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Abstract

Recent and future parallel clusters and supercomputers use symmetric

multiprocessors (SMPs) and multi-core processors as basic nodes, providing

a huge amount of parallel resources. These systems often have hierarchically

structured interconnection networks combining computing resources at dif-

ferent levels, starting with the interconnect within multi-core processors up

to the interconnection network combining nodes of the cluster or supercom-

puter. The challenge for the programmer is that these computing resources

should be utilized efficiently by exploiting the available degree of parallelism

of the application program and by structuring the application in a way which

is sensitive to the heterogeneous interconnect.

In this article, we pursue a parallel programming method using parallel

tasks to structure parallel implementations. A parallel task can be executed

by multiple processors or cores and, for each activation of a parallel task,

the actual number of executing cores can be adapted to the specific execu-

tion situation. In particular, we propose a new combined scheduling and

mapping technique for parallel tasks with dependencies that takes the hierar-

chical structure of modern multi-core clusters into account. An experimental

evaluation shows that the presented programming approach can lead to a
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significantly higher performance compared to standard data parallel imple-

mentations.

Keywords: Scheduling, Algorithms, Performance Measurements, Par-

allel Tasks, M-tasks, Mapping, Multi-core, Scalability
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1 Introduction

Recent and future parallel clusters and supercomputers offer a very large number

of parallel processing units. The immense increase in parallelism of these architec-

tures is caused by the use of multi-core and many-core processors. Today most par-

allel machines are equipped with processors comprising two to eight cores; within

a few years a single processor is expected to provide tens or even hundreds of

execution cores. For the application programmer, the architectural development

towards multi-core systems poses the challenge to provide and implement applica-

tion codes with a suitable degree of potential parallelism. The degree of parallelism

within a parallel application code depends on the characteristics of the problem

to be solved but also on the parallel programming model used for designing and

coding the parallel application. In this article, we propose to use hierarchically

structured parallel tasks for developing application programs for such large paral-

lel systems. Each parallel task can be executed by an arbitrary number of cores or

processors; therefore, they are also called multiprocessor tasks (M-tasks).

The M-task programming model can be used to structure parallel programs in

a flexible way by expressing the available degree of task parallelism in form of

M-tasks. This can, for example, be used to combine the benefits of task and data

parallelism by using data parallelism within M-tasks and by expressing task par-

allelism as interactions between M-tasks. An M-task program is subdivided into

a set of M-tasks, each working on a different part of the application. A coordina-

tion structure (e.g. a directed acyclic graph) describes how the M-tasks cooperate

with each other and which dependencies have to be considered for a correct paral-

lel execution. The coordination structure also identifies sets of M-tasks that might

be executed concurrently with respect to each other because there are no depen-

dencies. The M-task coordination structure can be organized hierarchically. The

subdivision stops with basic M-tasks that are not further subdivided. The basic

M-tasks can be implemented using an SPMD (single program, multiple data) pro-

gramming style, e.g., by employing MPI or OpenMP, and can run on an arbitrary

number of processors or cores.

The coordination structure can be defined by an application-specific specifi-

cation that is independent of the hardware and the interconnection network of the

target platform. This decouples the specification of parallelism from the actual par-

allel execution on a specific parallel platform. Thus, the parallel execution can be

modified without changing the specification of parallelism, leading to a portabil-

ity of efficiency. For a specific target platform, the M-tasks can be executed such

that the computational work is balanced and the resulting communication over-

head is at a minimum. The advantage of this approach is that the available degree

of parallelism can be increased by defining a suitable M-task structure and that
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communication within M-tasks can be restricted to subsets of the available proces-

sors or cores. Thus, the communication overhead of the application can be reduced

especially on distributed memory platforms leading to an improved scalability.

An M-task application program and its coordination structure offer several pos-

sibilities for a parallel execution, differing in the order in which the M-tasks of a

program are executed and in the assignment of subsets of processors or cores to the

individual M-tasks for execution. These decisions are made in separate schedul-

ing and mapping steps, which use the coordination structure as input. On different

parallel architectures, different versions of the M-task program might lead to the

most efficient and scalable execution. To find an optimal M-task program version

is an NP-hard problem, which is usually solved by scheduling heuristics or approx-

imation algorithms [28]. Most of those existing M-task scheduling algorithms are

defined for homogeneous systems or distributed grid-like systems.

In previous work [18], we have developed a combined scheduling and mapping

algorithm for the execution of M-task applications on heterogeneous multi-core

platforms. In this article, we extend this approach to a broader class of applica-

tions and also consider hybrid MPI+OpenMP execution schemes. In particular, the

contribution of this article includes:

• to propose the M-task programming model as a suitable programming model

for large multi-core systems, which can increase the potential parallelism due

to a mixture of task and data parallelism;

• to suggest a combined scheduling and mapping strategy for M-task pro-

grams, which extends existing scheduling approaches for the use in hier-

archical multi-core systems;

• to investigate the performance impacts of different mapping strategies for

several benchmarks including solvers for ordinary differential equation (ODEs)

on multi-core SMP systems. One-step ODE solvers are important in scien-

tific computing but have by their nature a limited degree of parallelism; thus

it is important to provide suitable parallel implementations [9]. We also con-

sider solvers for partial differential equations (PDEs) from the NAS parallel

benchmark suite. The investigations for dual-core and quad-core systems

show that the performance of these applications is significantly impacted by

both, the scheduling decision and the mapping strategy applied.

The article is organized as follows. Section 2 gives a short description of the M-

task programming model and discusses the implementation of M-task programs.

Section 3 describes scheduling algorithms and mapping strategies for M-tasks.

Section 4 presents a detailed experimental evaluation of the mapping strategies
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for different parallel systems. Section 5 discusses related work and Section 6 con-

cludes the article.

2 M-Task Programming

This section describes the M-tasks programming model and discusses implemen-

tation approaches for designing M-task programs.

2.1 General Approach

The M-task programming model is a programming style to code parallel programs

in a mixed task and data parallel way using a set of cooperating parallel tasks (M-

tasks). An M-task is a piece of parallel program code (e.g. implemented as a

function in C or a subroutine in FORTRAN) that operates on a specific set of input

parameters and produces a specific set of output parameters. Internally, M-tasks

are implemented such that an execution on an arbitrary number of processors or

cores is possible. Therefore, there may be internal communication operations to

exchange data between the processors or cores executing the same M-task.

An M-task can be basic or composed. A basic M-task is implemented by the

application developer in an SPMD programming style, e.g., using MPI, OpenMP

or a hybrid MPI+OpenMP approach. Composed M-tasks include activations of

other basic or composed M-tasks. Thus, M-task programs can be structured hier-

archically.

There may exist input-output relations between the M-tasks that have to be

taken into consideration for the coordination of the M-tasks. An input-output rela-

tion exists between an M-task M1 and an M-task M2 if M1 produces output data

that is required as an input for M2. These relations might lead to the necessity of

data re-distribution operations if M1 and M2 are executed on different sets of cores

or if M1 produces its output in a different data distribution than expected by M2.

The data distribution of an input or output parameter of an M-task M defines how

the elements of this data structure are distributed over the set of cores executing M .

An example is the cyclic distribution of the elements of a one-dimensional array.

The structure of an M-task program can be represented by an M-task graph

GM = (V,E) which is a directed acyclic graph whose nodes represent the M-

tasks of the program. A directed edge e ∈ E connects two M-tasks M1 and M2

if there is an input-output relation between M1 and M2. Examples for M-task

graphs are the macro data-flow graphs used in the PARADIGM compiler [3] or the

SP-graphs used in the TwoL model [43]. Figure 1 (left) shows an example for an

M-task graph consisting of nine M-tasks.
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Fig. 1: (Left) Example for an M-task graph consisting of M-tasks {M1, . . . ,M9}
and directed edges denoting input-output relations between the M-tasks. (Right) Il-

lustration of a suitable M-task schedule for the example M-task graph on a platform

consisting of two nodes, each one equipped with two dual-core processors.

Typically, there exist many possible parallel execution orders for a given M-

task graph differing in the scheduling and mapping of M-tasks to subsets of cores.

If the M-tasks M1 and M2 are connected by an edge in the M-task graph the execu-

tion of M1 must have been finished and all data re-distribution operations required

between M1 and M2 must have been carried out before the execution of M2 can be

started. For independent M-tasks, i.e., M-tasks that are not connected by a path in

the M-task graph, a concurrent execution on disjoint subsets (groups) of the avail-

able cores as well as an execution one after another are possible. Figure 1 (right)

shows an illustration of a schedule for the example M-task graph.

For the parallel execution of an M-task program on a hierarchical multi-core

platform there exist several execution schemes differing in

a) the number of cores assigned to each M-task;

b) the execution order for independent M-tasks (concurrently or one after another

or a mixed order);

c) the assignment of specific processors (or cores) of the execution platform to

specific groups of cores executing M-tasks (mapping).

Different execution schemes lead to different communication patterns between the

processes of an M-task application and, thus, lead to different execution times. In

particular, different communication times may result for the communication within

the M-tasks as well as for data re-distribution operations that might be required
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between cooperating M-tasks to adjust the distribution of common data structures.

An efficient execution scheme can be selected by suitable mapping and scheduling

strategies as discussed in the next section.

2.2 Implementation of M-task programs

The decomposition of a parallel application into M-tasks is usually part of the ap-

plication design process, since the restructuring of existing monolithic applications

might be expensive. The coding of an M-task program requires the implementation

of the M-tasks and the specification of the cooperation between the M-tasks of the

parallel program. Also, the scheduling decision can be part of the program code.

There are different ways for capturing these implementation details, including lan-

guage extensions, library-based approaches and coordination-based approaches.

In the following, we discuss some important issues concerning the specification,

scheduling and execution of M-task programs.

2.2.1 Specification of M-task programs

Depending on the programming approach, the coordination structure of the M-task

program, i.e., the M-task graph, can be implicit or explicit. An implicit coordina-

tion structure exists when the entire program is coded by hand, e.g., using MPI.

In this case, the programmer is responsible for the construction of the groups of

cores, the execution of the M-tasks on these groups, and the execution of the data

re-distribution operations.

For an explicit coordination structure, a suitable programming tool is required

that allows the formulation of interactions between M-tasks according to a graph

structure as depicted in Fig. 2. One possibility is to use a coordination language

with operators expressing dependencies (or independencies) between M-tasks of

a parallel program. The dependencies can be given by the names of the variables

causing the input-output relations. Such a tool is the TwoL compiler [43] or its

successor, the CM-task compiler [17], in which the coordination structure can be

expressed using appropriate coordination constructs. The resulting specification

program is not executable, but is translated into a final C with MPI program. A

translation into other parallel languages is also possible. Other coordination-based

approaches include the network of Tasks model [36], the performance-aware com-

position framework [24] as well as the Paradigm compiler [40]. These approaches

provide the advantage of decoupling the specification from the execution on a spe-

cific parallel platform. Thus, the programmer is relieved to consider any platform-

specific details such as the determination of a suitable schedule. Moreover, the

communication between M-tasks, i.e. the data re-distribution operations resulting
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Fig. 2: Illustration of the programming with M-tasks: (a) the M-tasks M1,M2,M3

define or use data A or B; (b) the coordination structure describes the relations

between the M-tasks: M2 uses data A defined by M1 and M3 uses data B defined

by M1; (c) scheduling of M1,M2, and M3 with re-distribution for data A and B
and a concurrent execution of M2 and M3 on subgroups G2 and G3, respectively.

from the input-output relations, can be inserted by the compiler tool resulting in

a reduced implementation effort compared to an implicit coordination structure.

In this article, we assume an explicit coordination structure that is defined using a

specification program, see Sect. 2.2.3 for an example.

2.2.2 Scheduling

The translation of an M-task specification into the final executable program de-

pends on the scheduling decision. A scheduling of the M-tasks of an M-task pro-

gram determines a relative order of the execution of the M-tasks. Since the M-tasks

are parallel program codes, this includes the assignment of a group of cores to M-

tasks. Constraints of the scheduling are the input-output relations between different

M-tasks as well as the total number of cores assigned to the entire parallel program:

M-tasks with input-output relations have to be executed one after another, and M-

tasks executed in parallel are assigned to disjoint subsets of the available set of

cores, such that the total size cannot exceed the number of cores available.

In principle, the scheduling can be planned statically or dynamically during

program execution. For a static scheduling, the M-task graph must be known before

program start. The static case has the advantage that a sophisticated scheduling

algorithm can be applied to the complete M-task graph. The static scheduling can

be computed by hand and the resulting schedule can be included directly in the

application program. This approach is sometimes useful for M-task programs that

are solely written in MPI. A static scheduling can also be determined by a compiler

tool. In this case, it is beneficial to make the coordination of the M-tasks explicit,

e.g., in form of an M-task graph, so that the scheduling decision can be expressed in

form of a suitable coordination program before the translation into the final parallel
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program.

For a dynamic scheduling, subsets of cores are assigned to M-tasks at runtime,

depending on the availability of free cores. This approach can also handle the dy-

namic or recursive creation of M-tasks, which is suitable for adaptive computations

or divide-and-conquer algorithms. The Tlib library supports such applications [44].

In this article, we consider the static case.

2.2.3 Example

As an example for M-task programs, we consider the numerical solution of initial

value problem (IVPs) of systems of ordinary differential equations (ODEs), which

are problems of the form:

y′(t) = f(t,y(t)), y(t0) = y0

where f : R × Rn → R
n is a given real-valued vector function (right-hand-side

function), y : R→ R
n is the unknown solution function, and y0 is the given initial

value of the solution function at time t0.

Numerical solution methods for ODE IVPs perform a time-stepping procedure

consisting of a potentially large number of discrete time steps κ = 0, 1, 2, . . . cor-

responding to time tκ. Starting at time t0 with the initial approximation η0 =
y(t0) = y0, a new approximation ηκ+1 is computed at each time step κ using

the previous approximation ηκ and, depending on the specific method, additional

approximations computed previously. The procedure repeats until the end of the

integration interval [t0, te] is reached. The local error is estimated at each time

step and the step size hκ = tκ+1 − tκ is adapted accordingly such that a specified

accuracy is maintained.

In the following, we consider an extrapolation method, which is an explicit

one-step solution method for systems of ODEs. One time step of this method

computes R approximations using R different step sizes h1, . . . , hR and combines

these approximations into a final approximation of higher order. The i-th approx-

imation is computed by the consecutive execution of i micro steps using step size

hκ/i, i = 1, . . . , R for each micro step. The micro steps of the same approximation

have to be computed one after another, but the micro steps of different approxima-

tions are independent of each other.

The extrapolation method can be implemented using three different basic M-

tasks. The step size h and the time index t are initialized by M-task init step.

The M-task step computes a single micro step, and the M-task combine is re-

sponsible the determination of the final approximation vector of a time step and for

the computation the time index and step size for the next time step.
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1 c o n s t R = 4 ; / / number o f a p p r o x i m a t i o n s

c o n s t Tend = . . . ; / / end o f i n t e g r a t i o n i n t e r v a l

3 cmmain EPOL ( e t a k : v e c t o r : i n o u t : r e p l i c ) {
/ / d e f i n i t i o n o f l o c a l v a r i a b l e s

5 var t , h : s c a l a r ; / / t i m e and s t e p s i z e

var V : R v e c t o r s ; / / a p p r o x i m a t i o n v e c t o r s

7 var i , j : i n t ;

/ / module e x p r e s s i o n

9 seq {
i n i t s t e p ( t , h ) ;

11 whi le ( t < Tend ) { / / t i m e s t e p p i n g lo o p

seq {
13 pa rfo r ( i = 1 :R) {

f o r ( j = 1 : i ) {
15 s t e p ( j , i , t , h , e t a k ,V[ i ] ) ; } }

combine ( t , h , V, e t a k ) ;

17 } } } }

Fig. 3: Specification program for the extrapolation method.

Figure 3 shows a specification program of the composed M-task EPOL for the

CM-task compiler [17]. The module expression (lines 9-16) defines possible exe-

cution orders of the M-tasks. The operator seq specifies an execution one after an-

other due to input-output relations. The operators for and parfor define loops

with or without input-output relations between loop iterations, respectively. The

declarations of the data types (scalar, vector and Rvectors), data distribu-

tion types (replic) and the interfaces of the basic M-tasks have been omitted in

the figure. In general, the CM-task compiler supports multidimensional arrays as

data types and arbitrary block-cyclic distributions over multidimensional processor

meshes as data distribution types.

The CM-task compiler extracts two M-task graphs from the specification of

the extrapolation method. In the first (upper level) M-task graph, the entire while

loop (lines 11-16) is represented by a single node. The second (lower level) M-task

graph represents the body of the while loop, i.e., one time step of the extrapola-

tion method. Figure 4 shows an illustration of these graphs for R = 4 approxima-

tion vectors. Loop unrolling has been used for both, the parfor loop (line 13)

and the for loop (line 14). The M-task graphs constructed include a unique start

node and a unique stop node that are inserted automatically to mark the start or the

end of the execution, respectively. The nodes representing M-task step include

a pair (i, j) of numbers giving the iteration of the i (parfor) loop and j (for)

loop, respectively.
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Fig. 4: Hierarchical M-task graph produced by the CM-task Compiler from the

specification program from Fig. 3 for R = 4.

The M-task graphs are scheduled using a hierarchical approach, which means

that the available processors or cores for scheduling the lower level M-task graph

are determined by the processors or cores assigned to the while loop in the sched-

ule of the upper level M-task graph. The advantage of this hierarchical approach

is that the M-task graphs constructed are acyclic, since the information on the re-

peated execution of the loop body is encoded in the node representing the entire

loop. In the following, we focus on the scheduling and mapping of a single non-

hierarchical M-task graph.

3 Scheduling and Mapping

Executing an M-task program on a hierarchical multi-core machine requires sev-

eral steps: scheduling the execution order of the M-tasks, determining the number

of cores assigned to each M-task and mapping the M-tasks to specific cores. In

the following, we assume that the individual M-tasks of the application are imple-

mented for distributed memory, e.g., using a pure MPI or a hybrid MPI+OpenMP

implementation. Thus, an M-task is assumed to be executable by processor cores

located on different nodes of the parallel architecture. If multiple cores of the

same node are assigned to a hybrid MPI+OpenMP M-task by the scheduling and

mapping procedure, a single MPI process and an appropriate number of OpenMP
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threads is started on this node.

3.1 Cost Model for M-tasks

The scheduling decision is based on the following cost model for the execution

times of the M-tasks: The costs T of a single M-task M depend on the compu-

tational work of M , the number of cores used for the execution of M , and the

mapping pattern describing the interconnection of the cores used for the execution.

The costs of M for q cores is assumed to be

T (M, q,mp) = Tcomp(M)/q + Tcomm(M, q,mp)

where the computational work is captured by the sequential execution time Tcomp

(M) divided by the number of cores q. The total internal communication time

Tcomm(M, q,mp) depends on the mapping pattern mp. For the computational part

a linear speedup is assumed, ignoring performance effects resulting from the mem-

ory hierarchy or load imbalances between cores executing the same M-task. This

assumption facilitates the derivation of a cost expression while still maintaining a

good accuracy, see e.g. [25] for a comparison of predicted and measured execution

times for the ODE solvers studied in this article. Other types of applications might

require a more sophisticated performance model. This can be incorporated into the

scheduling and mapping approach presented in this article by using an appropriate

cost function.

For example, the costs for M-task step, which computes a micro step of the

extrapolation method (see Subsect. 2.2.3) can be approximated by function

T (step, p,mp) =
n(2top + teval(f))

q
+ Tmb(q, n,mp).

In this function, top denotes the average execution time of an arithmetic operation,

teval(f) is the time required to evaluate a single ODE from the ODE system f of

size n, and Tmb(q, n,mp) is the communication time of a multi-broadcast opera-

tion depending on the number of participating cores q, the size of transmitted data

n and the mapping pattern mp.

Additional data re-distribution costs TRe(M1,M2, q1, q2,mp1,mp2) may also

occur between cooperating M-tasks M1 and M2 where Mi is executed by qi cores

using mapping pattern mpi, i = 1, 2. Re-distribution costs are determined by the

size of data transmitted between M1 and M2, and the startup and byte-transfer time

of the interconnection network.
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3.2 Scheduling Algorithm

The scheduling algorithm determines the execution order for the M-tasks of a task

graph. In particular, the scheduling algorithm decides whether independent M-

tasks are executed concurrently to each other using disjoint groups of execution

cores or whether a sequential execution is used, employing all available execution

cores for each of the independent M-tasks one after another. The algorithm as-

sumes that each M-task is executed within a specific execution time interval by the

assigned cores. The distribution of the workload among these cores and the load

balancing between these cores are not part of this algorithm.

In the following, we use a layer-based scheduling algorithm which partitions

the M-task graph into layers of independent M-tasks and schedules the layers one

after another [42]. The algorithm proceeds in three steps: In the first step, the

algorithm identifies linear chains of M-tasks in the M-task graph G = (V,E) and

replaces each chain with a single node. A linear chain is a subgraph of G consisting

of n, n ≥ 2, nodes with the following properties:

- There is a unique entry node that precedes all other nodes of the linear chain.

- There is a unique exit node that succeeds all other nodes of the linear chain.

- All nodes of the chain except the entry node have exactly one predecessor that

is also part of the linear chain.

- All nodes of the chain except the exit node have exactly one successor that is

also part of the linear chain.

A linear chain is of maximum size if it is not possible to add an additional node

to this chain without violating one of the conditions stated above. Each chain of

maximum size is replaced by a single node; the costs are the accumulated com-

putation and communication costs of the M-tasks included. This step can reduce

the number of nodes in an M-task graph and also guarantees that the M-tasks of

the same linear chain are scheduled onto the same set of cores, so that expensive

data re-distribution operations between these M-tasks can often be avoided. For

example, in the M-task graph for one time step of the extrapolation method from

Subsect. 2.2.3 (see also Fig. 4), the micro steps of the same approximation form a

linear chain, see Fig. 5 (left) for an illustration.

In the second step, the scheduling algorithm partitions the M-task graph into

layers of independent M-tasks. For this purpose, a greedy algorithm runs over the

M-task graph in a breadth-first manner and puts as many independent nodes as

possible in the current layer. This approach is especially useful for applications

that consist of multiple consecutive phases, each consisting of a set of independent

M-tasks. An example are the solvers for systems of ODEs considered in Sect. 4.2.

In general, the greedy approach constructs layers with as many M-tasks as possible

and, thus, provides great flexibility for the scheduling decision. Figure 5 (right)
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Fig. 5: (Left) Identification of the linear chains in the M-task graph for one time

step of the extrapolation method. The nodes replacing the linear chains are depicted

as rectangles. (Right) Partitioning of the M-task graph (after replacement of the

linear chains) into two layers W1 and W2.

illustrates the decomposition of the M-task graph for one time step of the extrapo-

lation method into layers. The start node and the stop node are not assigned to any

layer, since these nodes do not carry computations.

In the third step, the layers of the M-task graph are scheduled one after another.

Within a layer, the M-tasks can be scheduled in an arbitrary way. Especially, the set

of execution cores can be partitioned into an arbitrary number g of subsets of cores

where each subset is responsible for the execution of a subset of the M-tasks of the

layer. The scheduling algorithm makes two assumptions: (a) the number of subsets

and their size remains constant during the execution of the M-tasks of one layer,

and (b) the subsets are built using symbolic cores, which are interconnected by

a homogeneous network. Assumption (a) is reasonable, because a reorganization

of the group structure during the execution of the M-tasks of one layer is usually

quite expensive. Assumption (b) is an abstraction which allows the separation

of scheduling and mapping; the separate mapping of the symbolic cores to the

physical cores of a hierarchical architecture is described in Subsect. 3.4.

The total number of symbolic cores used is equal to the number of physical

cores of the target architecture. In the following, the costs for an M-task M on

a set of p symbolic cores are denoted as Tsymb(M,p). These costs are computed
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by Tsymb(M,p) = T (M,p, dmp) using a default mapping pattern dmp, which

denotes a mapping where the slowest interconnection network of the architecture

is used for all communication operations executed within M . Thus, Tsymb(M,p)
is an upper limit of the execution time of M on p cores of the target system.

Algorithm 1 shows pseudo-code of the scheduling procedure. For each layer

W , the scheduling algorithm considers all numbers g ∈ {1, . . . , P} of subsets of

symbolic cores where P is the total number of cores of the platform (line 5). The

output of the algorithm is the number gmin of subsets that leads to the minimum

execution time

Tmin := min
1≤g≤P

Tact(g)

where Tact(g) is the total execution time of layer W using g subsets of cores. The

time Tact(g) is determined as follows: First, the set of symbolic cores is partitioned

into g subsets G = {G1, . . . , Gg} (line 6). The subsets have the same size, which

may later be adapted in the adjustment step. The assignment of M-tasks to specific

subsets is performed by a modified greedy linear-time scheduling algorithm for

uniprocessor tasks without dependencies [46] with a proven sub-optimality bound

of 4/3. This sub-optimality bound does not hold for M-task layers, but the al-

gorithm shows good results in practice. The M-tasks of the layer are considered

one after another in decreasing order of their execution time and are assigned to

the subset with the currently smallest accumulated execution time (line 10). The

accumulated execution time of a subset Gl is defined as the sum of the parallel

execution times of the M-tasks previously assigned to Gl. After all M-tasks are as-

signed, the subset with the maximum accumulated execution time determines the

total execution time Tact(g) of the entire layer using g subsets of cores (line 11).

After choosing a specific number of groups, the group adjustment (line 14)

tries to reduce load imbalances between the created subsets of cores that might

arise from an uneven assignment of workload. The adjustment of group sizes is

performed such that subsets with a high computational work get more symbolic

cores compared to subsets with a lower computational work. The computational

work Tseq(Gl) of a subset Gl is defined as

Tseq(Gl) :=
∑

Mi∈Ml

Tcomp(Mi)

where Ml denotes the set of M-tasks assigned to subset Gl. The adjusted number

of symbolic cores gl assigned to subset Gl is computed by

gl := round

(

Tseq(Gl)
∑g

j=1
Tseq(Gj)

· p

)

, l = 1, . . . , g.
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Algorithm 1: Scheduling of the layers of the M-task graph.

1 begin

2 foreach (layer W = {M1, . . . ,Mk} ) do

3 let C be the set and P = |C| the number of symbolic cores;

4 Tmin = ∞;

5 for (g = 1, . . . , P}) do

6 partition C into g subsets G = {G1, . . . , Gg} of about equal size;

7 sort {M1, . . . ,Mk} such that

8 Tsymb(M1, ⌊P/g⌋) ≥ . . . ≥ Tsymb(Mk, ⌊P/g⌋);
9 for (j = 1, . . . , k) do

10 assign Mj to Gl with the smallest accumulated execution time;

11 Tact(g) = max
1≤j≤g

accumulated execution time of Gj ;

12 if (Tact(g) < Tmin) then

13 Tmin = Tact(g); gmin = g; Gmin = G;

14 group adjustment(W , gmin, Gmin);

The rounding is performed such that the total number of symbolic cores,
∑

i=1,...,g gi
is equal to the number of physical cores of the target platform.

Figure 6 shows three possible schedules for the extrapolation method. The

schedule computed by Alg. 1 depends on the computation and communication per-

formance of the actual target platform. For the platforms used for the benchmark

tests in Sect. 4, an execution with R/2 subsets of cores (see Fig. 6 (middle)) is se-

lected where R is the number of approximations computed by the extrapolation

method.

3.3 Architecture Model

For heterogeneous systems, the specific selection of execution cores used for the

M-tasks can have a large influence on the resulting communication and execution

time, since different communication costs for internal M-task communication and

re-distributions between M-tasks may result. In this article, we focus on multi-

core systems as a special form of a heterogeneous platform. We assume cores of

the same type but with different interconnections between (i) cores of the same

processor, (ii) processors of the same node, and (iii) nodes of a partition of the

entire machine.

The architecture can be represented by a tree structure with cores C as leaves,
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Fig. 6: Three possible schedules for the M-task graph for one time step of the

extrapolation method with R = 4 approximations from Fig. 5 computed by Alg. 1:

(Left) A data parallel execution with g = 1 groups. (Middle) A task parallel

execution with g = R/2 = 2 groups. (Right) A task parallel execution with g =
R = 4 groups of different size as determined by the subsequent group adjustment

step.

processors P as intermediate nodes being a parent for cores, computing nodes N as

intermediate nodes combining processors, and partitions or the entire machine A as

root node. For a unique identification of the leaf nodes k of the architecture tree, we

use the label l(k) = nid.pid.cid consisting of the node id nid, the processor id pid,

and the core id cid. Figure 7 shows an illustration. In contrast to the Multi-BSP

model [49], the architecture tree is not annotated with performance parameters.

These parameters are included in the cost functions for M-tasks, see Sect. 3.1.

3.4 Mapping

The scheduling algorithm partitions a given M-task graph into layers and schedules

the M-tasks of one layer onto disjoint groups of symbolic cores. For a given layer

W , the scheduling algorithm has computed a group partitioning G = {G1, . . . , Gg}
of symbolic cores where each group may execute several M-tasks one after another.

An architecture-aware mapping of an M-task program to a multi-core system is

the assignment of the symbolic cores used by the scheduling algorithm to physical

cores of the architecture. Such an assignment has to be determined for each layer of

the M-task program. The mapping function FW for layer W maps each symbolic

group Gi to a set of physical cores FW (Gi) with |Gi| = |FW (Gi)|, i = 1, . . . , g,

i.e., each group of symbolic cores is mapped to a physical group of the same size.

Moreover, different groups of symbolic cores have to be mapped to disjoint sets of
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Fig. 7: Tree structure representing a hierarchical multi-core SMP cluster consist-

ing of the entire architecture (A), nodes (N), processors (P) and cores (C). The

labels of the nodes are constructed top-down following the path from the root to

the respective node.

physical cores, i.e., FW (Gi) ∩ FW (Gj) = ∅ for i, j = 1, . . . , g and i 6= j. An

illustration of the mapping is shown in Fig. 8.

The definition of the mapping function uses two sequences: a sequence of

symbolic cores and a sequence of physical cores. The sequence of symbolic cores

sc1,1, . . . , sc1,|G1|, sc2,1, . . . , scg,|Gg|

contains all symbolic cores assigned to the layer in the order of the symbolic

groups where sci,j denotes the j-th symbolic core of group Gi, i = 1, . . . , g,

j = 1, . . . , |Gi|. This sequence has been determined by the scheduling algorithm.

The P physical cores of the architecture are arranged in a sequence

pc1, pc2, . . . , pcP

that contains each physical core exactly once. The order of the physical cores in

this sequence is the result of the mapping strategy applied as described below. The

mapping function FW assigns each symbolic core to the physical core with the

same position, i.e., the i-th core in the symbolic core sequence is mapped to the

i-th physical core in the physical core sequence, i = 1, . . . , nc. For each group Gi,

the function FW is given as:

FW (Gi) =

{

pcj, pcj+1, . . . , pcj+|Gi|−1

∣

∣

∣

∣

j = 1 +

i−1
∑

k=1

|Gk|

}

.
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Fig. 8: Illustration of the mapping function from symbolic to physical cores.

We study three different mapping functions.

Consecutive mapping: For the consecutive mapping, the sequence of physical

cores is defined such that the cores of the same node are adjacent to each other.

Thus, the sequence of physical nodes is defined as

1.1.1, . . . , 1.1.c1,1, 1.2.1, . . . , 1.p1.c1,p1 , 2.1.1, . . . , n.pn.cn,pn

where n denotes the number of nodes of the platform, pi is the number of proces-

sors of node i,i = 1, . . . , n, and ci,j is the number of cores of processor j of node

i, j = 1, . . . , pi. An example for the consecutive mapping is shown in Fig. 9.

The consecutive mapping tries to minimize the number of physical nodes used

for a group of symbolic cores. If a group of symbolic cores is larger than the

number of physical cores per node, several consecutive nodes are used. As a result,

group internal communication is mainly performed between cores of the same node

leading to a reduction of execution time, especially for applications with a high

amount of communication within M-tasks. Furthermore, hybrid MPI+OpenMP

M-tasks can benefit from the consecutive mapping, since OpenMP threads can be

used for the processes mapped to the same physical node.

Scattered mapping: The scattered mapping arranges the physical cores in a

sequence such that the corresponding cores of different nodes appear one after

another. For a platform with n nodes each consisting of p processors with c cores

the sequence of physical nodes is defined as

1.1.1, . . . , n.1.1, 1.1.2, . . . , n.1.c, 1.2.1, . . . , n.p.c.
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Fig. 9: Illustration of a consecutive mapping of a group partitioning into four sym-

bolic groups G1, . . . , G4 each including four symbolic cores on a platform with

four nodes, each consisting of two dual-core processors. The edges symbolize

communication within M-tasks.

An illustration is shown in Fig. 10.

The scattered mapping tries to assign the symbolic cores of the same group

to physical cores located on different nodes. As a result, group-internal commu-

nication is mainly performed between cores of different nodes. This might be

an advantage if M-tasks with few group-internal communication operations and

communication-intensive M-tasks are executed concurrently, since the inter-node

communication bandwidth of the platform can then be primarily used by the com-

munication-intensive M-tasks. Additionally, the scattered mapping might restrict

the execution of data re-distribution operations between different M-tasks to a sin-

gle physical node. Especially, the orthogonal communication operations used in

the solvers for ODE IVPs considered in Sect. 4.2 can often benefit.

Mixed mapping: Consecutive and scattered mapping strategies can also be

mixed. The mixed mapping uses a parameter d denoting the number of consecutive

physical cores of a node that are assigned to the same M-task. The sequence of

physical nodes starts with the first d cores of the first node, followed by the first d
cores of the second node, and so on.

The consecutive and the scattered mapping are special cases of the mixed map-

ping: the scattered mapping results for d = 1, and d = pmax ∗ cmax leads to a

consecutive mapping where pmax is the maximum number of processors per node

and cmax is the maximum number of cores per processor. The parameter d can be

used to adapt the mixed mapping to the ratio of intra M-task communication and

communication between M-tasks. An illustration of this mapping strategy is given

in Fig. 11.
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Fig. 10: Illustration of a scattered mapping of symbolic groups G1, . . . , G4 with

four symbolic cores each on a multi-core platform consisting of four identical

nodes each equipped with two dual-core processors.

Figure 12 shows the different mapping strategies applied to the first layer in

the schedule of the extrapolation method (see Fig. 6 (middle) for an illustration of

the schedule) and for eight nodes of the CHiC cluster (the hardware description is

given in Sect. 4.1). The scattered and the mixed (d = 2) mapping use the same set

of cores to execute the two M-tasks of the layer, however the sequence of phys-

ical cores has a different ordering leading to different communication patterns at

runtime.

4 Experimental Evaluation

This section describes experimental results obtained by applying the combined

scheduling and mapping algorithm to different application programs. The bench-

marked program versions are generated by the CM-task compiler [17], which takes

the specification of the M-task structure of an application as input, see Fig. 3 for

an example. The CM-task compiler carries out the scheduling and mapping, adds

the required data re-distribution operations and produces an MPI program that ex-

ecutes the M-tasks on the appropriate subsets of cores.

4.1 Hardware description

For the benchmark tests, three different platforms have been used. The Chemnitz

High Performance Linux (CHiC) cluster is built up of 530 nodes consisting of two

AMD Opteron 2218 dual-core processors with a clock rate of 2.6 GHz. The peak
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Fig. 11: Illustration of a mixed mapping with d = 2 of symbolic groups

G1, . . . , G4 each consisting of four symbolic cores on a platform with four identi-

cal nodes each comprising two dual-core processors.

performance of a single core is 5.2 GFlops/s. The nodes are interconnected by an

SDR Infiniband network. For the benchmark tests, the MVAPICH 1.0 MPI library

and the Pathscale Compiler 3.1 are used.

The SGI Altix system consists of 19 partitions. The benchmarks are executed

inside a single partition containing 128 nodes, each equipped with two Intel Ita-

nium2 Montecito dual-core processors. The processors are clocked at 1.6 GHz and

achieve a peak performance of 6.4 GFlops/s per core. Each node has two links to

the NUMAlink 4 interconnection network with a bidirectional bandwidth of 6.4

GByte/s per link. The MPI library SGI MPT 1.16 and the Intel Compiler 11.0 are

used.

The JuRoPA cluster consists of 2208 nodes with two Intel Xeon X5570 ”’Ne-

halem”’ quad-core processors each. The processors run at 2.93 GHz leading to

a peak performance of 11.72 GFlops/s. A QDR Infiniband network connects the

nodes. The software configuration includes the ParaStation MPI library v5.0 and

the Intel Compiler 11.0.

4.2 Description of the ODE benchmarks

Different numerical solution methods for systems of ODE IVPs are investigated,

see Sect. 2.2.3 for the problem definition. These methods include the explicit ex-

trapolation (EPOL), Iterated Runge-Kutta (IRK), and Parallel Adams-Bashforth

(PAB) methods as well as the implicit Diagonal-Implicitly Iterated Runge-Kutta

(DIIRK) and Parallel Adams-Bashforth-Moulton (PABM) methods. The specifi-
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Consecutive Mapping Scattered Mapping Mixed Mapping (d = 2)

Fig. 12: Illustration of the mapping strategies for the first layer of the schedule for

the extrapolation method (from Fig. 6 schedule 2). The numbers in circles indicate

the position of the respective cores in the sequence of physical cores.

cation program for the EPOL method is shown in Fig. 3. The IRK, PAB, DIIRK

and PABM methods each compute a fixed number K of independent stage vectors

within each time step. Coarse grained task parallelism exists between the compu-

tations of different stage vectors. Fine grained data parallelism can be used for the

individual stage vectors by a parallel computation of their components.

For the benchmark tests, two different program versions are used for each of

these ODE solvers. The data parallel version represents an implementation that

does not exploit any task parallelism, i.e., all M-tasks are computed one after an-

other using all processor cores available. This program version may include many

global communication operations.

The task parallel program version results from applying the scheduling and

mapping algorithm proposed in Sect. 3 to the respective M-task graph. For the

EPOL methods, the scheduling algorithm partitions the available cores into R/2
equal-sized subsets. Each of the subsets is responsible for the computation of ap-

proximation i and R− i+1, i = 1, . . . , R/2, see Fig.6 (middle) for an illustration.

Thus, each subset computes the same number of micro steps leading to a good load

balance. For the IRK, PAB, DIIRK and PABM methods, the K stage vectors are

computed concurrently on K disjoint subsets of cores. The task parallel program

version might be more efficient than the data parallel version, since the commu-

nication operations within the M-tasks are restricted to subsets of cores leading to

smaller communication costs. On the other hand, additional data re-distribution

operations are required to exchange intermediate results between the subsets of

cores.

The program versions discussed include the following three types of commu-

nication operations:

• Global communication operations are executed by all cores available.

• Group-based communication operations are executed by the cores of the subset
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Bench- global group-based orthogonal

mark communication communication communication

EPOL(dp) R(R+ 1)/2 ∗ Tag − −
EPOL(tp) 1 ∗ Tbc (R+ 1) ∗ Tag −
IRK(dp) (K ∗m+ 1) ∗ Tag − −
IRK(tp) 1 ∗ Tag m ∗ Tag m ∗ Tag

DIIRK(dp) 1 ∗ Tag +K∗ − −
(n− 1) ∗ I ∗ Tbc

DIIRK(tp) 1 ∗ Tag (n− 1) ∗ I ∗ Tbc m ∗ Tag

PAB(dp) K ∗ Tag − −
PAB(tp) − 1 ∗ Tag 1 ∗ Tag

PABM(dp) K(1 +m) ∗ Tag − −
PABM(tp) − (1 +m) ∗ Tag 1 ∗ Tag

Table 1: Types and amount of collective communication operations executed for

one time step of the ODE solvers in the data parallel (dp) and in the task parallel

(tp) program version. The execution times of a broadcast and a multi-broadcast

operation are denoted as Tbc and Tag , respectively. The size of the ODE system is

denoted as n. The number of fixed point iterations executed are denoted either as

m (statically determined) or I (dynamically determined).

assigned to the same M-task, e.g., by the set of cores {s1, s2, s3, s4} in Fig. 9.

• Orthogonal communication operations are used to exchange data between cores

with the same position within concurrently executed M-tasks, e.g., by the set of

cores {s1, s5, s9, s13} in Fig. 9.

Table 1 shows the number of collective communication operations executed

within a single time step of the ODE solvers. For the task parallel versions, the

communication operations for one of the disjoint groups of cores are listed. The

execution time of a broadcast operation (MPI Bcast()) is denoted as Tbc and the

execution time of a multi-broadcast operation (MPI Allgather()) is denoted

as Tag . The size of the ODE system considered is denoted as n, and m defines

the number of fixed point iteration steps executed to compute the stage vectors.

Both, n and m, are defined statically by the underlying method. The number I
of fixed point iterations in the DIIRK method is determined dynamically using a

convergence criterion and is typically small, i.e., 1 ≤ I ≤ 3 in most cases.

The benchmarks are executed with two types of ODE systems called sparse and

dense in the following. The sparse system results from the spatial discretization of

the 2D Brusselator equation (BRUSS2D) [21]. The dense system arises from a

Galerkin approximation of a Schrödinger-Poisson system (SCHROED) [41]. The

time required to evaluate the entire ODE system depends linearly (sparse system)
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or quadratically (dense system) on the ODE system size.

4.3 Evaluation of the Scheduling Algorithm

First, we evaluate the scheduling step proposed in Sect. 3.2 by a comparison with

the algorithms CPA [39] and CPR [38]. The scheduling algorithms CPA and CPR

have been selected because they are often used in comparison benchmarks and

form the basis of many other algorithms [4, 16, 52]. Both algorithms consist of an

allocation phase and a scheduling phase. The allocation phase assigns every M-

task a number of executing cores such that a good trade-off between the reduction

of the length of the critical path of the M-task graph and the number of M-tasks

that might be executed concurrently is achieved. The scheduling phase determines

the execution order and assigns subsets of cores to the M-tasks. CPA decouples

the allocation and the scheduling phase from each other whereas CPR repeatedly

executes both phases until the currently computed schedule cannot be improved

further. In general, the schedules produced by CPA and CPR do not exhibit a

layered structure and, thus, these algorithms cannot be combined with the mapping

step proposed in Sect. 3.4.

Figure 13 (left) shows the benchmark results obtained for the PABM method

with K = 8 stage vectors using the consecutive mapping for all program versions.

The speedups shown are the quotient of the average execution times of a time step

of the sequential and the parallel implementation. The average execution times

are determined by executing several hundred time steps. The figure shows that the

schedules computed by CPA are not competitive. The reason is the large amount

of idle time that results from an “over-allocation” in the allocation phase, i.e., the

number of cores assigned to the K independent M-tasks exceeds the number of

physically available cores. Thus, the scheduling phase cannot execute all K M-

tasks concurrently. CPR computes schedules that are identical with the task parallel

version obtained by the scheduling step from Sect. 3.2. Similar results are also

obtained for the IRK method with K = 4 stage vectors (not shown in a figure).

Figure 13 (right) compares the average execution times of a single time step of

the EPOL method using different scheduling decisions for the M-task graph from

Fig. 4. For this method, CPA computes a mixed parallel schedule that leads to low

execution times. CPR tries to reduce the length of the critical path in the M-task

graph by assigning a large number of cores to the M-tasks in the longest linear

chain leading to an almost data parallel execution of these M-tasks. This decision

leads to high communication costs within these M-tasks. Due to the additional data

re-distribution operations, a higher overall execution time than a pure data parallel

execution results. These results show that the structure of the M-task graph greatly

influences the performance of the schedules produced by CPA and CPR. In contrast
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Fig. 13: Comparison of the performance of different scheduling decisions for the

PABM method with K = 8 stage vectors (left) and the EPOL method with R = 8
approximations (right) on the CHiC cluster.

to the scheduling algorithm from Sect. 3.2, none of these two algorithms computes

good schedules for all benchmarks considered.

4.4 Evaluation of the Mapping Strategies for Collective Communica-

tion Operations

In the following, we investigate the impact of different mapping strategies on the

performance of a multi-broadcast operation (MPI Allgather()). This collec-

tive communication operation has been selected because it is required by all ODE

benchmarks and influences the communication times in these benchmarks consid-

erably. Figure 14 (left) shows the execution time of a global multi-broadcast opera-

tion on 256 cores of the CHiC cluster. The results show that a consecutive mapping

clearly leads to the lowest execution times. This behavior can be attributed to ring-

based algorithm used by the MPI library for large messages leading to communi-

cation between processes with neighboring ranks. Using a consecutive mapping,

this communication occurs primarily within the nodes of the cluster.

The performance of the group-based and orthogonal communication opera-

tions is assessed with the Multi-Allgather benchmark of the Intel MPI benchmark

suite [22]. This benchmark creates a fixed number of equal-sized subsets of cores

and concurrently executes multi-broadcast operations within each group. Figure 14

(right) shows the results for this benchmark on the CHiC cluster using four groups
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Fig. 14: (Left) Measured execution times for an MPI Allgather() operation

on 256 cores of the CHiC cluster. (Right) Execution time for the Multi-Allgather

benchmark with 64 groups each including four cores and four groups each includ-

ing 64 cores and different processor placements. The data size refers to the amount

of data provided by each participating core.

and 64 groups, respectively. For an ODE solver with K = 4 stage vectors, the case

with four groups corresponds to the group-based communication and the 64 groups

case corresponds to the orthogonal communication. The results show that group-

based communication benefits from a consecutive mapping whereas the scattered

mapping leads to the lowest runtimes for the orthogonal communication.

4.5 Evaluation of the Mapping Strategies for ODE Solvers

In the following, we focus on the mapping step and compare different mapping de-

cisions for the ODE benchmarks. Since the data parallel program version only uses

global collective communication operations, the consecutive mapping achieves the

highest performance for all benchmarks considered. So, in the following, we con-

centrate on the impact of the mapping strategies on the performance of the task

parallel program version.

Figure 15 shows the execution times of a single time step of the IRK method

with K = 4 stage vectors applied to the Brusselator system on the JuRoPA and

CHiC clusters in the top row. The CHiC cluster contains four cores per node and,

thus, a consecutive, a scattered, and a mixed (d = 2) mapping are considered.

On the JuRoPA cluster, additionally a mixed (d = 4) mapping is used, since this
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Fig. 15: Measured execution times for a single time step of the IRK (top row),

DIIRK (bottom left), and EPOL (bottom right) methods on the CHiC cluster (left

column) and the JuRoPA cluster (right column).
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platform contains eight cores per node. On both platforms the lowest execution

times are achieved by mapping as many symbolic cores of a group as possible onto

the same cluster node. A scattered mapping is clearly outperformed by the other

mappings. This behavior mainly results from the global communication operations

in the IRK method.

Compared to the IRK method, the DIIRK method includes much more com-

munication within the individual M-tasks, which can be restricted to subsets of

cores by a task parallel execution scheme. Therefore, the task parallel version

achieves much lower execution times compared to pure data parallelism as it is

shown in Fig. 15 (bottom left) for 512 cores of the CHiC cluster. Also for the DI-

IRK method, the lowest execution times are achieved by a consecutive mapping

due to the global communication operations.

The consecutive mapping is also beneficial for the EPOL method as it is shown

for 512 cores of the JuRoPA cluster and R = 8 approximations in Fig. 15 (bottom

right). The mixed mapping (d = 4) leads to a substantially higher execution time

than the consecutive mapping. This can be attributed to the absence of orthogonal

communication operations in the EPOL method.

Figure 16, top row, shows the measured execution times for a single time step

of the PAB method. The task parallel version of this benchmark includes an equal

number of group-based and orthogonal communication operations. Therefore, a

mixed mapping strategy with d = 2 (CHiC cluster) or with d = 4 (JuRoPA cluster)

leads to the lowest execution times.

The PABM method has more computation and communication within the M-

tasks than the PAB method. Therefore, a placement of the processes executing

the same M-task on the same cluster node is desirable. The speedups obtained

for the dense system on the CHiC cluster shown in Fig. 16 (bottom left) confirm

this observation. For a high number of processor cores, the consecutive mapping of

the task parallel execution scheme is clearly superior to the other program versions.

The scalability of the data parallel version is limited to 512 processor cores because

of the high amount of global collective communication. The runtimes of the sparse

system on the JuRoPA cluster that are presented in Fig. 16 (bottom right) show a

similar behavior, i.e., the consecutive mapping leads to the lowest runtimes, and

data parallelism is outperformed by all task parallel versions.

Combining these observations, it can be seen that the consecutive mapping

should be selected for ODE solvers with either dominating group-based commu-

nication (EPOL, DIIRK, and PABM methods) or global communication patterns

(IRK and DIIRK methods). For these methods, the consecutive mapping leads

to communication primarily within cluster nodes. On the other hand, for algo-

rithms with an equal amount of group-based and orthogonal communication (PAB

method) the mixed mapping leads to the best results.
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Fig. 16: Benchmark results for the PAB (top) and PABM (bottom) methods with

K = 8 stage vectors on the CHiC cluster (left) and the JuRoPA cluster (right).
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4.6 Evaluation for the NAS benchmarks

Another class of applications that can benefit from the M-task programming model

are solvers for flow equations operating on a set of meshes (also called zones).

Within each time step, the computation of the solution is performed independently

for each zone. At the end of a time step, a border exchange between overlapping

zones is required. The NAS parallel benchmark multi-zone version (NPB-MZ)

provides solvers for discretized versions of the unsteady, compressible Navier-

Stokes equations that operate on multiple zones [50]. The reference implemen-

tation uses shared memory OpenMP programming to exploit the fine grained par-

allelism within the zones and message passing with MPI to implement the coarse

grained parallelism between different zones. Thus, this implementation restricts

the computation of each zone to a shared memory environment, e.g., a node of a

multi-core cluster. For the purpose of this article, we consider modified versions of

the SP-MZ (Scalar Pentagonal Multi-Zone) and BT-MZ (Block Tridiagonal Multi-

Zone) benchmarks, which use different solvers (SP or BT) to compute discrete

solutions in three spatial dimensions. Both versions use MPI for both levels of

parallelism and, thus, do not restrict the scheduling and mapping decisions. Each

zone is represented by an M-task, leading to z independent M-tasks for z zones.

Point-to-point communication is used for both, communication within M-tasks and

the border exchanges between M-tasks.

Figure 17 shows the performance results for the SP-MZ benchmark for the

CHiC cluster (top left) and for the SGI Altix (top right). The figure compares

different scheduling decisions for a fixed number of cores, i.e., different selections

for the number of subsets of symbolic cores created (see line 5 of Alg. 1). Bench-

mark classes C and D with 256 and 1024 equal sized zones are considered. The

figure shows that an exploitation of the maximum degree of the available task par-

allelism, i.e., building 1024 groups for class D and 256 groups for class C , does not

lead to the highest performance. On the CHiC cluster, the best execution scheme

results by using 64 parallel groups, assigning 16 neighboring zones to each group

and using a scattered mapping. For the SGI Altix, the program version with 128

parallel groups leads to the best performance. Again, a scattered mapping strategy

outperforms the other program versions. The program versions with a low number

of groups are not competitive because each M-task is executed by a large number

of processor cores, leading to a high communication and synchronization overhead

within the groups.

The zones of the BT-MZ benchmark incorporate different amounts of compu-

tation and, thus, the assignment of M-tasks to subsets of cores and load balancing

between different subsets of cores becomes an important issue. The performance

results achieved for a varying number of parallel groups are shown in Fig. 17 for
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Fig. 17: Performance of the NAS benchmarks SP-MZ (top) and BT-MZ (bottom)

executed on the CHiC cluster (left) and the SGI Altix (right) using different num-

bers of disjoint subsets of cores.
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class C with 256 zones on the CHiC cluster (bottom left) and for class D with

1024 zones on the SGI Altix (bottom right). On the CHiC cluster, the highest per-

formance is obtained by the execution schemes with 32 and 128 subsets of cores.

For the SGI Altix, the creation of 32 and 64 subsets of cores leads to the best re-

sults. On both platforms, the scattered mapping outperforms the other mapping

strategies. The performance obtained for the execution schemes with a large num-

ber of subsets of cores is impacted by load imbalances. These load imbalances

exist because the M-tasks have different execution times and only one or a few

M-tasks are assigned to a specific subset of cores.

4.7 MPI Tasks vs. OpenMP Threads

An adaption to the hardware characteristics of clusters of SMPs can be achieved

by combining message passing programming using MPI and thread programming

using OpenMP into hybrid programming models. In this section, we examine the

performance of hybrid realizations of M-task programs. The upper level paral-

lelism between M-tasks is realized by MPI communication and for the lower level

parallelism within M-tasks hybrid MPI+OpenMP implementations are used. Mul-

tiple symbolic cores of the same M-task have to be mapped on the same cluster

node to make use of OpenMP parallelism. Therefore, a suitable mapping strategy

is required. In the following, we focus on a consecutive mapping for both, pure

MPI and hybrid implementations.

Figure 18 shows a comparison of the speedups achieved for the IRK method

with K = 4 stages on the CHiC cluster using four OpenMP threads per cluster

node. The hybrid execution scheme for the data parallel version leads to consid-

erable higher speedups compared to a pure MPI realization. The main reason for

this improvement is the reduction of the number of MPI processes participating in

global communication operations.

Figure 18 (right) shows the execution times of one time step of the DIIRK

method with four stages on the CHiC cluster. The hybrid execution leads to a slow-

down for the data parallel version caused by program parts that require a frequent

synchronization. For the task parallel version, the hybrid execution scheme clearly

outperforms its pure MPI counterpart.

Since the SGI Altix has a distributed shared memory architecture that allows

the use of OpenMP threads across different nodes, many different combinations of

MPI processes and OpenMP threads are possible. Figure 19 shows a comparison

of the execution times of the PABM method with K = 8 stages on 256 cores of the

SGI Altix. At least eight MPI processes are required for the task parallel version,

one for each stage. Using 256 OpenMP threads leads to the best results for the

data parallel version. For the task parallel version, the lowest execution times are
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Fig. 18: Comparison of the performance of a pure MPI implementation with a

hybrid MPI+OpenMP realization of the IRK method (left) and the DIIRK method

(right) both with K = 4 stages on the CHiC cluster.

achieved by using 64 MPI processes and 4 OpenMP threads, i.e., running one MPI

process on each of the nodes.

5 Related Work

Many different variations of task-based programming systems have been investi-

gated. An important distinction is whether the individual tasks are executed se-

quentially on a single execution resource (called single-processor tasks, S-tasks)

or whether they can be executed on multiple execution resources (called parallel

tasks, M-tasks). S-tasks are often used for program development in shared address

spaces, including single multi-core processors. Examples for such approaches are

the task concepts in OpenMP 3.0 [33], Cilk [20] and SMPSs [37], FG [12] for out

of core algorithms, or the TPL library for .NET [26].

For mixing task and data parallelism as it is supported by the M-task program-

ming model, several approaches have been proposed, including language exten-

sions (such as Fortran M, Opus [10], Braid [53], Fx [48], HPF 2.0, Orca [6]) as well

as skeleton-based (such as P3L [35], LLC [15], Assist [51], Lithium [2], DIP [13],

SBASCO [14]), library-based, and coordination-based approaches. Most of these

approaches are suitable to define a parallel M-task structure and to extract the avail-

able degree of task parallelism in form of a task graph, which is the input required

for the scheduling and mapping algorithm described in this article.
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Fig. 19: Parallel runtimes for different combinations of MPI processes and

OpenMP threads of PABM with K = 8 stages on the SGI Altix.

The scheduling of M-tasks on homogeneous target platforms has been investi-

gated by many research groups. A popular approach is to separate the allocation

that fixes the number of executing cores for the M-tasks from the scheduling that

computes the execution order and assigns subsets of cores to the M-tasks. Ex-

amples for such algorithms are TSAS [40], CPA [39], CPR [38], MCPA [4], and

Loc-MPS [52]. Algorithms following this approach are also available with an ap-

proximation ratio of 4.73 [23] and, for SP-graphs and task graphs with bounded

width, of 2.62 [27]. An alternative approach is to partition the task graph into lay-

ers of independent tasks and schedule the resulting layers one after another. In

this article, the layers are constructed by a greedy algorithm, but it is also possi-

ble to base the layering on the length of the critical path [47]. For the scheduling

of a single layer, any scheduling algorithm for independent M-tasks can be used.

Examples for such algorithms are the 1.5-approximation algorithm [31], or the al-

gorithms for convex and concave speedup functions [7]. None of the algorithms

mentioned above takes the mapping of processes to cores of a multi-core cluster

into account. The benchmark results presented in this article show that for multi-

core clusters also the mapping of processes to cores may have a large influence on

the performance obtained. Therefore, the combination of scheduling and mapping

presented is a step forward towards a better exploitation of the performance of such

platforms.

Scheduling algorithms for M-tasks on heterogeneous platforms mainly target

large cluster-of-clusters systems, see e.g. [8, 19, 32]. These approaches restrict
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the execution of an M-task to a single homogeneous sub-cluster. The multi-core

clusters used in this article can be regarded as special cluster-of-clusters where each

node forms a homogeneous subcluster. But the benchmark results from Sect. 4

show that multiple cluster nodes have to be used to execute the M-tasks in order to

obtain a high performance. Therefore, these heterogeneous scheduling algorithms

do not seem to be suitable for multi-core clusters. In contrast, our approach can

determine a suitable task layout for these clusters. A scheduling algorithm for

M-tasks on a heterogeneous cluster with a homogeneous interconnection has been

presented in [5].

Mapping techniques for parallel applications try to increase their performance

by placing processes with high communication requirements on physical comput-

ing units that are connected by a high-speed interconnect. Both, the communication

requirements of the considered application and the communication performance of

the target platform, can be represented by undirected, weighted graphs. An opti-

mized process placement can be computed by mapping the application graph onto

the platform graph and taking into account the assigned weight values. A special

graph library is used for solving the mapping problem for multi-core target plat-

forms in [30]. In [45] a recursive doubling heuristic has been used for this purpose.

MPIPP [11] is a tool set consisting of components that can obtain the commu-

nication profile of an MPI application, determine the network topology of SMP

clusters and compute optimized process placements based on a heuristic mapping

algorithm. The mapping of task parallel applications on large platforms with dif-

ferent network topologies is examined in [1]. First, graph partitioning is used to

assign heavily communicating tasks to the same physical processing unit. In the

second step, the computed graph partitions are mapped to the target platform by

a heuristic that tries to reduce the number of network hops between communicat-

ing tasks. A random search technique is used in [34] to map the processes of data

parallel applications on target platforms with switch-based networks. In contrast

to our work, the mapping approaches mentioned above do not explicitly support

mixed task and data parallel applications and dependencies between processes.

The mapping of a set of tasks each consisting of a fixed number of threads

on multi-core platforms has been studied in [29]. The algorithm takes the com-

munication requirements between the tasks into account and ensures that threads

belonging to the same task are allocated to the same cluster node. Dependencies

between tasks and the determination of an appropriate number of execution cores

for the tasks are not considered as it is done by our M-task approach.
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6 Conclusions

In this article, we have discussed the suitability of the programming approach with

parallel tasks for hierarchical multi-core cluster systems. In particular, we have

presented a combined scheduling and mapping approach for programs based on

parallel tasks. The scheduling algorithm creates layers of independent parallel

tasks, partitions the symbolic cores representing the target architecture into sub-

sets, assigns the parallel tasks of a layer to these subsets, and adjusts the subset

sizes according to the computational work. Several strategies are proposed for the

mapping step that assigns each symbolic core to a different physical core. These

strategies include a consecutive mapping of processes of the same parallel tasks

to the same cluster node to increase the performance of task-internal communica-

tion and a scattered mapping that assigns processes of different parallel tasks to the

same cluster node to improve the communication performance for data exchanges

between parallel tasks.

Benchmark tests with several large applications from scientific computing show

that the approach based on parallel tasks is a suitable programming model for

multi-core clusters, but significant differences in the performance of different map-

pings can occur. The best mapping depends on both, the communication require-

ments of the applications and the communication performance of the target plat-

form. For solvers for systems of ordinary differential equations, a consecutive

placement of the processes of the same parallel task onto the same cluster node

leads to the best results in most cases. The multi-zone benchmarks from the NAS

parallel benchmark suite require a careful selection of an appropriate number of

subsets of cores as well as a suitable mapping strategy. In the experimental eval-

uation, the best performance has been obtained by selecting a medium number of

subsets of cores and by using a scattered placement of the symbolic cores.
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[32] T. N’takpé, F. Suter, and H. Casanova. A Comparison of Scheduling Ap-

proaches for Mixed-Parallel Applications on Heterogeneous Platforms. In

Proc. of the 6th Int. Symp. on Parallel and Distributed Computing, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[33] OpenMP Application Program Interface, Version 3.0. www.openmp.org,

May 2008.

40



[34] J. M. Orduna, F. Silla, and J. Duato. On the Development of a

Communication-aware Task Mapping Technique. J. Syst. Architect.,

50(4):207–220, 2004.

[35] S. Pelagatti. Task and Data Parallelism in P3L. In F.A. Rabhi and S. Gorlatch,

editors, Patterns and Skeletons for Parallel and Distributed Computing, pages

155–186. Springer-Verlag, London, UK, 2003.

[36] S. Pelagatti and D.B. Skillicorn. Coordinating Programs in the Network of

Tasks Model. J. Syst. Integr., 10(2):107–126, 2001.

[37] J.M. Perez, R.M. Badia, and J. Labarta. A Dependency-Aware Task-Based

Programming Environment for Multi-Core Architectures. In Proc. of the Int.

Conf. on Cluster Computing (CLUSTER’08), pages 142–151, Washington,

DC, USA, 2008. IEEE Computer Society.

[38] A. Radulescu, C. Nicolescu, A.J.C. van Gemund, and P.P. Jonker. CPR:

Mixed Task and Data Parallel Scheduling for Distributed Systems. In Proc.

of the 15th Int. Parallel & Distributed Processing Symp. (IPDPS’01), pages

39–46, Washington, DC, USA, 2001. IEEE Computer Society.

[39] A. Radulescu and A.J.C. van Gemund. A Low-Cost Approach towards Mixed

Task and Data Parallel Scheduling. In Proc. of the Int. Conf. on Parallel Pro-

cessing (ICPP’01), pages 69–76, Washington, DC, USA, 2001. IEEE Com-

puter Society.

[40] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A Framework for Exploiting

Task and Data Parallelism on Distributed Memory Multicomputers. IEEE T.

Parall. Distr., 8(11):1098–1116, 1997.
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