lower-level CM-task graph for the body of the while-

loop that contains K + 1 nodes where K nodes represent the instances of function pabmstep and one

13

node represents updatestep.

(2) Next, a feasible CM-task schedule (as defined in Sect. 4.2) is produced for each CM-task graph. The

scheduling starts with the CM-task graph representing the entire application and then traverses the

hierarchy of CM-task graphs. The scheduling decisions on the upper levels determine the number of

processors that are available for the lower levels. For example, the number of processors assigned to

the entire while-loop is equal to the number of available processors for scheduling the loop body. The

scheduling for a single CM-task graph is described in Sect. 5.

(3) The resulting CM-task schedules are transformed back into an extended specification program with

additional annotations that define the processor groups for each CM-task activation. Additionally,

the operators of the initial program are adjusted to reflect the actual execution order defined by the

computed schedule, i.e., a par operator may be transformed into a seq operator if the schedule defines

a consecutive execution for independent program parts.

The data distribution phase proceeds in two steps. First, it determines suitable data distribution types in

which the variables are provided when entering a loop (for and while) or a conditional (if). For this purpose,

a heuristic is used that tries to minimize the number of required data re-distribution operations inside the

respective loop or conditional. Second, it inserts appropriate data re-distribution operations, such that the

input data of each activated CM-task is provided in the correct data distribution. The final code generation

phase uses the information provided by the previous phases to create the final output program. This phase is

implemented by a top-down traversal of the abstract syntax tree using a syntax-directed translation scheme.

4. Scheduling of CM-task Programs

This section defines the scheduling problem for CM-task programs and discusses the constraints result-

ing from the P-relations and C-relations between the CM-tasks of a program.

4.1. Cost Annotations for CM-task graphs

For the definition of the scheduling problem, we assume that the CM-task graph G = (V, E) of a CM-

task program is annotated with cost information. The execution time of each CM-task is described by a

function

T : V × {1, . . . , q} → R

14

Figure 6: Illustration of a possible CM-task schedule for the CM-task graph from Fig. 1 (a).

where q is the size of the processor set Q of a (homogeneous) target platform. The runtime T (A, |R|) of a

CM-task A executed on a subset R ⊆ Q comprises the computation time of A, the internal communication

time, as well as the time for data exchanges with simultaneously running CM-tasks with which A has a

C-relation.

The P-relation edges of the CM-task graph are associated with communication costs

TP : EP × {1, . . . , q} × {1, . . . , q} → R

where TP(e, |R1|, |R2|) with e = (A1, A2) denotes the communication costs between CM-task A1 executed

on processor set R1 and CM-task A2 executed on processor set R2 with R1,R2 ⊆ Q. These communication

costs may result from a re-distribution operation that is required between CM-tasks A1 and A2 with A1δPA2

if R1 , R2 or if R1 = R2 and A1 provides its output in a different data distribution as expected by A2.

4.2. Scheduling constraints

A schedule S of a given CM-task program maps each CM-task Ai, i = 1, . . . , n, to an execution time

interval with start time si and a processor set Ri with Ri ⊆ Q, i.e.,

S : {A1, . . . , An} → R × 2Q with S (Ai) = (si,Ri).

An illustration of a CM-task schedule is given in Fig. 6. The P-relations and C-relations between the CM-

tasks of a program lead to the following scheduling constraints:

(I) Consecutive time intervals. If there is a P-relation AiδPA j between two CM-tasks Ai and A j, i, j ∈

{1, . . . n}, i , j, then the execution of A j cannot be started before the execution of Ai and all required data

re-distribution operations between Ai and A j have been terminated. Thus, for the starting times si and s j of

Ai and A j and executing sets Ri and R j of processors, respectively, the following condition must be fulfilled:

si + T (Ai, |Ri|) + TP

(

e, |Ri|, |R j|
)

≤ s j with e = (Ai, A j).

15

(II) Simultaneous time intervals. If there is a C-relation AiδCA j between Ai and A j, then Ai and A j have to

be executed concurrently (with overlapping execution time intervals) on disjoint sets of processors Ri and

R j, i.e., the following conditions must be fulfilled:

Ri ∩ R j = ∅ and [si, si + T (Ai, |Ri|)] ∩
[

s j, s j + T (A j, |R j|)
]

, ∅.

The overlapping execution time intervals guarantee that the CM-tasks Ai and A j can exchange data during

their execution.

(III) Arbitrary execution order. If there are no P- or C-relations between CM-tasks Ai and A j, then Ai and

A j can be executed in concurrent or in consecutive execution order. For a concurrent execution, disjoint

processor sets Ri and R j have to be used, i.e.,

if [si, si + Tg(Ai, |Ri|)] ∩ [s j, s j + Tg(A j, |R j|)] , ∅ then Ri ∩ R j = ∅

where Tg comprises the execution time of Ai as well as the communication time for data exchanges with

successively executed CM-tasks Ak with AiδPAk, i.e.,

Tg(Ai, |Ri|) = T (Ai, |Ri|) +
n
∑

k=1

TP(e, |Ri|, |Rk |) with e = (Ai, Ak) ∈ EP.

In the following, a schedule that meets the constraints (I) - (III) is called feasible. A feasible schedule

S leads to a total execution time Tmax(S) that is defined as the point in time when all CM-tasks have been

finished, i.e.:

Tmax(S) = max
i=1,...,n

{si + Tg(Ai, |Ri|)}.

The problem of finding a feasible schedule S that minimizes Tmax(S) is called scheduling problem for a

CM-task program.

5. Scheduling Algorithm

This section proposes a scheduling algorithm for CM-task graphs with annotated cost information that

proceeds in four phases. In the first phase, CM-tasks that are connected by C-relations are combined to form

a so-called super-task. The tasks within a super-task have to be executed concurrently due to communication

between them, see Constraint (II) from Sect. 4.2. The aggregation of CM-tasks to super-tasks transforms the

CM-task graph into a super-task graph with generalized P-relations between the super-tasks. The second

phase determines a group layout within each super-task by using a load balancing algorithm. The third phase

16

computes an execution order and determines processor groups for the super-tasks by taking the generalized

P-relations of the super-task graph into account. This phase is similar to the scheduling of standard parallel

tasks and, thus, a layer-based or a critical-path based approach can be utilized. The final phase combines

the results of the previous steps and generates the final CM-task schedule. In the following, the phases of

the algorithm are described in detail.

5.1. Transformation of the CM-task graph

The first phase identifies CM-tasks that are connected by C-relations and combines them into larger

super-tasks as defined in the following.

Definition 1 (Super-task). Let G = (V, E) be a CM-task graph. A super-task is a maximum subgraph

Ĝ= (V̂, Ê) of G with V̂ ⊆V and Ê ⊆EC such that each pair of CM-tasks A, B ∈ V̂ is connected by a path of

bidirectional edges in Ê.

Each CM-task and each bidirectional C-relation edge of a CM-task graph belongs to exactly one super-

task. A single CM-task without C-relations to any other CM-task forms a super-task by itself. The problem

of finding the super-tasks of a CM-task graph is equivalent to discovering the connected components of an

undirected graph, considering the C-relations as undirected edges. Using the super-tasks constructed, the

CM-task graph is transformed into a super-task graph as defined next.

Definition 2 (Super-task graph). Let G = (V, E) be a CM-task graph comprising l super-tasks Ĝ1 =

(V̂1, Ê1), . . . , Ĝl = (V̂l, Êl). The super-task graph corresponding to G is a directed graph G′ = (V ′, E′)

with a set of l nodes V ′ = {Ĝ1, . . . , Ĝl} and a set of directed edges E′ = {(Ĝi, Ĝ j) | there exists A ∈ V̂i, B ∈

V̂ j with AδPB}.

Figure 7 (a) and (b) show an example CM-task graph with the corresponding super-task graph. Figure 7

(c)-(e) illustrates the scheduling phases described in the following subsections.

5.2. Load balancing for super-tasks

The second phase is an iterative load balancing algorithm shown in Alg. 1 that determines the number

of processors used to execute the CM-tasks inside a specific super-task Ĝ. The algorithm tries to find an

assignment such that the execution time of the entire super-task Ĝ is at a minimum. The load balancing

decision depends on the number of processors available for the execution of Ĝ. The super-task Ĝ can be

17

(a) (b) (c) (d) (e)

Figure 7: Illustration of the scheduling algorithm for CM-task graphs. (a) Initial CM-task graph consisting of CM-tasks {1, . . . , 13}.

(b) Corresponding super-task graph with super-tasks A = {1}, B = {2, 3}, C = {4}, D = {5}, E = {6}, F = {7, 8, 9}, G = {10},

H = {11, 12}, and I = {13}. (c) Subdivision of the super-task graph into five consecutive layers W1 = {A}, W2 = {B,C,D},

W3 = {E, F}, W4 = {G,H}, and W5 = {I}. (d) Possible schedule for the super-task graph consisting of a subschedule for each layer

of the graph according to Alg. 2. (e) Schedule for the original CM-task graph including load balancing from Alg. 1.

executed on any number of processors between m and q where m is the number of CM-tasks inside Ĝ and q

is the total number of processors available. The number of processors must be at least m because all m CM-

tasks of a super-task have to be executed concurrently to each other. Since the exact number of processors

available for super-task Ĝ is determined not until the next phase of the scheduling algorithm, all possible

numbers p of processors are considered, i.e., m ≤ p ≤ q. The result of the load balancing algorithm is a

super-task allocation LĜ for Ĝ, where LĜ(A, p) specifies how many processors are allocated to CM-task A

inside super-task Ĝ when p processors are available for the entire super-task Ĝ.

Algorithm 1 starts with p = m and assigns a single processor to each CM-task of the super-task Ĝ (line

3). In each step, the number of available processors p is increased by one and the additional processor

is assigned to the CM-task Ak that has the largest parallel execution time within the current super-task

allocation. This usually decreases the execution time of Ak, and another CM-task may then have the largest

execution time.

An alternative method to determine the number of processors for each CM-task is to use the sequential

execution time and to assign

LĜ(Ai, p) = p · T (Ai, 1)
∑

A j∈V̂ T (A j, 1)

processors to CM-task Ai ∈ V̂. Compared to this approach, the iterative assignment of Alg. 1 has the

advantage that it takes scalability effects into account, captured by using the parallel execution time.

18

Algorithm 1: Load balancing for a single super-task.

1 begin

2 let Ĝ = (V̂ , Ê) be a super-task with V̂ = {A1, . . . , Am};

3 set LĜ(Ai,m) = 1 for i = 1, . . . ,m;

4 for (p = m + 1, . . . , q) do

5 set LĜ(Ai, p) = LĜ(Ai, p − 1) for i = 1, . . . ,m;

6 find CM-task Ak ∈ V̂ with maximum value of T (Ak, LĜ(Ak, p − 1));

7 increase LĜ(Ak, p) by 1;

5.3. Costs for super-task graphs

Using the super-task allocation LĜ, the cost of a super-task Ĝ can be calculated by the cost function

defined below.

Definition 3 (Costs for super-task graphs). Let G = (V, E) be a CM-task graph and G′ = (V ′, E′) its

corresponding super-task graph. A node Ĝ = (V̂ , Ê) of G′ executed on p processors has costs

T ′(Ĝ, p) =























∞ if p < |V̂ |

max
A∈V̂

T (A, LĜ(A, p)) otherwise.

A directed edge êi j = (Ĝi, Ĝ j) with Ĝi = (V̂i, Êi), Ĝ j = (V̂ j, Ê j), i , j, has costs

T ′P(êi j, pi, p j) =
∑

e∈RE

TP(e, LĜi
(A, pi), LĜ j

(B, p j))

with RE = {e = (A, B) | there exists A ∈ V̂i, B ∈ V̂ j with AδPB}.

The cost information is needed for the scheduling algorithm for super-task graphs presented next.

5.4. Scheduling of the super-task graph

A super-task graph resembles a standard parallel task graph. However, there is an important difference:

the scheduling problem for a super-task graph has the additional restriction that the number of processors

assigned to a super-task must not be below the number of CM-tasks included in this super-task. This

constraint guarantees that a concurrent execution of all CM-tasks within one super-task is possible. As

a consequence, scheduling algorithms for parallel tasks have to be modified to take this requirement into

account. The scheduling of parallel tasks is often performed by either a layer-based or a critical-path-based

approach. In the following, we consider these two categories of algorithms in detail.

19

Algorithm 2: Scheduling algorithm for a single layer of the super-task graph.

1 begin

2 let W = {Ĝ1, . . . , Ĝr} be one layer of the super-task graph G′ = (V ′, E′) consisting of r

CM-tasks;

3 let f = max
i=1,...,r

|V̂i| be the maximum number of CM-tasks in any super-task of W;

4 set Tmin = ∞;

5 for (κ = 1, . . . ,min{q − f + 1, r}) do

6 partition the set Q of q = |Q| processors into disjoint subsets R1, . . . ,Rκ such that

|R1| = max
{⌈

P
κ

⌉

, f
}

and R2, . . . ,Rκ have about equal size;

7 sort {Ĝ1, . . . , Ĝr} such that T (Ĝi, |R1|) ≥ T (Ĝi+1, |R1|) for i = 1, . . . , r − 1;

8 for (j = 1, . . . , r) do

9 assign Ĝ j to the group Rl with the smallest accumulated execution time and |Rl| ≥ |V̂ j|;

10 adjust the sizes of the subsets R1, . . . ,Rκ to reduce load imbalances;

11 Tκ = max
j=1,...,κ

accumulated execution time of R j;

12 if (Tκ < Tmin) then Tmin = Tκ; ;

5.4.1. Layer-based scheduling of the super-task graph

Layer-based scheduling algorithms are well suited for parallel applications consisting of multiple con-

secutive phases each of which performing computations that can be captured by independent tasks. In this

subsection, we propose a scheduling algorithm for a super-task graph G′ that is based on a layer-based

scheduling algorithm for parallel tasks [32] and additionally exploits the load balancing information from

Alg. 1. The new scheduling algorithm is called CM-Layer and proceeds in two steps.

In the first step, the super-task graph G′ is partitioned into layers of independent super-task nodes such

that the consecutive execution of the layers leads to a feasible schedule for the entire super-task graph. The

partitioning is performed by a greedy algorithm that runs over the super-task graph in a breadth-first manner

and puts as many super-tasks as possible into the current layer. An illustration is given in Fig. 7 (c).

In the second step, the layers are treated one after another and the scheduling algorithm given in Alg. 2

is applied to each layer. The goal of the scheduling algorithm is to select a partition of the processor set into

κ processor groups. Each of these groups is responsible for the execution of a specific set of super-tasks

20

that are also selected by this algorithm. An illustration of such a group partitioning and a corresponding

assignment of super-tasks is given in Fig. 7 (d).

The scheduling algorithm for a single layer W with r = |W | super-tasks tests all suitable values for the

number κ of processor groups with κ ≤ r and selects the number of groups that leads to the smallest overall

execution time (line 5). For a specific value of κ, the set of q processors is partitioned into subgroups such

that at least one of the groups is large enough to execute any super-task of W . In particular, the largest

processor group R1 contains at least f processors where f denotes the maximum number of tasks which any

of the super-tasks contains in its node set V̂1, . . . , V̂r (line 3). If f ≤ q/κ then a distribution into κ processor

groups of equal size is chosen (line 6). If f > q/κ then one processor group is made large enough to contain

exactly f processors and the rest of the processors is evenly partitioned into κ − 1 processor groups. For the

assignment of super-tasks to processor groups, a list scheduling algorithm is employed that considers the

super-tasks one after another in decreasing order of their estimated execution time (line 7). The group Rl of

processors for a specific super-task Ĝ j is selected such that Rl is large enough to execute Ĝ j and assigning

Ĝ j to Rl leads to the overall smallest accumulated execution time (line 9).

Afterwards, an iterative group adjustment is performed to reduce load imbalances between the processor

groups (line 10). In each iteration step, two groups of processors Ri and R j are identified such that moving a

processor from Ri to R j reduces the total execution time of the layer while Ri is still large enough to execute

all super-tasks assigned to it. The procedure stops when there is no such group left.

5.4.2. Critical-path based scheduling for super-tasks

Critical-path based scheduling algorithms for parallel task graphs consist of two steps: an allocation

step that assigns a number of processors to each parallel task and a scheduling step that determines an exe-

cution order and maps the parallel tasks onto groups of processors. To adapt critical-path based scheduling

algorithms for parallel tasks to the scheduling problem for super-task graphs it is sufficient to modify the

allocation step adequately, since this step can guarantee that each super-task is scheduled on a sufficiently

large processor group by the scheduling step. Many different heuristics have been proposed for the alloca-

tion step. In the following, we consider the allocation steps of the algorithms CPA [29] and CPR [28] and

describe their modification for super-tasks.

Both algorithms employ an iterative approach for the allocation step. The iteration starts with an allo-

cation of a single processor to each parallel task. In each step of the iteration, a parallel task is selected and

its allocation is increased by one. CPA only considers tasks on the critical path and stops the iteration when

21

the length of the critical path drops below a given threshold. Due to the increased allocation, the critical

path may change in each iteration step. CPR on the other hand, first selects a parallel task, increases its

processor allocation by one and runs the scheduling step. The change of the allocation is committed if the

resulting schedule is better than any previously computed schedule. Otherwise the change is revoked and

another parallel task is considered. CPR stops if the currently computed schedule cannot be improved by

assigning an additional processor to any task.

Both algorithms only increase the processor allocation of the parallel tasks, i.e., the allocation cannot

drop below the initial allocation for any task. To account for the minimum number of processors required

by the super-tasks, the initial allocation for each super-task used in the first iteration step has to be greater or

equal to the number of CM-tasks included in the respective super-task. Thus, we modify the allocation step

by initially assigning exactly m processors to a super-task including m CM-tasks. The modified algorithms

resulting from CPA and CPR combined with the transformation of the CM-task graph into the super-task

graph and the load balancing from Alg. 1 are denoted as CM-CPA and CM-CPR, respectively.

5.5. Building a CM-task schedule

In the final step, the schedule computed for the super-task graph and the allocation functions for the

super-tasks are combined into the resulting CM-task schedule. For each super-task, this phase has to de-

termine specific processor groups for the included CM-tasks based on the allocation computed in the load

balancing step. Different selections might lead to different re-distribution costs between CM-tasks of differ-

ent layers. Thus, to reduce communication costs, this step tries to assign CM-tasks connected by a P-relation

to the same or at least to overlapping sets of processors. Figure 7 (e) shows the resulting schedule for the

example CM-task graph.

6. Experimental Evaluation

This section discusses experimental results obtained by applying the scheduling algorithms proposed in

the previous section to synthetic CM-task graphs as well as to complex application benchmark programs.

6.1. Simulation results

First, we compare the schedules obtained by the algorithms CM-Layer, CM-CPA, and CM-CPR with

data parallel and task parallel schedules. A data parallel schedule denotes that each super-task of the

super-task graph is executed on all available processors, i.e., the individual super-tasks are executed one

22

after another. The assignment of processors to the CM-tasks inside a super-task is computed using the load

balancing procedure from Alg. 1. The task parallel schedule is obtained by assigning a single processor to

each CM-task and using a modified list scheduling approach to compute a feasible execution order.

For the simulation, three different test sets of CM-task graphs are used. Each test set comprises 100

different CM-task graphs with the same number of nodes n, n ∈ {10, 100, 1000}.The CM-task graphs have

been created using an extended version of a graph generation algorithm for directed acyclic graphs [23].

The extended algorithm performs n2 steps to generate a CM-task graph with n nodes starting with a CM-

task graph consisting of n nodes and no edges. In each step, the algorithm selects two nodes at random. If

these nodes are connected by a (directed or bidirectional) edge, then this edge is removed from the current

graph. Otherwise, the algorithm decides at random whether to connect these two nodes with a directed or

with a bidirectional edge. The new edge is only inserted if the resulting CM-task graph remains feasible,

i.e., it does not contain cycles of directed edges or conflicting constraints of the execution order defined by

the directed and bidirectional edges. At the end, the algorithm inserts an entry node that precedes all nodes

without an incoming directed edge and an exit node that succeeds all nodes without an outgoing directed

edge.

The parallel execution time of the synthetic CM-tasks is simulated according to the model for parallel

tasks used in [24]. This model assumes that each CM-task processes N data elements. The computational

complexity W(A) of a CM-task A is either a ·N (simulating the processing of a
√

N×
√

N image), a ·N log N

(simulating the sorting of an array with N elements), or a · N3/2 (simulating the multiplication of two dense
√

N ×
√

N matrices, where a is a parameter that is picked uniformly from the interval [26, . . . , 29]. The

parallel execution time of a CM-task A executed on p processors is modeled according to Amdahl’s law,

i.e., T (A, p) = α ∗W(A)+ (1−α) ∗W(A)/p, where α is the fraction of non-parallelizable code that is picked

uniformly from the interval [0, . . . , 0.25].

Figure 8 (left) shows the relative performance for different combinations of the number of CM-tasks in

the CM-task graph and the number of processors of the platform. The relative performance is computed

by first dividing the makespan of the individual schedules obtained by CM-Layer by the makespan of the

corresponding schedules obtained by the respective algorithm and then computing the average of the re-

sulting values. The figure also shows the minimum and maximum values obtained in the division for each

scheduling algorithm. CM-CPR is not shown for CM-task graphs with n = 1000 nodes, since this algo-

rithm requires several hours or even multiple days to schedule such large graphs due to its high complexity.

23

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

n=10
q=16

n=10
q=256

n=10
q=1024

n=100
q=256

n=100
q=1024

n=1000
q=256

n=1000
q=1024

number of CM−tasks n / number of processors q

re
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

Relative Schedule Makespan

CM−Layer

Data parallel

Task parallel

CM−CPA

CM−CPR

1002003004005006007008009001000

16
128

256
384

512
640

768
896

1024
0

100

200

300

number of CM−tasks n

Average Execution Time of CM−Layer

number of processors q

ru
n
ti
m

e
 i
n
 m

s
e
c

Figure 8: (Left) Relative performance of different scheduling algorithms in comparison to CM-Layer; (Right) Runtime of the CM-

task scheduling algorithm depending on the number of CM-tasks n of the CM-task graph and the number of processors q of the

target platform.

The results show that CM-Layer produces the best schedules on average. In particular, the mixed parallel

schedules obtained by CM-Layer are always superior to a standard data parallel and a standard task parallel

execution. CM-CPA and CM-CPR are outperformed on average, but may produce up to 80% better results

than CM-Layer for specific CM-task graphs. This usually happens for very deep CM-task graphs where

CM-Layer constructs many layers with only a few super-tasks each.

The runtime of CM-Layer depicted in Fig. 8 (right) has been measured on an AMD Opteron ”‘Istanbul”’

system clocked at 2.1 GHz. The results show that even large CM-task graphs with 1000 nodes can be

scheduled in less than 0.3 seconds for a platform with 1024 processors. This low execution time makes this

algorithm especially suited for the integration into a tool like the CM-task compiler.

6.2. Hardware description

The application benchmarks are executed on three parallel platforms, see Table 1 for an overview of the

most important parameters. The Chemnitz High Performance Linux (CHiC) cluster consists of 530 nodes,

each equipped with two AMD Opteron 2218 dual-core processors clocked with a clock rate of 2.6 GHz.

The peak performance of a single core is 5.2 GFlops/s. The nodes are interconnected by an SDR Infiniband

network and the MVAPICH 1.0 MPI library is used.

The JuRoPA cluster is built up of 2208 nodes, each consisting of two Intel Xeon X5570 (Nehalem)

quad-core processors. The processors run at 2.93 GHz leading to a peak performance of 11.72 GFlops/s per

24

Table 1: Overview of the hardware and software configuration of the parallel platforms.

Platform CPU clock Cores per MPI Interconnection

Name
CPU type

Peak Performance
Nodes

node Library Network

AMD Opteron 2218 2.6 GHz MVAPICH Infiniband
CHiC

’Santa Rosa’ 5.2 GFlops/s
530 2×2

v1.0 10 GBit/s

Intel Xeon X5570 2.93 GHz ParaStation Infiniband
JuRoPA

’Nehalem’ 11.72 GFlops/s
2208 2×4

MPI v5.0 40 GBit/s

Intel Xeon E7-4870 2.4 GHz IBM Infiniband
SuperMIG

’Westmere-EX’ 9.6 GFlops/s
205 4×10

MPI v5.2 40 GBit/s

core. A QDR Infiniband network connects the nodes and the ParaStation MPI library 5.0 is used.

The SuperMIG system consists of 205 nodes, each equipped with four Intel Xeon E7-4870 (Westmere-

EX) 10-core processors. The processors are clocked at 2.4 GHz and achieve a peak performance of 9.6

GFlops/s per core. The interconnection is a QDR Infiniband network and the IBM MPI 5.2 library is used.

6.3. Evaluation of the ODE benchmarks

The first set of applications are solvers for systems of ordinary differential equations (ODEs). In par-

ticular, we consider the Iterated Runge-Kutta (IRK) method and the Parallel Adams-Bashforth-Moulton

(PABM) [37] method, see Fig. 4 for the CM-task specification program of the PABM method. Both methods

perform a large number of time steps one after another. Each time step computes a fixed number K of stage

vectors. Three different parallel implementations are considered: The data parallel version computes the

K stage vectors of each time step one after another using all available processors and, thus, contains several

global communication operations. The task parallel version based on standard parallel tasks computes

the K stage vectors concurrently on K disjoint equal-sized groups of processors. This restricts the task inter-

nal communication to groups of processors but leads to additional global communication for the exchange

of intermediate results between the processor groups. An illustration of the task graph for two time steps

25

20000 180000 320000 500000 720000 980000
0

0.5

1

1.5

2

2.5

3

ODE system size

ti
m

e
 p

e
r

s
te

p
 i
n

 s
e

c
.

IRK+PABM methods for BRUSS2D on CHiC (256 Cores)

IRK method (K=4) data parallel

IRK method (K=4) task parallel (parallel tasks)

IRK method (K=4) task parallel (CM−tasks)

PABM method (K=8) data parallel

PABM method (K=8) task parallel (parallel tasks)

PABM method (K=8) task parallel (CM−tasks)

20000 320000 720000 980000 1280000 1620000 2000000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ODE system size

ti
m

e
 p

e
r

s
te

p
 i
n
 s

e
c
.

IRK+PABM methods for BRUSS2D on JuRoPA (256 Cores)

IRK method (K=4) data parallel

IRK method (K=4) task parallel (parallel tasks)

IRK method (K=4) task parallel (CM−tasks)

PABM method (K=8) data parallel

PABM method (K=8) task parallel (parallel tasks)

PABM method (K=8) task parallel (CM−tasks)

Figure 9: Measured execution times for a single time step of the IRK method with K = 4 stage vectors and the PABM method with

K = 8 stage vectors on 256 processor cores of the CHiC cluster (left) and the JuRoPA cluster (right).

and K = 3 stage vectors is shown in Fig. 1 (b). In the task parallel version based on CM-tasks a single

CM-task computes a specific stage vector over all time steps, see Fig. 1 (c) for an illustration of the CM-task

graph. The data exchange between the individual CM-tasks at the end of each time step is organized in com-

munication phases modeled by C-relations and is implemented using orthogonal communication [31]. All

program versions are implemented in C and use the MPI library for communication between the processors.

Two different ODE systems have been used for the benchmarks. The first ODE system results from the

spatial discretization of the 2D Brusselator equation (BRUSS2D) [14]. The second ODE system arises from

a Galerkin approximation of a Schrödinger-Poisson system (SCHROED). The time required to evaluate

the entire ODE system depends linearly (BRUSS2D) or quadratically (SCHROED) on the size of the ODE

system.

Figure 9 shows the average execution times of one time step of the IRK and PABM methods for the

BRUSS2D system. The average has been computed by dividing the total execution time by the number of

time steps performed. A typical integration may consist of tens of thousands of time steps, thus leading

to a large overall execution time. The measurements show that a standard data parallel implementation

leads to lower execution times compared to standard parallel tasks for the IRK method because additional

data re-distribution operations are avoided. For the PABM method, the task parallel version with standard

parallel tasks leads to lower runtimes than pure data parallelism because the stage vector computations are

decoupled from each other and, thus, much fewer data re-distribution operations are required than for the

IRK method. The lowest execution times are achieved by the task parallel version based on CM-tasks for

26

64 128 192 256 384 512 640 768 896 1024
0

100

200

300

400

500

600

700

number of processor cores

to
ta

l
p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

IRK (K=4) for SCHROED (d=120002) on CHiC

data parallel

task parallel (parallel tasks)

task parallel (CM−tasks)

64 128 192 256 384 512 640 768 896 1024
0

100

200

300

400

500

600

700

number of processor cores

to
ta

l
p

e
rf

o
rm

a
n

c
e

 i
n

 G
F

lo
p

s
/s

PABM (K=8) for SCHROED (d=120002) on JuRoPA

data parallel

task parallel (parallel tasks)

task parallel (CM−tasks)

Figure 10: Performance of the IRK method with K = 4 stage vectors on the CHiC cluster (left) and of the PABM method with

K = 8 stage vectors on the JuRoPA cluster (right) for the SCHROED system.

both, the IRK and the PABM method. For example, the runtime of the data parallel implementation of the

IRK method on the CHiC cluster can be reduced to one fifth by employing CM-tasks.

Figure 10 shows the total performance measured for IRK and PABM methods for the SCHROED sys-

tem. The results show that especially on a large number of processors an efficient organization of the data

exchanges as it is provided by the CM-task model is required to obtain a high performance. This is espe-

cially true for the CHiC cluster because the interconnection is slower than on the JuRoPA cluster. Compared

to a sequential execution, the CM-task implementation achieves a speedup of up to 465 (IRK on 1024 cores

of the CHiC cluster) and of up to 790 (PABM on 1024 cores of the JuRoPA cluster).

Figure 11 (left) compares the performance of the CM-task program version produced by the CM-task

compiler with a handwritten CM-task implementation. The relative performance shown in the figure has

been obtained by dividing the average execution time of the handwritten version by the runtime of the

generated version. The overhead of the generated version is mainly caused by the data re-distribution

operations which are implemented by collective communication in the handwritten version and by point-to-

point communication in the generated version. The overhead decreases from 20% (for small ODE systems)

to under 2% (for large ODE systems) because the share of the coordination code in the total execution time

decreases with the system size.

27

80000 320000 720000 1280000 2000000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ODE system size

re
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

IRK (K=4) for BRUSS2D on 256 cores

task parallel (CM−tasks, handwritten) on CHiC

task parallel (CM−tasks, generated) on CHiC

task parallel (CM−tasks, handwritten) on JuRoPA

task parallel (CM−tasks, generated) on JuRoPA

64 96 128 192 256 320 384 448 512 640 768 896
0

200

400

600

800

1000

1200

number of processor cores

to
ta

l
p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

LU−MZ benchmark class D (mesh 1632x1216x34)

data parallel on CHiC

task parallel (16 CM−tasks) on CHiC

data parallel on JuRoPA

task parallel (16 CM−tasks) on JuRoPA

Figure 11: Relative performance of the generated version of the IRK method compared to a handwritten implementation (left) and

performance of the LU-MZ benchmark (right).

6.4. Evaluation of the NAS benchmarks

The second set of applications is taken from the NAS Parallel Multi-Zone (NAS-MZ) benchmark

suite [38]. These benchmarks compute the solution of flow equations on a three-dimensional discretiza-

tion mesh that is partitioned into zones. One time step consists of independent computations for each zone

followed by a border exchange between neighboring zones. The original implementation uses OpenMP for

the computations within the zones and MPI for the data exchanges between zones. For the purpose of this

article we use a modified version that uses MPI also within the zones and thus allows more flexible schedul-

ing decisions on cluster systems. Two different implementations are considered: The data parallel version

uses all processors to compute the individual zones one after another. The task parallel version uses a set

of CM-tasks each implementing the computations of a subset of the zones and C-relations to model the

border exchanges between zones assigned to different CM-tasks. Due to the C-relations all CM-tasks form

a single super-task. Thus, the scheduling algorithms CM-Layer, CM-CPA, and CM-CPR compute identical

schedules.

Figure 11 (right) shows the measured performance of the LU-MZ benchmark that consists of 16 equal-

sized zones leading to 16 equal-sized processor groups in the CM-task implementation. For a low number

of cores, data parallelism leads to a better performance on both platforms due to a better utilization of the

cache and the avoidance of communication for the border exchanges. For a high number of cores, the

implementation with CM-tasks shows a much better scalability because the number of cores per zone is

28

256 384 512 640 768 896 1024
0

50

100

150

200

250

300

350

number of processor cores

to
ta

l
p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

SP−MZ benchmark class C (mesh 480x320x28)

data parallel on CHiC

task parallel (16 CM−tasks) on CHiC

task parallel (64 CM−tasks) on CHiC

task parallel (256 CM−tasks) on CHiC

256 384 512 640 768 896 1024
0

100

200

300

400

500

number of processor cores

to
ta

l
p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

BT−MZ benchmark class C (mesh 480x320x28)

data parallel on CHiC

task parallel (16 CM−tasks) on CHiC

task parallel (64 CM−tasks) on CHiC

task parallel (256 CM−tasks) on CHiC

Figure 12: Performance of the SP-MZ (left) and the BT-MZ (right) benchmarks for different arrangements of zones into CM-tasks.

smaller leading to smaller overall synchronization and waiting times.

Figure 12 shows the performance of the SP-MZ and BT-MZ benchmarks which both define 256 zones

in class C. We compare program versions with 16, 64, and 256 CM-tasks where each CM-task computes 16,

4, and 1 zones one after another, respectively. Data parallel implementations are not competitive for these

benchmarks, because the individual zones do not contain enough computations to employ a large number

of cores. The number of cores per zone is much smaller in the task parallel versions leading to a much

higher performance. In the SP-MZ benchmark all zones have the same size and, thus, equal-sized processor

groups are used to execute the CM-tasks. This is only possible when the number of processor cores is a

multiple of the number of CM-tasks. In all other cases, load imbalances between the processor groups lead

to a degradation of the performance. For example, the program version with 256 CM-tasks has almost the

same performance on 512 as on 640 processor cores.

The zones in the BT-MZ benchmark have different sizes and, thus, the assignment of an equal amount

of workload to each processor by the load balancing from Alg. 1 is important. For example, the program

version with 256 CM-tasks suffers from load imbalances on 256 cores. These imbalances cannot be elim-

inated because one core has to be used for each CM-task. On 512 cores, the performance of the program

version is approximately 3.7 times higher than on 256 cores. This result indicates that the load imbalances

have been reduced considerably.

Next, we compare different super-task scheduling decisions for the SP-MZ and BT-MZ benchmarks.

For this purpose, we assign each zone to a separate CM-task and model only a subset of the border ex-

29

64 128 256 384 512 640 768 896 1024
0

200

400

600

800

1000

1200

number of processor cores

p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

SP−MZ benchmark class C on SuperMIG

1 CM−task/super−task, CM−Layer
1 CM−task/super−task, CM−CPA

1 CM−task/super−task, CM−CPR
16 CM−tasks/super−task, CM−Layer
16 CM−tasks/super−task, CM−CPA

16 CM−tasks/super−task, CM−CPR
256 CM−tasks/super−task, CM−Layer

64 128 256 384 512 640 768 896 1024
0

200

400

600

800

1000

1200

number of processor cores

p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

BT−MZ benchmark class C on SuperMIG

1 CM−task/super−task, CM−Layer
1 CM−task/super−task, CM−CPA

1 CM−task/super−task, CM−CPR
16 CM−tasks/super−task, CM−Layer
16 CM−tasks/super−task, CM−CPA

16 CM−tasks/super−task, CM−CPR
256 CM−tasks/super−task, CM−Layer

Figure 13: Performance of the SP-MZ (left) and the BT-MZ (right) benchmarks for different scheduling algorithms.

changes with C-relations. The border exchanges not captured by C-relations are performed by an additional

global communication step at the end of each time step. The resulting overhead is small compared to the

computation time for a single zone. Depending on the number of C-relations used, different numbers of

super-tasks result which are independent of each other. We consider program versions with 1 CM-task per

super-task, i.e., no C-relations at all, 16 CM-tasks per super-task, and 256 CM-tasks per super-task, i.e., the

program version with 256 CM-tasks used for the benchmarks in Fig. 12.

Figure 13 shows the resulting performance for the different scheduling algorithms. Using 256 CM-

tasks per super-task leads to a single super-task and, thus, all algorithms compute the same schedule. The

results show that the algorithms CM-Layer and CM-CPR are successful in computing an efficient execution

scheme. The schedules produced by CM-CPA are competitive in some situations, e.g., for the SP-MZ

benchmark executed on 1024 processor cores. But in other cases CM-CPA may also deliver schedules that

lead to a much lower overall performance, e.g., for the BT-MZ benchmark executed on 1024 processor

cores. The reason for this behavior is the decoupling of the allocation step from the scheduling step in

CM-CPA. As a result, the allocation step may assign a number of processors to the super-tasks that prevents

the scheduling step to use all available processors for the execution of independent super-tasks leading to a

substantial amount of unused processor time.

30

7. Related Work

There exists a variety of programming models and software tools with the support of mixed task and

data parallel applications, see [1, 4, 8, 34] for an overview. The approaches can roughly be classified into

language extensions, parallel libraries, and coordination-based approaches. Language extensions are based

on an existing programming language with additional annotations or language constructs to describe mixed

parallel executions. The basis is usually either a data parallel language that is extended by task parallel

constructs, or a task parallel language that is extended with support for data parallelism. Examples for

language extensions are Fortran M [11], Opus [5], and Fx [35]. In these approaches, the programmer is

responsible for the coordination of the individual data parallel program parts, i.e., the parallel tasks. The

dependencies between the individual parallel tasks are defined implicitly in the respective source program.

In contrast, the CM-task framework includes an explicit specification language that can be transformed to

an explicit coordination structure represented in the form of CM-task graphs. The explicit coordination

enables a global scheduling, i.e., the adaption to a specific parallel platform can be supported by software

tools.

Parallel libraries can support mixed parallel executions by providing suitable library functions, e.g., to

coordinate or synchronize data parallel tasks, to manage processor groups and support the execution of

data parallel tasks on these groups, or to re-distribute parallel data structures between groups of processors.

Examples for such libraries are the HPF/MPI library [12] that allows the coupling of multiple data parallel

HPF programs, and the TLib library [33] that provides support for the concurrent execution of parallel

tasks on disjoint groups of processors. The TLib approach is especially suited for hierarchical divide-and-

conquer algorithms. Similar to the language extensions, the coordination structure is implicit and there is

no scheduling support for the entire application.

Coordination-based approaches have an explicit coordination structure that provides a global view on

the entire application. Paradigm [30] is a parallelizing compiler, which extracts the parallel task graph

from annotations in the program source code. Network of tasks [26] is a programming model in which

a parallel application is specified in form of a directed acyclic graph where each graph node represents a

parallel program. Both approaches include a scheduler for the mapping of the task graph to different parallel

platforms. The interactions between the tasks are restricted to input-output relations. The CM-task model

considered in this article is an extension of these approaches which captures additional communication

patterns that are modeled by communication relations.

31

The determination of an optimal schedule for an application consisting of parallel tasks with precedence

constraints is an NP-hard problem that is usually solved by scheduling heuristics or approximation algo-

rithms [22]. In this article, we have proposed a layer-based scheduling algorithm that first decomposes a

given task graph into layers of independent tasks and then schedules the resulting layers one after another

using a list scheduling approach. Many other scheduling algorithms for parallel task use a two-step ap-

proach consisting of an allocation step that determines the number of processors for each parallel task and

a scheduling step that assigns the parallel tasks to specific sets of processors. The scheduling step is usually

based on a modified list scheduling algorithm. The allocation step often uses an iterative approach that

starts with an initial allocation (usually one processor per parallel tasks) and repeatedly assigns additional

processors with the goal to shorten the critical path of the task graph until a specific stopping criterion is

reached. Examples for such algorithms are CPR [28], CPA [29], MCPA [2], Loc-MPS [39] and RATS [18].

These algorithms can easily be extended to the CM-task scheduling problem as described in Subsect. 5.4.2.

TSAS [30] defines a convex optimization problem that has to be solved in the allocation step. An alternative

to this two step approach is to use evolutionary algorithms for the entire scheduling decision [10, 17]. A

work stealing approach for the online scheduling of parallel tasks in a shared address space has been in-

vestigated in [40]. All of the above mentioned algorithms have been designed for the standard parallel task

model and, thus, have to be adapted to additionally consider the C-relations of the CM-task model.

8. Conclusions

In this article, we have presented a parallel programming model with mixed task and data parallelism for

coding modular applications. This model is based on parallel tasks where each parallel task can be executed

on an arbitrary set of processors and may be hierarchically decomposed into further parallel tasks. Existing

programming models for parallel tasks usually consider task graphs with input-output dependencies (prece-

dence constraints). We have extended these models by additionally supporting communication between

concurrently running parallel tasks. The extended model captures two types of dependencies, input-output

dependencies and communication dependencies, thus providing a more flexible way to structure complex

modular applications.

The development of applications in the extended model is supported by a compiler framework that

transforms a user-provided specification of the task interactions into an executable parallel program. The

framework includes a static scheduler that computes a suitable execution scheme based on the characteristics

32

of the target platform. This approach relieves the programmer from the need to specify an explicit task

mapping and leads to a portability of the application performance. For the scheduling decision, scheduling

algorithms for parallel tasks have to be modified to fit the needs of the extended model. These modifications

have been illustrated for layer-based as well as critical-path based scheduling approaches. The overhead

of applying the transformation tool is small compared to the performance improvement achievable, thus

combining performance efficiency and programmability.

References

[1] H. Bal, M. Haines, Approaches for Integrating Task and Data Parallelism, IEEE Concurrency 6 (1998) 74–84.

[2] S. Bansal, P. Kumar, K. Singh, An Improved Two-step Algorithm for Task and Data Parallel Scheduling in Distributed

Memory Machines, Parallel Comput. 32 (2006) 759–774.

[3] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin, J. Sancho, Using Performance Modeling to Design Large-

Scale Systems, IEEE Computer 42 (2009) 42–49.

[4] S. Chakrabarti, K. Yelick, J. Demmel, Models and Scheduling Algorithms for Mixed Data and Task Parallel Programs, J.

Parallel Distrib. Comput. 47 (1997) 168–184.

[5] B. Chapman, M. Haines, P. Mehrota, H. Zima, J. Van Rosendale, Opus: A coordination language for multidisciplinary

applications, Scientific Programming 6 (1997) 345–362.

[6] E. Davidson, T. Cormen, Building on a Framework: Using FG for More Flexibility and Improved Performance in Parallel

Programs, in: Proc. of the 19th IEEE Int. Parallel and Distributed Processing Symposium (IPDPS’05), IEEE Computer

Society, Washington, DC, USA, 2005, pp. 54–63.

[7] J. Dinan, D. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha, Scalable work stealing, in: Proc. 21st Intl. Conf. on

Supercomputing (SC ’09), ACM, 2009.

[8] J. Dümmler, T. Rauber, G. Rünger, Mixed Programming Models using Parallel Tasks, in: Dongarra, Hsu, Li, Yang, Zima

(Eds.), Handbook of Research on Scalable Computing Technologies, Information Science Reference, 2009, pp. 246–275.

[9] J. Dümmler, T. Rauber, G. Rünger, Semi-dynamic Scheduling of Parallel Tasks for Heterogeneous Clusters, in: Proc. of the

10th Int. Symp. on Parallel and Distributed Computing (ISPDC’11), IEEE, 2011, pp. 1–8.

[10] U. Fissgus, Scheduling Using Genetic Algorithms, in: Proc. of the 20th International Conference on Distributed Computing

Systems (ICDCS’00), IEEE, 2000, pp. 662–669.

[11] I. Foster, K. Chandy, Fortran M: A Language for Modular Parallel Programming, Journal of Parallel and Distributed Com-

puting 26 (1995) 24–35.

[12] I. Foster, D. Kohr, R. Krishnaiyer, A. Choudhary, Double Standards: Bringing Task Parallelism to HPF Via the Message

Passing Interface, in: Proc. of the 1996 ACM/IEEE Conference on Supercomputing (SC’96), IEEE, 1996.

[13] M. Frigo, C. Leiserson, K. Randall, The Implementation of the Cilk-5 Multithreaded Language, SIGPLAN Notices 33 (1998)

212–223.

[14] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin

Heidelberg New York, 2nd edition, 1993.

33

[15] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag,

Berlin Heidelberg New York, 2nd edition, 1996.

[16] R. Hoffmann, T. Rauber, Adaptive Task Pools: Efficiently Balancing Large Number of Tasks on Shared-address Spaces,

International Journal of Parallel Programming 39 (2011) 553–581.

[17] S. Hunold, J. Lepping, Evolutionary Scheduling of Parallel Tasks Graphs onto Homogeneous Clusters, in: Proc. of the IEEE

Conference on Cluster Computing (CLUSTER ’11), IEEE, 2011, pp. 344–352.

[18] S. Hunold, T. Rauber, F. Suter, Redistribution Aware Two-step Scheduling for Mixed-parallel Applications, in: Proc. of the

2008 IEEE International Conference on Cluster Computing (CLUSTER ’08), IEEE, 2008, pp. 50–58.

[19] M. Kühnemann, T. Rauber, G. Rünger, A Source Code Analyzer for Performance Prediction, in: Proc. of the IPDPS ’04

Workshop on Massively Parallel Processing (WMPP’04), IEEE, 2004.

[20] M. Kühnemann, T. Rauber, G. Rünger, Performance Modelling for Task-Parallel Programs, in: M. Gerndt, V. Getov,

A. Hoisie, A. Malony, B. Miller (Eds.), Performance Analysis and Grid Computing, Kluwer, 2004, pp. 77–91.

[21] D. Leijen, W. Schulte, S. Burckhardt, The design of a task parallel library, in: Proc. of the 24th ACM SIGPLAN conference

on Object oriented programming systems languages and applications (OOPSLA’09), ACM, 2009, pp. 227–242.

[22] J.T. Leung (Ed.), Handbook of Scheduling: Algorithms, Models, and Performance Analysis, CRC Press, Inc., Boca Raton,

FL, USA, 2004.

[23] G. Melancon, I. Dutour, M. Bousquet-Melou, Random Generation of Dags for Graph Drawing, Technical Report INS-R0005,

Dutch Research Centre for Mathematics and Computer Science (CWI), Amsterdam, 2000.

[24] T. N’takpé, F. Suter, H. Casanova, A Comparison of Scheduling Approaches for Mixed-Parallel Applications on Heteroge-

neous Platforms, in: 6th International Symposium on Parallel and Distributed Computing, IEEE Computer Press, Hagenberg,

Austria, 2007.

[25] OpenMP, OpenMP Application Program Interface, Version 3.0, www.openmp.org, 2008.

[26] S. Pelagatti, D. Skillicorn, Coordinating Programs in the Network of Tasks Model, Journal of Systems Integration 10 (2001)

107–126.

[27] J. Perez, R. Badia, J. Labarta, A Dependency-Aware Task-Based Programming Environment for Multi-Core Architectures,

in: Proc. of the IEEE International Conference on Cluster Computing (CLUSTER ’08), IEEE, 2008, pp. 142–151.

[28] A. Radulescu, C. Nicolescu, A. van Gemund, P. Jonker, CPR: Mixed Task and Data Parallel Scheduling for Distributed

Systems, in: Proc. of the 15th International Parallel & Distributed Processing Symposium (IPDPS ’01), IEEE, 2001.

[29] A. Radulescu, A. van Gemund, A Low-Cost Approach towards Mixed Task and Data Parallel Scheduling, in: Proc. of the

International Conference on Parallel Processing (ICPP ’01), IEEE, 2001, pp. 69–76.

[30] S. Ramaswamy, S. Sapatnekar, P. Banerjee, A Framework for Exploiting Task and Data Parallelism on Distributed Memory

Multicomputers, IEEE Transactions on Parallel Distributed Systems 8 (1997) 1098–1116.

[31] T. Rauber, R. Reilein, G. Rünger, Group-SPMD Programming with Orthogonal Processor Groups, Concurrency and Compu-

tation: Practice and Experience, Special Issue on Compilers for Parallel Computers 16 (2004) 173–195.

[32] T. Rauber, G. Rünger, Compiler Support for Task Scheduling in Hierarchical Execution Models, Journal of Systems Archi-

tecture 45 (1998) 483–503.

[33] T. Rauber, G. Rünger, Tlib - A Library to Support Programming with Hierarchical Multi-Processor Tasks, J. of Parallel and

Distributed Computing 65 (2005) 347–360.

34

[34] D. Skillicorn, D. Talia, Models and Languages for Parallel Computation, ACM Computing Surveys 30 (1998) 123–169.

[35] J. Subhlok, B. Yang, A new model for integrated nested task and data parallel programming, in: Proceedings of the sixth

ACM SIGPLAN symposium on Principles and practice of parallel programming, ACM Press, 1997, pp. 1–12.

[36] E. Tejedor, M. Farreras, D. Grove, R. Badia, G. Almasi, J. Labarta, ClusterSs: a Task-based Programming Model for Clusters,

in: Proc. of the 20th Int. Symposium on High Performance Distributed Computing (HPDC’11), ACM, 2011, pp. 267–268.

[37] P. van der Houwen, E. Messina, Parallel Adams Methods, Journal of Computational and Applied Mathematics 101 (1999)

153–165.

[38] R. van der Wijngaart, H. Jin, The NAS Parallel Benchmarks, Multi-Zone Versions, Technical Report NAS-03-010, NASA

Ames Research Center, 2003.

[39] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, Ü. Çatalyürek, T. Kurç, P. Sadayappan, J. Saltz, An Integrated Approach to

Locality-Conscious Processor Allocation and Scheduling of Mixed-Parallel Applications, IEEE Trans. Parallel Distrib. Syst.

20 (2009) 1158–1172.

[40] M. Wimmer, J. Träff, Work-stealing for Mixed-mode Parallelism by Deterministic Team-building, in: Proc. of the 23rd ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA’11), ACM, 2011.

35

