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Abstract

Computational models of visual attention have replicated a large number of data from
visual attention experiments. However, typically each computational model has been
shown to account for only a few data sets. We developed a novel model of attention,
particularly focused on explaining single cell recordings in multiple brain areas, to
better understand the underlying computational circuits of attention involved in spatial-
and feature-based biased competition, modulation of the contrast response function,
modulation of the neuronal tuning curve, and modulation of surround suppression. In
contrast to previous models, we use a two layer structure inspired by the layered cortical
architecture which implements amplification, divisive normalization and suppression
as well as spatial pooling.

Keywords: Attention models, biased competition, scaling vs. sharpening of tuning
curves, contrast vs. response gain, surround suppression

1. Introduction

Attention is one of the fields in vision research that has been strongly influenced by
models. While early models have been rather abstract, over the last 15 years, inspired
by data from neural recordings, the neural correlates of attention have been increasingly
addressed by neuro-computational models. Although attention operates across multiple
brain areas and may help to bind stimulus properties processed in different parts of the
brain, one important line of research in visual attention aims at understanding the local
circuits of neural interactions. A very influential milestone has been the discovery
of interactions between representations of stimuli that are placed within a common
receptive field - coined as biased competition (Desimone & Duncan, 1995; Desimone,
1998).

According to this concept, attention should not be understood as a simple mecha-
nism for gating or an enhancement of neural responses but rather as a competition for
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neural representation which is typically strong if neurons in a single area have spatially
overlapping receptive fields. Thus, if attention is directed away, the neural response to
a single stimulus is typically larger than the response to two different stimuli, which
suggests that the total stimulus energy is not additive. Attention towards a particular
location in space or towards a stimulus feature implements a top-down signal which
changes the properties of local interactive circuits almost as if the attended stimulus
would be presented alone, i.e. the response of neurons tuned to the attended stimu-
lus is amplified and the response of neurons tuned to the not attended one is reduced.
Neural recordings in different brain areas have supported this basic concept (Desimone
& Duncan, 1995; Chelazzi et al., 1998, 2001; Fallah et al., 2007; Motter, 1993; Lee
& Maunsell, 2009, 2010a,b; Reynolds et al., 1999; Treue & Trujillo, 1999; Zhou &
Desimone, 2011). Other observations of the neural effect of attention revealed multi-
plicative scaling (McAdams & Maunsell, 1999; David et al., 2008; Motter, 1993) or
sharpening (Martinez-Trujillo & Treue, 2004; David et al., 2008) effects on the neural
tuning curve. Moreover, several studies observed that attention typically leads to a shift
in the contrast response function (Reynolds et al., 2000; Martı́nez-Trujillo & Treue,
2002; Li et al., 2008) which suggests that well visible stimuli are not further boosted.
A large number of neuro-computational models have been developed and demonstrated
to account for parts of these data (Reynolds & Heeger, 2009; Boynton, 2009; Compte
& Wang, 2006; Hamker, 2004, 2005b; Lee & Maunsell, 2009; Ni et al., 2012; Spratling
& Johnson, 2004; Spratling, 2008; Wagatsuma et al., 2013; Ardid et al., 2007; Buia &
Tiesinga, 2008; Hugues & José, 2010). Basically, each of these models includes lateral
or feedforward inhibition and some form of attentive gain increase. Further experi-
mental studies shed more light on the nature of stimulus interactions, e.g. by probing
the neural responses to two identical stimuli (Lee & Maunsell, 2009, 2010a) or led
to conflicting observations of whether attention shifts or scales the contrast response
function (Martı́nez-Trujillo & Treue, 2002), which cumulated into normalization mod-
els of attention (Lee & Maunsell, 2009; Reynolds & Heeger, 2009). Although these
models are not completely different than their predecessors, they propose two essential
components that determine the final population response, an attentive drive that scales
the response multiplicatively and a suppressive drive that operates after the attentive
drive within a local region and acts divisively on the neural response. The combination
of these two components allowed to account for modeling competitive interactions of
two identical stimuli (Lee & Maunsell, 2009, 2010a) and to solve the apparent conflict
whether attention shifts or scales the contrast response function (Reynolds & Heeger,
2009).

Although Reynolds & Heeger (2009) demonstrated that their model can account
for several data, existing models of attention have so far shown to account only for a
very selective set of data. However, a particular strength of computational models is
their ability to reveal a few potential underlying computational mechanisms that may
account for a large variety of data. Thus, from the computational point of view it
is important to find out how much data can be explained by a small set of computa-
tional mechanisms. The mechanisms of attention can be explained by different levels
of implementation detail, e.g. detailed biophysical neuron models and their micro-
circuits, abstract spiking neurons, dynamic rate coded populations or more abstract
mathematical descriptions. With respect to the available data we here developed a cor-
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Figure 1: a) Proposed mechanistic cortical microcircuit of attention, consisting of a modulatory layer 4 and
a spatial pooling layer 2/3. Feature-based attention can be deployed to layer 2/3 via an amplifying signal
originating from a higher cortical area, e.g. PFC or IT. Spatial attention can be deployed to layer 4 via an
amplifying signal originating from cortices encoding spatial information, e.g. FEF or LIP. b) Connectivity
and influences centered on a single cell in layer 4, indicated by the electrode symbol. The cell receives feed-
forward excitation (E), feature-based amplification (AFEAT-L4) from layer 2/3, spatial amplification (ASP) from
spatial cortices such as FEF or LIP, and suppression from an associated interneuron (S ). The interneuron
receives several sources of suppression: the feedforward excitation of its associated neuron (E), dissimilar
features in layer 2/3 (S FEAT), and all similar features in the surround in layer 2/3 (S SUR).

tical microcircuit of attention using dynamic rate coded neural populations inspired by
properties of the cortical microcircuit (Douglas & Martin, 2004). This leaves the exact
biophysical implementation unanswered but allows to reveal the main computational
mechanisms that may similarly operate in multiple brain areas regardless of their ex-
act implementation. Although we mainly address data from neuronal recordings, the
chosen level of implementation detail allows to discuss and better understand the in-
fluence of attention in psychophysical experiments, such as the effect of spatial and
feature-based attention, target selection, and distractor inhibition.

2. Methods

The mechanistic cortical microcircuit of attention is an attempt to account for a
very large dataset and thus to reveal the essential aspects of attention common in mul-
tiple brain areas. We identify three core mechanisms necessary for this approach:
amplification, normalization and suppression. A set of Matlab routines implement-
ing the model can be downloaded at: www.tu-chemnitz.de/cs/KI/supplement/

BeuthHamker2015/.

2.1. Model overview and structure
The model (Fig. 1a) is structured in a modulating (cortical layer 4) and in a pool

(cortical layer 2/3) layer. A neuron in this model abstracts from a biophysical descrip-
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tion of a cell and rather refers to a population of interconnected real cells. Similarly,
gain amplifications are described by multiplicative operations. This level of description
is similar to proposed concepts of normalization (Carandini & Heeger, 2012) and the
normalization model of attention (Reynolds & Heeger, 2009), although we will suggest
in more detail how abstract concepts of normalization and suppression may be imple-
mented in a simple cortical microcircuit of attention. A neuron in each layer encodes
a certain feature at a particular (one-dimensional) location, so that a layer of neurons
is represented by a two dimensional matrix. The mechanistic cortical microcircuit of
attention has three inputs: layer 4 receives input from lower visual areas, from areas
that encode space such as the frontal eye field (FEF) and the lateral intraparietal cortex
(LIP), and layer 2/3 receives a signal from a feature selective higher cortical area. The
model mainly refers to physiological properties of area V4 and MT. However, as atten-
tion is a canonical property of the visual cortex (Saenz et al., 2002), the model is not
restricted to these areas and may account also for other visual areas.

The tuning curve of a neuron has to be determined by the user to match the partic-
ular characteristics of a brain area as tuning curves largely differ across visual areas.
Layer 4 is denoted as modulating layer as its neuronal responses are calculated by am-
plifying or suppressing the excitation given from the input. Neurons in layer 4 converge
onto neurons in layer 2/3 which spatially pool over them in a broad area (a similar idea
as in Hamker & Zirnsak (2006); Compte & Wang (2006)). Therefore layer 2/3 neurons
have larger receptive fields than layer 4 neurons. The receptive fields in layer 2/3 are
overlapping by a user defined amount (standard is 50% to each side), so a stimulus
will fall within several receptive fields. Dependent on the amount of overlap and the
receptive field sizes, layer 2/3 contains typically less cells in the spatial dimension than
layer 4. In all experiments, we report the responses of cells in layer 2/3 (also indicated
by the electrode symbol in each figure).

2.2. Divisive normalization
The neural responses in the model largely follow concepts of divisive normalization

(Carandini & Heeger, 2012; Reynolds & Heeger, 2009). As a concretization of the
original concept used by Reynolds & Heeger (2009), we propose an implementation via
interneurons. In this implementation, each pyramidal neuron receives via an inhibitory
connection a normalization signal from an associated interneuron (Fig. 1b, S ), which
normalizes the response of the pyramidal neuron. The interneuron receives suppressive
influences (S FEAT, S SUR) via excitatory connections plus the feedforward excitation of the
associated pyramidal neuron. This is supported by the data from Mitchell et al. (2007),
who found that attention modulates interneurons twice as strongly as pyramidal cells,
and by the anatomical meta-analysis from Potjans & Diesmann (2012) reporting the
required inhibitory, intra-layer connections from an interneuron to a pyramidal neuron,
and the necessary excitatory connections from an pyramidal neuron to an interneuron
or another pyramidial neuron.

2.3. Modeling of attention via amplification
Attention is thought to emerge from recurrent connectivity within the visual and

prefrontal cortex (Hamker, 2005b). This computational framework proposes that neu-
rons receive feedback from higher cortical areas which acts as an amplifying signal.

4



To distinguish between mechanism and result, we will use “attention” to describe the
psychological effect and “amplification” to refer to a particular mechanism at the single
neuron.

We assume that spatial attention implies a spatial amplification signal from spatial
maps in the brain, such as the FEF (Hamker, 2005b) or the LIP (Steenrod et al., 2013),
denoted in the model as ASP (Fig. 1b). In the model, this signal amplifies the response of
neurons in layer 4 (similar as in Hamker (2005b) and Spratling (2008)) as inspired by
anatomical observations, e.g. layer 4 of area V4 receives input from the FEF (Barone
et al., 2000) and LIP (Ninomiya et al., 2012). By this mechanism, spatial amplification
can be directed to one or multiple spatial locations within the receptive field as needed
in experiments with spatial attention.

We presume that feature-based attention implies a feature-specific amplification of
neuronal responses in the visual cortex, typically invariant to spatial location. This
amplification can occur via an amplifying signal originating from prefrontal cortex
(PFC) which is then projected backwards through the visual cortex. This assumption
is consistent with the attentional control of the visual cortex as reviewed by Kastner
& Ungerleider (2000) for feature-based and by Miller & Buschman (2013) for spatial
and feature-based attention. Therefore, we model a feature-based amplification signal
originating from a higher visual area, e.g. PFC or IT, which is projected to V4 or
MT. This signal is firstly projected to layer 2/3 via excitatory connections (Fig. 1b,
signal AFEAT-L2) and then afterwards sent to layer 4 (Fig. 1b, signal AFEAT-L4). We assume
the projection from layer 2/3 to layer 4 occurs indirectly via the cortical excitatory
pathways of layer 2/3 to layer 5 and then to layer 4. Both projections were found in the
physiological connectivity data of the microcircuit (Douglas & Martin, 2004) which
appears to generalize across areas in the visual cortex. In layer 4, the effects of both
spatial and feature-based amplification signals are summed up additively because this
behavior was observed in several areas in the visual cortex (Treue & Trujillo (1999):
area MT; Saenz et al. (2002): areas V1, V2, V3A, V4 and MT+).

2.4. Modeling of suppression

Suppression from other neurons (Fig. 1b, signals S FEAT and S SUR) is modeled via
connections from layer 2/3 to layer 4. To our knowledge, it is not known in detail which
intra-area connections are responsible for transporting suppressive signals, however
layer 2/3 is beneficial as starting point because feedback connections from higher areas
end in layer 2/3 and feedback seems to play an essential role in suppression (Angelucci
et al., 2002; Bair et al., 2003; Carandini & Heeger, 2012; Gilbert, 1998; Hunt et al.,
2011). Layer 4 is favorable as end point as its neurons need to receive suppression to
balance out the amplification. To keep the model simple, suppression is implemented
by two separate signals, each representing a particular experimental condition: feature-
based suppression within the classical receptive field (S FEAT), and surround suppression
from outside the receptive field (S SUR). This facilitates the usability of the model as the
amount of suppression can be fitted to a particular experiment without influencing the
other condition.
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2.5. Mathematical description of the model

2.5.1. Notation
Firing rates of mean-rate neurons are denoted by r: rIn (Input), rL4 (layer 4), rL2 (layer 2/3),

rPFC (higher cortical area like PFC or IT) and rFEF (spatial areas like FEF or LIP). The rates rIn,
rPFC and rFEF have to be set by the user to model a particular experimental condition. Big letters
denote influences towards a neuron: E denotes the excitatory influence, A the amplifying one
and S the suppressive one. Each neuron is addressed within a layer by the spatial index x and the
feature index l. The layer dimensions are denoted by X and L respectively. The feature dimension
is modeled circular, hence the features l = 1 and l = L encode adjacent features. As the model
is a recurrent system, we simulate it via ordinary differential equations over time, denoted by t.
All firing rates were recorded in a steady state condition after the system has converged, which
typically occurs after 100ms.

2.5.2. Influences towards a neuron and connectivity
A neuron is influenced via several connections which are either designed as one-to-one con-

nections or as complex connectivity patterns. A one-to-one connection connects a single presy-
naptic cell with a single postsynaptic cell. Both cells encode the same location and feature.
Influences via one-to-one connections:

Excitation EIn-L4 (input→ layer 4): Excitatory connection from input layer to layer 4 with the
connection strength vIn-L4.

Amplification ASP (FEF/LIP→ layer 4): Amplifying connection from a spatial cortical area, e.g.
FEF or LIP, to layer 4 with the strength vFEF-L4.

Amplification AFEAT-L2 (higher cortical area→ layer 2): Amplifying connection from a higher cor-
tical area, like PFC or IT, to layer 2/3 with the strength vPFC-L2.

A complex connectivity pattern connects multiple presynaptic cells to a single postsynaptic
cell, thus multiple presynaptic features or locations are integrated to a single postsynaptic feature
and location. We modeled such an influence by an equation like Epost = v ·

∑
pre(wpost,pre · rpre),

using a global scaling factor v and a connectivity matrix wpost,pre ∈ [0, 1]. This modeling via
two separate variables was chosen as the experimental data can be well fitted by adapting only
the scaling factor v and keeping the connectivity pattern w unchanged. Influences via complex
connectivity patterns:

Excitation EL4-L2 (layer 4→ layer 2/3): The connectivity pattern wL4-L2
x,x′ for each postsynaptic cell

(x, l) is a Gaussian over the spatial dimension of the receptive field (x′) with constant
feature (l). The parameters of the Gaussian are chosen so that the Gaussian is centered
and that it has a value of about 0.5 at the borders of the receptive field: µ = 0, σ = 0.4 · s,
whereby s = 5 denotes the spatial extend of the field. Connections exist only inside the
receptive field, except the experiment of Cavanaugh et al. (2002a) which needs a broader
connectivity pattern (2 s). The scaling factor of the excitation is fixed to 1.

Amplification AFEAT-L4 (layer 2/3→ layer 4): The connectivity pattern wL2-L4
x,x′ for each postsynap-

tic cell (x, l) is a Gaussian over the spatial dimension of the receptive field (x′) with con-
stant feature (l). It is reciprocal modeled to wL4-L2. Scaling factor: vL2-L4.

Feature-based suppression S FEAT (layer 2/3→ layer 4): The connectivity pattern wFEAT
dl for each

postsynaptic cell (x, l) is a linear function (Eq. 1) over the feature dimension of the presy-
naptic layer (l′) at location (x). It is 0 if pre- and postsynaptic features are equal (dl ≤ L0)
and 1 if they are at most dissimilar. As the feature dimension is modeled circular, the fea-
tures are most dissimilar at medial distance (dl = L/2) in the feature space [1, L]. Scaling
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factor: vFEAT.

wFEAT
dl =


0 dl ≤ L0

dl−L0
0.5L−L0

L0 < dl ≤ 0.5 L
1 − dl−0.5L

0.5L−L0
0.5 L < dl ≤ L − L0

0 else

(1)

whereby dl = |l − l′| and L0 = L/8.

Surround suppression S SUR (layer 2/3→ layer 4): The connectivity pattern wSUR
x,x′ for each post-

synaptic cell (x, l) is a function (Eq. 2) over the spatial dimension of the presynaptic
layer (x′) with constant feature (l). It is 0 for the same location, maximal (1.0) for close
surround locations and moderate (0.4) for distant ones. Scaling factor: vSUR.

wSUR
x,x′ =


|x−x′ |−1
ψ−1 |x − x′| ≤ ψ

1 − 0.6 |x−x′ |−ψ−1
ψ−1 ψ < |x − x′| ≤ 2ψ

0.4 else
(2)

whereby ψ = (s − 1)/2 denotes the radius of the receptive field s.

Fig. E S FEAT S SUR A
β Tuning function

no. vIn-L4 pE pPool vFEAT pFEAT vSUR pSUR vFEF-L4 vPFC-L2

Std. 3 2 4 3 2 0.5 1 3 0.5 0 c = 8
L , a = 0

2 2.5 2 0.15 c = 6
L

3a 2.75 1 c = 6
L

3b 3.5 c = 8
L , a = 0.15

3c-e 3.5 3 1.25 c = 8
L , a = 0.1

3f 3.5 2.5 0.05 c = 8
L , a = 0.15

4 3 0.17 0.15 c = 8
L , a = 0.1

5 2 1.75 c = 8
L

6 1 c = 8
L

7 2 1.5 0.75 0.1 c = 8
L , a = 0.1

8a 2 3 c = 8
L , a = 0.3, Am-

plification: c = 4
L

8b 2.4 3.5 0.25 c = 6
L

9a 0.5 0.75 2 0.8 2 c = 8
L

9b 1.6 1.25 0.55 2.5 c = 8
L

10 c = 8
L

Table 1: Model parameters which were varied between experiments are listed in the table. The second
row “std” denotes the standard values which were used in all experiments if not otherwise denoted. The
input is modeled via a symmetrical exponential function in the feature space with width c and baseline a:
f (x) = a + (1 − a) · e(−c·x). If not otherwise noted, the amplification is modeled via the same parametrized
function, but without the baseline (a = 0). The model contains also an unmodulated baseline activity β to
simulate conditions in which attention does not modulate the response.

2.5.3. Neuronal layers
The neuronal responses are simulated by the following equations. The values of parameters

varied across experiments are listed in Tab. 1, and the ones kept constant are the following:
σL4 = 0.3, σL2 = 2, vL2-L4 = 1, τ = 10ms.
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Layer 4

τ
∂rL4

x,l

∂t
= g ·

Ex,l · Ax,l

σL4 + S x,l
– rL4

x,l (3)

S x,l = Ex,l · Ax,l + b
(
Ex,l

)
· S SUR

x,l + b
(
Ex,l

)
· S FEAT

x,l (4)

Ax,l = 1 + ASP
x,l + AFEAT-L4

x,l (5)

Ex,l =
(
vIn-L4 · rIn

x,l

)pE (6)

With: ASP
x,l = vFEF-L4 · rFEF

x (7)

With: AFEAT-L4
x,l = vL2-L4 · f1

∑
x′

f2

(
wL2-L4

x,x′ · r
L2
x′ ,l

) (8)

With: S SUR
x,l =

∑
x′

wSUR
x,x′ ·

[
vSUR · rL2

x′ ,l

]pS UR (9)

With: S FEAT
x,l =

∑
l′

wFEAT
l,l′ ·

vFEAT · f1

∑
x′

f2

(
wL2-L4

x,x′ · r
L2
x′ ,l′

)pFEAT

(10)

With: b(Ex,l) = Ex,l ·

(
σL4 + Ex,l

g · Ex,l

)2

(11)

Whereby b(Ex,l) represents a correction function based on the excitation (Ex,l) and the in-
verted divisive normalization function without modulation, i.e without amplification and sup-
pression (terms in brackets). The function ensures that suppression causes the same proportional
decrease of the response for all stimulus contrasts. The parameters σL4, vIn-L4 and pE control the
shape of the contrast response function similar as in Carandini & Heeger (2012). The parameters
pFEAT and pSUR control the non-linearity behavior of feature-based and surround suppression.

The factor g normalizes the firing rates to a maximum of 1 as in other divisive normalization
approaches (Albrecht & Hamilton, 1982; Carandini & Heeger, 2012). It should be chosen as:
g = 1 + σ/(A · E′) whereby A · E′ denotes the maximum possible excitation (here 1).

Layer 2/3

τ
∂rL2

x,l

∂t
= g ·

Ex,l ·
(
1 + AFEAT-L2

x,l

)
σL2 + S x,l

– rL2
x,l (12)

S x,l = Ex,l ·
(
1 + AFEAT-L2

x,l

)
(13)

With: Ex,l = f1

∑
x′

f2

(
wL4-L2

x,x′ · r
L4
x′ ,l

) (14)

With: AFEAT-L2
x,l = vPFC-L2 · rPFC

l (15)

With: f1(x) =
pPool

4
· x

1
pPool and f2(x) = xpPool (16)

Whereby f1(x) and f2(x) represent non-linearities allowing the non-linear summation nec-
essary for a spatial pooling operation. The pooling operation is modeled after the pooling and
surround suppression data of Bonin et al. (2005); Heuer & Britten (2002); Hunter & Born (2011);
Jones et al. (2002); Pack et al. (2005). The non-linearity parameter is chosen as pPool = 4.

Baseline activity can be modulated by attention like in the sharpening of neuronal tuning
curves (no. 8a in Tab. 1), but is also often unaffected by attention. To model the former case, we
add a small value to the input (parameter a). For the latter case, we add a small value (parameter
β) to the firing rates after the differential equation system has been converged (Eq. 17, 18). Our

8



a)

FEF/
LIP

Input

Layer 2/3

Layer 4

b)

Exc. Sup.Amp.

M
od

el
D

at
a

Figure 2: Biased competition experiment with spatial attention. a) Neurophysiological data (top) in relation
to our simulation results (bottom). Data is adapted from Lee & Maunsell (2010a, Fig5). In each column,
the left bar denotes the response of a neuron preferring the upward moving stimulus and the right bar the
downward direction. Spatial attention is either directed away (columns 1 - 3) or to the location of the
stimulus marked in red (columns 4 and 5). b) Model mechanism of biased competition, within the condition
of spatially attending the left location (condition 4 in a). In each layer, exemplary neurons reacting for
one of the two stimuli are shown. In addition, the full population response of layer 2/3 at the recorded
location is illustrated at the top right. The connection type (excitation, amplification, suppression; see Section
2) describes the influence on its postsynaptic neuron. Attentional modulation of neurons and connections
are denoted by the increase or decrease of the symbols thickness. For clarity, interneurons and unrelated
connections are not illustrated in the figure.

approach is similar as in the normalization model of attention (Reynolds & Heeger, 2009) to
facilitate a comparison of the data fits.

rL4 = β + (1 − β) · rL4 (17)

rL2 = β + (1 − β) · rL2 (18)

3. Results

In the following, we will identify essential mechanisms of our model for each at-
tention experiment. We see these mechanisms as a proposal of how attention might
work in the cortical microcircuit of the visual cortex. In each experiment, we first ver-
ify the model by comparing its simulated neuronal responses to physiological data and
then link the simulated data to the mechanisms in the model. Further, we will predict
attention mechanisms in novel paradigms, e.g. in biased competition with surround
suppression.

3.1. Biased competition
In biased competition paradigms, suppression is observed between two different

stimuli presented inside a receptive field of a neuron and attention has been observed to
modulate this suppression. Biased competition with spatial attention has been reported
in several areas (MT: Lee & Maunsell (2010a), also Lee & Maunsell (2009, 2010b);
V2 and V4: Reynolds et al. (1999); V1, V2, V4: Motter (1993)). In Lee & Maunsell
(2010a), two inversely moving gratings were placed in the receptive field of a neuron
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in area MT (Fig. 2a). Attention was either spatially directed to a grating placed in the
opposite hemifield (attend away) or to one of the two stimuli. They observed that an
unattended stimulus alone elicits a much stronger neuronal response in its preferred
neuron (column 1 left) as the unattended stimulus pair (column 3). However, if the
preferred stimulus of the pair (column 4) is attended, the response of the preferred
cell will be as strong as to the stimulus alone (column 4, left) and the response of the
anti-preferred cell will be decreased (column 4, right). The reverse effect is observable
for attending the anti-preferred stimulus (column 5). The data is adapted from Lee &
Maunsell (2010a, Fig. 5) and shows the average firing rate over the full population and
over a time window between 50ms and 200ms after stimulus onset.

In the model (Fig. 2b), spatial attention is modeled by an amplification signal orig-
inating from FEF/LIP to layer 4, amplifying the response of all cells at the attended
location. This location comprises only the attended stimulus, here the upward mov-
ing one, so only the response of this feature is increased. This drives layer 2/3 cells,
resulting also there in an amplified response of this feature as observed in the data (col-
umn 4, left in Fig. 2a). These neurons in layer 2/3 suppress cells in layer 4 encoding
the anti-preferred stimulus (downward motion), denoted as feature-based suppression.
This in turn decreases also the response of cells in layer 2/3 encoding the anti-preferred
stimulus as observed in model and data (column 4, right in Fig. 2a).

For simulating biased competition with spatial attention, the spatial pooling opera-
tion in the second layer is necessary. This operation is one of the main model improve-
ments as previous models contain only a single layer (Boynton, 2009; Lee & Maunsell,
2009; Ni et al., 2012; Reynolds & Heeger, 2009) as discussed in more detail later. Pool-
ing mediates the interaction of the attended location with the recorded location. The
recorded location is here defined as the center of the receptive field, because the model
uses symmetric receptive fields. The attended location is classically in the periphery
of the receptive field. Therefore, spatial pooling is required to transfer the attentional
modulated response from the attended location to the center. In addition, spatial pool-
ing is accompanied by a distribution of the suppression. This is implemented via the
suppressive feedback connections from layer 2/3 to layer 4 originating from the center
to all locations within the receptive field. Both mechanisms together allow that a spatial
amplification at one location induces a suppression at the other location.

Thus in summary, necessary mechanisms for biased competition are the amplifica-
tion in layer 4 and in layer 2/3, the suppression of the anti-preferred feature, and the
spatial pooling.

Biased competition has been traditionally tested with different stimuli raising the
question what effect occurs if identical stimuli are placed within the receptive field. Re-
cent data suggests that a “feature pooling” effect occurs instead of biased competition.
The effect without attention is shown by MacEvoy et al. (2009) for area V1: no sup-
pression was observed between equal stimuli, i.e. the response to a single stimulus was
the same as presenting both stimuli (Fig. 3b, right). In the study, they varied system-
atically the similarity between the stimuli and showed that the amount of suppression
decreases with increasing similarity (Fig. 3b). Yet it has to be noted that they used
overlapping stimuli whereby the stimuli in biased competition are normally spatially
distinct. Nevertheless, the pooling effect also occurs with deploying attention to one
of two spatially distinct stimuli in area MT: Lee & Maunsell (2010a) reported for two
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Figure 3: Characteristics of biased competition and related paradigms. Neurophysiological data (top row) is
shown in relation to simulation results (bottom row). a) Neuronal response depends on the similarity of the
two spatially disjunctive stimuli. Biased competition (two different stimuli, left) and feature pooling (two
equal stimuli, right) mark the extreme cases. Experimental conditions are: preferred stimulus alone attended
(blue), pair attend preferred (green), pair attend away (yellow) and pair attend anti-preferred (red). The
data shows the average population response in area MT of cells preferring the left stimulus and is adapted
from Lee & Maunsell (2010a, Fig. 5). b) The same similarity dependency as in a) can be observed also
for two overlapping gratings in area V1. In this study (MacEvoy et al., 2009, Fig. 2a-c), conditions are all
without attention: preferred stimulus alone (blue), pair (yellow) and anti-preferred stimulus alone (pink).
c-e) Effect of attention on the relationship between selectivity (probe - reference) and sensory-interaction
(pair - reference). See text for details. The data represents a population response in area V4 in a biased
competition paradigm with spatial attention (Reynolds et al., 1999, Fig. 11a,b,d). f) Contrast dependency of
responses in area V1 with overlapping competing stimuli (Busse et al., 2009, Fig. 4a). The contrast of two
stimuli (0◦ and 90◦ oriented gratings) is systematically varied (0%, 12%, 50%) and the population response
is plotted. Contrasts of horizontal gratings (90◦) are denoted at the x-axis and contrasts of vertical gratings
(0◦) at the y-axis.

equal stimuli a similar attentional modulation as for a single stimulus (Fig. 3a right).
The effect could not be induced by the experimental setup as the stimulus similarity
has been systematically varied within the same setup, and biased competition has been
found for different stimuli and pooling for identical stimuli. Our model reflects this
effect as the strength of the suppressive connections from layer 2/3 to layer 4 depends
on the feature similarity (Fig. 1), so the strength is maximal for different ones and zero
for similar features.

A possibility to quantitatively measure biased competition is by relating the re-
sponse of a cell to a single stimulus (selectivity) to its response to a stimulus pair
(sensory interaction, Reynolds et al. (1999)). The selectivity of a neuron is defined as
the response to a variable probe stimulus minus the response of an arbitrarily chosen
reference stimulus. A positive selectivity refers to cells preferring the probe whereby a
negative value refers to cells preferring the reference stimulus. The sensory interaction
is defined as the response to the stimulus pair (probe and reference presented simulta-
neously) minus the reference alone. A positive value indicates that the cell’s response
to the reference is increased by adding a probe whereby a negative value denotes sup-
pression by adding the probe. The selectivity and sensory interaction indices for several
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randomly chosen probe and reference stimuli have been plotted cell-wise against each
other and fitted with a linear regression curve. In area V4, the slope in the unattended
condition is 0.49 (Fig. 3c). A slope of 1.0 would indicate no suppression between the
stimuli, hence the slope of 0.49 shows for a cell preferring the probe (positive selectiv-
ity) a suppression from the reference of about 50%. Likewise for a cell preferring the
reference (negative selectivity), it shows a suppression from the probe of about 50%.
Attending the probe results in a slope of 0.83 (Fig. 3d) which demonstrates an increase
to the pair response for cells preferring the probe (positive selectivity) and a decrease
to the pair response for cells preferring the reference (negative selectivity). Contrary,
attending the reference (Fig. 3e) will evoke the opposite effect and thus resulting in a
slope of 0.21. Additionally to area V4, Reynolds et al. (1999) investigated also area
V2 and found a qualitatively similar effect. The model can replicate the data well (Fig.
3c-e) with the previously outlined mechanisms involved in biased competition.

All the above experiments were carried out with stimuli of equal contrast. However,
the amount of suppression depends on the contrast of each stimulus. Stimulus contrast
is defined in this context as the contrast between the stimulus and the background,
hence it describes the strength of a stimulus. Busse et al. (2009) used overlapping grat-
ings of 0◦ and 90◦ orientation, varied systematically the contrast of both orientations
and recorded the neuronal population via electrode arrays (Fig. 3f). If a single stim-
ulus is presented alone (shown as 0% contrast of the other stimulus in Fig. 3d), the
response is characterized by the contrast response function (CRF, Albrecht & Hamil-
ton (1982)). The CRF is implemented in the model by divisive normalization in layer
4: rL4 = (1 + 1

σ
) · E

σ+E , whereby the excitation E represents the stimulus contrast. This
divisive normalization explains the strong non-linear influence of the contrast on the re-
sponse. If a pair of differently contrasted stimuli is presented (12% and 50% contrast in
Fig. 3f), the population response is dominated by the higher contrasted stimulus. This
implies a non-linear suppression towards cells preferring the lower contrasted stimulus,
realized in the model by the same feature-based suppression mechanism as in biased
competition: suppression occurs from cells in layer 2/3 preferring the 50% contrasted
stimulus towards cells in layer 4 preferring the 12% contrasted stimuli. Afterwards,
the decreased response in layer 4 is projected to the recorded neuron in layer 2/3. The
observed non-linear effect occurs because the suppression originates in a non-linear
manner from the neuronal response in layer 2/3 (rL2): S = (rL2)pFEAT ; and because this
suppression operates divisively on the firing rate in layer 4: rL4 = (1 + 1

σ
) · E

σ+E+b(E)·S .
These mechanisms are present in the model in all conditions, but the non-linear effect
is mostly visible in cases with different contrasted stimuli. With two equally contrasted
stimuli, the data shows another effect, an equally strong suppression towards both stim-
uli and under all contrasts. This expected result proves that suppression occurs at all
contrasts which implies that also biased competition should occur at all contrasts.

Feature-based attention (review: Maunsell & Treue (2006)) can also modulate the
suppression between stimuli in a biased competition paradigm, similar to the effect
described for spatial attention but with a feature-selective bias. Studies reported the
effect for area V4 (Chelazzi et al., 2001; Fallah et al., 2007; Zhou & Desimone, 2011),
MT (Treue & Trujillo, 1999), and IT (Chelazzi et al., 1998). In the study of Chelazzi
et al. (1998), the task of three rhesus monkeys was to execute a saccade to a previously
shown target object that was presented together with distracting objects (Fig. 4a). The
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Figure 4: Biased competition experiment with feature-based attention. a) Neurophysiological data (top) in
relation to our simulation results (bottom, recorded cell is indicated in (b)). The average neuronal response of
area V4 for the preferred stimulus (1), anti-preferred stimulus (2) and pair (3-5). In the latter, feature-based
attention (denoted by red) is either directed away (3), to the preferred (4) or anti-preferred (5). Data adapted
from Chelazzi et al. (1998, Fig. 10a and 10b). b) Mechanics of biased competition with feature-based
attention. The notation of the figure is similar to Fig. 2. Attentional modulation of neurons and connections
are denoted by the increase or decrease of the symbols thickness. The mechanics are based on the experiment
illustrated in (a), condition 4.

target object was previously shown at a different location to ensure that the setup causes
only feature-based attention. The presented data (Fig. 4a, top) illustrates the popula-
tion response of neurons preferring the target in area IT. The response was obtained by
averaging over 58 neurons and over a time span from 150ms to 300ms after stimulus
onset. The time window was chosen so that it starts at the onset of the full response
and ends before the neuronal response changes due to onset of the saccade, similar
as used by Lee & Maunsell (2010a) for their setup of biased competition. The data
demonstrates the typical biased competition effects: the unattended, preferred stimulus
alone (Fig. 4a, condition 1) elicits a much stronger neuronal response than the unat-
tended stimulus pair (condition 3). However, if the preferred stimulus of the pair is
attended, the response is amplified (condition 4) whereby a decrease of the response is
observed if the anti-preferred stimulus is attended (condition 5). Yet, it is still higher as
the response to the unattended, anti-preferred stimulus alone (condition 2). Although
this task initially deploys feature-based attention as the location of the target object is
varied across trials, it has been proposed and modeled that saccade preparation induces
a delayed spatial reentrant signal which affects the late response (Hamker, 2005b).
However, as we here focus on the cortical microcircuit of attention, we simplify the
modeling and only apply a feature-specific bias.

The mechanisms of biased competition with feature-based attention are illustrated
in Fig. 4b. The search array composed of target and distractor excites respective cells
in layer 4 and layer 2/3. A feature-based amplification originates from a higher cortical
area and is projected to layer 2/3 amplifying the neuronal response of the attended
feature. This in turn enhances via amplifying connections the neuronal response of
this feature in layer 4 and decreases via suppressive connections the response of the
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Figure 5: Contrast gain resulting from the attentional modulation of the contrast function. a) Neurophysi-
ological data (top) in relation to simulation results (bottom, recorded cell is indicated in (b)). The average
neuronal response of area V4 as a function of contrast (data adapted from Reynolds et al. (2000, Fig. 5a).
b) Mechanics of contrast gain. Neuronal activity in layer 2/3 occurs only at a small region as illustrated
by the spatial response profile at the top right, showing across space the response of neurons preferring the
stimulus. The notation of the figure is similar to Fig. 2. Attentional modulation of neurons and connections
are denoted by the increase or decrease of the symbols thickness.

distracting feature in layer 4, which also reduces the excitatory signal to layer 2/3
neurons selective for the distracting feature.

3.2. Attentional modulation of the contrast response function: contrast gain or re-
sponse gain

The amount of attentional modulation depends on the stimulus contrast. Contrast
gain (definition: Reynolds et al. (2000)) describes that attention amplifies the neuronal
response mainly at lower stimulus contrasts whereby at high contrast, the neuronal
response saturates to the same value without an explicit threshold on the response. This
results in a leftward shift of the contrast response function (CRF, Albrecht & Hamilton
(1982)). The response gain denotes the appealing simple idea that attention amplifies
the neuronal response by a fixed factor, as already suggested very early by McAdams
& Maunsell (1999) or Treue & Trujillo (1999). There has been experimental evidence
for both, contrast gain and response gain, as explained in the following.

Reynolds et al. (2000) observed contrast gain in single-cell recordings of area V4
involving spatial attention. Their data (Fig. 5a) illustrates the contrast response func-
tion of a population of V4 neurons to a grating. In this study, the task of two rhesus
monkeys was to spatially attend inside (attend preferred, Fig. 5a left) or outside the
receptive field of the recorded cell (attend away, Fig. 5a right).

Reynolds & Heeger (2009) already suggested by means of model simulations that
whether attention leads to contrast gain or response gain depends on the stimulus size
in relation to the attended region. Reynolds et al. (2000) used a rectangle as a cue that
was much larger than the stimulus, presumably resulting in a broader field of attention
compared to the size of the stimulus. Besides area V4, Li et al. (2008) reported contrast
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Figure 6: A mix of response and contrast gain resulting from the attentional modulation of the contrast
response function. a) Neurophysiological data (top) in relation to simulation results (bottom, recorded cell is
indicated in b). The average neuronal response of area V4 as a function of contrast (CRF, data adapted from
Williford & Maunsell (2006, Fig. 6g)). b) Mechanisms responsible for a mix of response and contrast gain.
Neuronal activity in layer 2/3 occurs at multiple locations as illustrated by the spatial response profile at the
top right, showing across space the response of neurons preferring the stimulus. The notation of the figure is
similar to Fig. 2. Attentional modulation of neurons and connections are denoted by the increase or decrease
of the symbols thickness.

gain in area V1 with fMRI using spatial attention. Furthermore, Martı́nez-Trujillo &
Treue (2002) reported the effect in area MT for exemplary neurons, but they also found
neurons with a response gain.

In our model, contrast gain occurs if the attended region is much larger than the
stimulus (Fig. 5b). Thus, spatial attention is deployed very broadly to layer 4, but
amplifies only a few neurons as only a few features at a single location will be excited
due to the small stimulus size. This response is projected to layer 2/3, activating only
neurons within a very narrow region. Thus no suppression from neurons at spatially
adjacent locations occurs, allowing the response to saturate. At high contrast, the re-
sponse saturates to its maximal possible value, so attentional amplification occurs only
at low contrasts. Both effects together, the saturation at high and the attentional am-
plification at low contrasts, induces the typical leftwards shift of the contrast response
function (Fig. 5a).

A mixed effect between contrast and response gain was observed by Williford &
Maunsell (2006), in area V4. Furthermore, evidence for response gain has been found
in fMRI data by Boynton (2009) in areas V1, V2; by Li et al. (2008) in areas V2,
V3, V3A, V4s; and by Murray (2008) in areas V1, V2, V3. Williford & Maunsell
(2006) recorded the contrast response function (CRF, Albrecht & Hamilton (1982)) for
a population of V4 neurons and obtained an average CRF (Fig. 6a) over all neurons
with a significant attentional modulation and a significant contrast enhancement of the
CRF. The task of two macaque monkeys was to spatially attend a grating either inside
the receptive field of the recorded cell (attend preferred, Fig. 6a left stimulus) or outside
of it (attend away, Fig. 6a right). The cueing stimulus was a grating of the same size as
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the stimuli, presumably resulting in an attended area that has roughly the same size as
the stimulus.

In our model, spatial attention leads to a pure response gain if the stimulus is much
broader than the attended area (similar as in Reynolds & Heeger (2009)) and in a mix
of response and contrast gain if the stimulus and the attended area are similar in size
(Fig. 6b). In both cases, the stimulus falls within the receptive fields of multiple,
spatially-adjacent neurons in layer 2/3. In the unattended case, the broad responses in
layer 2/3 result in a suppression to layer 4 which in turn results in a moderate response
in layer 4 (left cell) and also in layer 2/3 (left cell). This occurs similarly at all contrast
levels. The suppression occurs between different locations similar as surround sup-
pression, thus we model it via the same signal ASUR. In the attended case, attention is
deployed to only a small area amplifying only there the neuronal response. Thus, the
previously moderate response is amplified. As this mechanism is contrast independent,
the response gain is observed under all contrasts.

A response gain is observed in many of the other simulated experiments (biased
competition: Fig. 2, 4; attentional modulation of neuronal tuning curve: Fig. 7, 8;
attentional modulation of surround suppression: Fig. 9b). In some experiments, it
is shown directly by the modulation of the contrast response function (Fig. 9b). In
the other experiments, only high contrasted stimuli were presented. In this case, an
increase of the neuronal response through attention indicates the response gain effect
(Fig. 2, 4, 7, 8). According to our model, a response gain is observed if suppression is
similar strong among different contrasts, as observed for example in the study of Lee &
Maunsell (2010b) (same data as Lee & Maunsell (2010a) shown in Fig. 2). This setup
involves spatial attention and the neuronal responses in the conditions attend preferred
and attend anti-preferred were recorded. A response gain is observed because this
setup induces similar effects across all contrasts: In the condition attend anti-preferred,
a strong suppression from layer 2/3 to layer 4 results in a moderate response (Fig. 2);
and in the attend preferred condition, the neuronal responses layer 4 are amplified. As
amplification and suppression mechanisms modulate the responses similarly strong for
all contrasts, a response gain effect is observed.

3.3. Attention modulation of neuronal tuning curves

3.3.1. Scaling of the neuronal tuning curve
Attention also affects the neuronal tuning curve in the feature space, resulting in

either a scaling (Fig. 7a) or sharpening (Fig. 8a) of the curve (Ling et al., 2009).
Typically, the deployment of spatial attention results in a multiplicative scaling of

the tuning curve, as observed by single-unit recordings in V1 (Motter, 1993), V2 (Mot-
ter, 1993) and V4 (David et al., 2008; McAdams & Maunsell, 1999; Motter, 1993). We
simulated the study of McAdams & Maunsell (1999) who have recorded tuning curves
in area V4 (Fig. 7a). In their study, two rhesus monkeys have to either report the color
equality/difference of successive blob-stimuli presented in the left hemifield (condition:
attend away) or the equality/difference of successive presented gratings presented in the
right hemifield (condition: attend preferred). The stimulus in the right hemifield was
placed within the receptive field of the recorded neuron. Furthermore, its orientation
was varied to obtain the neuronal tuning curve. The data shows the average population
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Figure 7: Scaling of the neuronal tuning curve due to spatial attention. a) Neurophysiological data (top) in
relation to simulation results (bottom, recorded cell is indicated in b). Color denotes conditions of attend
away (blue) and attend preferred (green). Data adapted from McAdams & Maunsell (1999, Fig. 4). b) Me-
chanics: spatial amplification enhances all features at the attended location with a similar factor, resulting in
a multiplicative scaling of the tuning curve. The notation of the figure is similar to Fig. 2. The variable stim-
ulus excites each neuron differently strong according to its feature preference (indicated by dotted arrows).
Attentional modulation of neurons and connections are denoted by the increase or decrease of the symbols
thickness.

response which was acquired by shifting the preferred tuning of each single neuron to
the center of the plot and then afterwards averaging the responses.

According to our model, the scaling effect occurs because spatial attention ampli-
fies the response of all features within a population in layer 4 with a similar factor
(Fig. 7b). The increased activity is projected to layer 2/3 neurons. Feature-based sup-
pression is not important in this paradigm as the amount of suppression is relatively
similar in both experimental conditions attend away and attend preferred. The amount
of suppression depends on the differences between the neuronal responses within layer
2/3, because a cell receives feature-based amplification from its own feature and sup-
pression from opposing ones. As these response differences do not change with spatial
attention, the suppression remains constant between both conditions. In addition, sup-
pression from adjacent neurons occurs as the stimulus is large enough to fall within
several receptive fields, similar as in the response gain experiment (Fig. 6). In sum-
mary, suppression occurs, but the effect is primarily based on the very crucial property
of attention, the amplification mechanism.

3.3.2. Sharpening of the neuronal tuning curve
Feature-based attention leads to an amplification of the attended feature and to a

suppression of unattended ones, known as sharpening (Fig. 8a), as suggested by single-
unit recordings in MT (Martinez-Trujillo & Treue, 2004) and V4 (David et al., 2008).
Our simulations suggest that the effect is a general property of attention in the cortical
microcircuit as it is based on two very basic properties: the amplification mechanism
and suppression.
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Figure 8: Modulation of neuronal tuning curves due to feature-based attention. a-b) Neurophysiological
data (top) in relation to simulation results (bottom). a) Sharpening of the neuronal tuning curve due to
feature-based attention in a single-stimulus setup. The recorded cell is indicated in c). The data illustrates
the response of a representative MT neuron for different orientated stimuli (adapted from Martinez-Trujillo
& Treue (2004, Fig. 4a). b) In biased competition, feature-based attention leads to a scaling of the neuronal
tuning curve. Data is adapted from Treue & Trujillo (1999, Fig. 3b). c) Mechanisms: in the single-stimulus
setup of (a), feature-based attention results in a sharpening as it amplifies the response of only the attended
feature and increases suppression to opposing ones. The notation of the figure is similar to Fig. 2. The
variable stimulus excites each neuron differently strong according to its feature preference (indicated by
dotted arrows). Attentional modulation of neurons and connections are denoted by the increase or decrease
of the symbols thickness.

Martinez-Trujillo & Treue (2004) illustrate this effect for a representative neuron
in area MT (Fig. 8a). Their experimental setup contains two identically moving ran-
dom dot patterns (RDPs) at two locations (right location was recorded). In the task,
two macaque monkeys have either to spatially attend to the fixation point (condition:
attend away; Fig. 8a blue) or to the moving RDP at location ’left’ (condition: attend
preferred; Fig. 8a green). This setup ensures feature-based attention at the ‘right’ posi-
tion: spatially attending the left RDP induces spatial and feature-based attention to it,
presumably resulting in a deployment of feature-based attention to all identical RDP in
the scene, hence also to the right RDP. The tuning curve is sharpened by attention as
the neuronal response to the preferred motion direction is increased and the response
to the anti-preferred direction is decreased.

In our model (Fig. 8c), sharpening occurs if feature-based attention is narrowly
tuned and thus amplifies only the response of cells in layer 2/3 and layer 4 preferring
the attended feature. Amplifying this response leads to a stronger suppression from
layer 2/3 to the other (and non-attended) features in layer 4 resulting in a decreased
neuronal response. This in turn decreases also the response of opposing features in
layer 2/3 (opposing motion direction are at 180◦ and -180◦). These suppression effects
induce the sharpening of the tuning curve (Fig. 8a).

3.3.3. Neuronal tuning curve in biased competition
Treue & Trujillo (1999) investigated the modulation of the tuning curve within

an additional distractor by using a biased competition paradigm with feature-based
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attention. Unexpectedly, this setup results in a scaling of the tuning curve instead of a
sharpening (Fig. 8b). They reported neuronal tuning curves of a representative neuron
in area MT and placed two stimuli in the receptive field of a cell: a target random dot
pattern (RDP) with variable motion direction to record a tuning curve and a distractor
RDP with fixed anti-preferred motion direction of the recorded cell. Attention was
deployed either to the target or to the distractor by cueing a third RDP placed in the
contralateral hemifield which had the same feature as the attended object. As cue and
attended object have different locations, this setup ensures pure feature-based attention.
The task of the two macaques was to detect a motion change in the target stimulus. The
data shows a multiplicative scaling of the tuning curve when attending the target (up-
scaling) or distractor (down-scaling).

A pure multiplicative scaling is surprising as other data shows a sharpening of the
tuning curve (Fig. 8a) and other models (Reynolds & Heeger, 2009) could not provide
a solid explanation for this discrepancy. However, our modeling of the experiment
clarifies that the sharpening effect does not occur due to a strong suppression from the
additional distractor. The presence of the distractor suppresses the flanks of the tuning
curve as the neuronal responses are zero for anti-preferred targets in the attended-away
condition (Fig. 8b, blue curve at motion directions in the range: -180 to -120◦ and 120◦

to 180◦). Contrary, these responses are non-zero in the data showing the sharpening
(Fig. 8a). In the model, suppression is most powerful at the flanks of the tuning curve.
It is weaker at the center due to competition between neurons preferring the target and
the distractor. Due to this suppression of the flanks, a further sharpening does not occur.

3.4. Attentional modulation of surround suppression

Attention can also modulate the amount of received suppression in center surround
experiments. Within a classical receptive field (cRF), attentional modulated suppres-
sion is well explained by the biased competition paradigm (Section 3.1). Thus, the
surround paradigm is especially interesting as it addresses the question of attentionally
modulated suppression beyond the cRF. In such center surround experiments (Gilbert,
1998), a stimulus in the surround of the cRF suppresses the cell’s response as demon-
strated by Cavanaugh et al. (2002a) for area V1. They systematically increased the size
of a grating beyond the size of the cRF and observed that the average neuronal response
starts to decrease after the stimulus size exceeds the cRF showing the suppression ef-
fect (Fig. 9a). Furthermore, they found a larger cRF at lower contrasts. The cRF size
was defined in their study as the stimulus size invoking the maximum response (grat-
ing summation field). Our attention model can account for this effect if we presume a
weaker surround suppression at lower contrasts by setting pSUR = 2.0. At higher con-
trasts, the strong suppression removes layer 4 activity at the flanks of the stimulus area,
leading to a narrow spatial response curve. Contrary at lower contrasts, the response
remains broad in the spatial dimension. Layer 2/3 neurons integrate so over a broader
activity at lower contrast, resulting in higher responses. This approach is similar to the
“gain” model of Cavanaugh et al. (2002a) which fitted at best the data.

We have simulated the experiment as follow. The input was simulated via a Gaus-
sian in the spatial dimension. Its standard deviation represents the area of the stimulus:
σ ≈ π d2

4 , with stimulus diameter d. Layer 2/3 neurons need to integrate information
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Figure 9: Attentional modulation of surround suppression. a - b) Neurophysiological data (top) in relation
to simulation results (bottom, recorded cells are indicated in c). a) The average neuronal response in area V1
for gratings of increasing diameter size (data adapted from Cavanaugh et al. (2002a, Fig. 8a). The stimulus
contrast was also varied whereby the highest is denoted by the darkest points. The peak in a response curve
marks the border of the receptive field, denoted by black arrows. b) The average response of neurons in area
V4 as a function of contrast if one stimulus is presented in the center and another one in the surround of the
classical receptive field (cRF). Yellow denotes this case (condition: surround), green denotes a control setup
without the surround stimulus (condition: center). Data was adapted from Sundberg et al. (2009, Fig. 6f). c)
Mechanisms of attentionally modulated surround suppression. The notation of the figure is similar to Fig. 2.
Attentional modulation of neurons and connections are denoted by the increase or decrease of the symbols
thickness.

beyond their cRF borders, so layer 4 and layer 2/3 are weakly connected outside the
cRF too. In all other experiments, the layers have for simplicity only connections in-
side a cRF. In both cases, the width of the cRF is the same as the connectivity weights
are modeled via the same Gaussian.

Surround suppression is widely observed in the visual cortex: in LGN (Bonin et al.,
2005); V1 (Cavanaugh et al., 2002a,b; Bair et al., 2003); V2 (Ito & Gilbert, 1999;
Willmore et al., 2010); V4 (Sundberg et al., 2009); MT (Allman et al., 1985; Pack et al.,
2005; Hunter & Born, 2011); MST (Orban, 2008); and LIP (Falkner et al., 2010). In
IT, no study reported this effect, probably because receptive fields are very large thus it
is experimentally very difficult to place a stimulus outside the receptive field. However,
Miller et al. (1993) found suppression between pair of stimuli within a receptive field.

The surround effect can also be modulated by attention as attending the center of
the receptive field or the surround stimulus amplifies or respectively suppresses the
neuronal response. Sundberg et al. (2009) observed this effect by recording neuronal
responses in area V4 (Fig. 9b). Their setup (yellow, Fig. 9b) consists of three grat-
ings with variable contrast, one in the opposite hemifield (left stimulus in Fig. 9b),
one in the classical receptive field (cRF) of the recorded cell (right stimulus marked
with a ring) and one in the remote surround of the cRF (lower right stimulus). Stimu-
lus contrast was varied for the stimulus inside the cRF and was fixed to the maximum
for the stimulus in the surround. As a control (green), they replicate the known at-
tentional modulation of the cRF for a single stimulus (Fig. 5 in Section 3.2). In both
setups, they investigated the conditions of attending the grating in the opposite hemi-
field (attend away), in the center of the cRF (attend center, right stimulus), and in the
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surround (attend surround). They found that in the attend away condition, the surround
stimulus slightly suppresses the neuronal responses (yellow versus green curve). Com-
pared to the data of Cavanaugh et al. (2002a) shown in Fig. 9a, the weak suppression
may be explained by the fact that Cavanaugh et al. (2002a) covers the whole surround
with a large surround stimulus whereby Sundberg et al. (2009) uses a single and small
surround stimulus. Attending the surround slightly increases the amount of surround
suppression. In contrast, attending to the center stimulus diminishes the surround sup-
pression (overlapping of the yellow and green curve). In addition, attending to the
center stimulus increases the absolute response, indicating a response gain effect in
addition to the surround effect.

The mechanics in the model will be explained by the example of the study of Sund-
berg et al. (2009) (Fig. 9c). The center and the surround stimulus excite neurons in
layer 4 and in turn in layer 2/3 at both the surround (left in Fig. 9c) and the center
location (right). The layer 2/3 response from the surround is projected back via sup-
pressive connections to layer 4 in the center, decreasing the neuronal response which
in turn also decreases the layer 2/3 activations in the center. As this suppression does
not occur if no surround stimulus is present, its influence is visible by comparing the
responses with and without surround stimulus (yellow versus green in Fig. 9b). An
opposite suppression effect occurs also from the center to the surround location (not
shown). If the surround is spatially attended, the responses in both layer 4 and 2/3 are
amplified which increases the suppression to layer 4 in the center. Attending the center
invokes the opposite mechanism, resulting in a decreased response at the surround.

Besides the study of Sundberg et al. (2009), a few other studies investigated the
effect of attention in center surround experiments and found similar results: Chen &
Martinez-Conde (2008) found the effect in area V1 by spatially attending the center
or the surround with a variable task difficulty. On the highest difficulty, they found an
amplification of about 140% when attending the center. Ito & Gilbert (1999) shows the
effect also for area V1 in the conditions of attending away, the center, or four surround
locations simultaneously.

Until now, we have considered only the surround suppression between similar stim-
uli in cases where the suppression is independent of the spatial arrangement of the sur-
round. This is the most typical case (Zanos et al., 2011) and so implemented as standard
in the model. However in general, the effect is more complex as reviewed by Gilbert
(1998) or Spratling (2010) (the latter study particularly focused on V1). Bonin et al.
(2005) found the condition that suppression occurs from all features in the surround, in-
dependently of their similarity. This was also observed for random dot patterns which
create a strong suppression independent from spatial arrangement. However in the
paradigm denoted as contour linkage (or flanker effect, Gilbert (1998)), adjacent stim-
uli can even enhance each other if they form together a large contour. The model might
also account for these effects if the amplifying and suppressive connections from layer
2/3 to layer 4 (AFEAT and S SUR) are adjusted appropriately.

3.5. Predictions
The model predicts interactions between many of the previously outlined paradigms

as the underlying mechanisms will normally interact with each other. We will exem-
plarily investigate the interactions of biased competition and surround suppression.
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Figure 10: Prediction of biased competition with surround suppression. a) The setup consists of a preferred
(vertical grating) and anti-preferred stimulus (horizontal grating) inside the classical receptive field (cRF),
plus an anti-preferred stimulus in the surround. Three setup variations were simulated: the preferred stimulus
alone (first row), biased competition alone containing the preferred and anti-preferred stimulus in the cRF
(second row), and biased competition with the additional anti-preferred stimulus in the surround (third row).
Model responses are illustrated in the condition of attending away or of attending one of the three stimuli.
The attended stimulus is marked in red. Responses are not displayed if the attended stimulus is absent in a
setup. b) Model mechanisms, illustrated in the condition of spatially attending the surround stimulus (last
condition in a). The notation of the figure is similar to Fig. 2. Attentional modulation of neurons and
connections are denoted by the increase or decrease of the symbols thickness.

The competition between a stimulus pair can be favored for one of them by attending
it (biased competition). However, a surround stimulus can also favor one of them by
selectively suppressing the other one. An exemplary setup is depicted in Fig. 10a,
third row. It consists of a preferred (vertical grating) plus an anti-preferred stimulus
(horizontal grating) inside the classical receptive field (cRF), and an additional anti-
preferred stimulus in the surround (horizontal grating). Stimulus contrast is high and
equal for all stimuli. We propose to record from a neuron in area V4 as biased competi-
tion and surround suppression effects were reported for this area (Reynolds et al., 1999;
Sundberg et al., 2009). As surround suppression strength depends on the stimulus size
(Cavanaugh et al., 2002a) and as the suppression is weak in V4 for small stimuli (Sund-
berg et al., 2009), we use a large surround stimulus to obtain a strong effect (3x of the
cRF size). Compared to this, the stimuli inside the cRF are much smaller (1/5 of the
cRF size). The interaction between surround and stimuli inside the cRF can be very
complex (Section 3.4). We assume here the most typical case in which only similar
stimuli suppress each other.

The model predicts that an anti-preferred surround stimulus decreases the response
to an anti-preferred stimulus in the cRF, leading to an increased response of a preferred
stimulus in the cRF. We simulated three setups (Fig. 10a): the preferred stimulus alone
(first row), biased competition (second row), and biased competition with a surround
stimulus (third row). For all setups, we simulated the attentional conditions of 1) attend
away, 2) attend preferred, 3) attend anti-preferred, and 4) attend surround stimulus. The
model uses in all simulations its standard parameters (Tab. 1 in Section 2). The first
setup contains the preferred stimulus only and so illustrates the response without sup-
pression from other stimuli. Unattended, the response is already strong due to the high
stimulus contrast, so attending the stimulus increases the response only marginally.
The second setup shows the classical biased competition effect, namely the average re-
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sponse to the pair of stimuli if attention is directed away. Furthermore, if one of the two
stimuli is attended, its response is amplified and the other one suppressed. The third
setup combines biased competition with surround suppression. In the attended away
condition, the response of neurons encoding the preferred stimulus is halfway between
the response to the stimulus alone and to the pair in the biased competition setup. Com-
plementary, the response of neurons encoding the anti-preferred stimulus is lower. Both
responses indicate that the surround stimulus suppresses the anti-preferred stimulus in
the cRF. Attending the surround stimulus increases this effect. Attending one of the
two stimuli inside the cRF results in the previously shown biased competition effects
with a minor influence of surround suppression, illustrating that the amplification has
a stronger influence than the surround suppression.

Attending the surround stimulus has the most prominent effect (Fig. 10b). In the
model, it amplifies the response of neurons encoding this stimulus, which strongly sup-
press neurons encoding the anti-preferred stimulus inside the cRF. Contrary, neurons
encoding the preferred stimulus are not suppressed as surround suppression occurs only
between neurons encoding similar features, here the features of the anti-preferred stim-
uli. In the cRF, the reduced response of those neurons diminishes the feature-based sup-
pression to the neurons encoding the preferred stimulus. The response of the neurons
selective for the preferred stimulus is so almost similar as in the condition of presenting
the preferred stimulus alone. If the surround stimulus is not attended (attend away con-
dition), the mechanisms operate identical but are weaker. If a stimulus inside the cRF
is attended, the mechanisms of biased competition have more influence than surround
suppression. Attending the preferred stimulus removes the influence of the weak sup-
pression from the distractor in the cRF, so the response increases slightly. Attending the
anti-preferred stimulus amplifies the response of neurons encoding it, which diminishes
the influence of suppression. This suppression results from the neurons in the surround
as well as from the neurons encoding the preferred stimulus (feature-based suppres-
sion). Thus, the accumulated suppression has still a notable influence and the response
of those neurons is less increased as in biased competition. This lower response results
in less feature-based suppression back to the neurons encoding the preferred stimulus,
so their rate is less decreased as in biased competition.

4. Discussion

Experimental investigations that focused on the attentional modulation of the neu-
ronal response in visual areas have led to a large set of data. In order to understand the
underlying mechanisms of attention, computational models can help if they allow to
explain the observations by only a few core mechanisms. In the proposed model, these
are amplification, normalization, spatial pooling and suppression. In the following, we
will review the abilities of existing models and the mechanisms they incorporate. Be-
sides, we will discuss limitations of the proposed model. Furthermore, we will discuss
the physiological foundation of the approach, especially concerning the implementa-
tion of the suppression.
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Fig.
no.

Experiment Reynolds
&

Heeger
(2009)

Boynton
(2009)

Lee &
Maun-

sell
(2009)

Ni et
al.,

(2012)

Spratling
(2008)

Wagatsu-
ma et al.,
(2013)

2, 3a Biased competition
with spatial att.

+ + +

3a, b Feature pooling + +

3c-e Selectivity vs.
sensory interaction

3f Contrast dependency
of suppression

4 Biased comp. with
feature-based att.

+ +

5 Contrast gain + +

6 Response gain + +

7 Scaling + + + +

8a Sharpening + + + +

8b Tuning curve in
biased competition

imprecise
fit

9a, b Surround suppression

Table 2: Capabilities of existing single-area models to account for a particular attention experiment. The
symbol ‘+’ denotes cases were the publication shows simulation results for a certain experiment.

4.1. Relation to existing single-area models

The motivation for a unified model of visual attention arises mainly from the facts
that each of the more recent existing single-area models can account for only a subset
of the data (Tab. 2) and that most models do not explain the involvement of underlying
mechanism within the cortical microcircuit.

The model of Reynolds & Heeger (2009) is probably the most popular one as it can
replicate data from several experiments: modulation of the contrast response function,
modulation of the neuronal tuning curve and biased competition with feature-based at-
tention. Essential ingredients for its abilities are divisive normalization (Carandini &
Heeger, 2012) accounting for all contrast related properties, and a generic attention plus
a suppression field to simulate amplification and suppression respectively. Reynolds &
Heeger (2009) state that they made no assumption how and over which connectivity
these interactions are carried out in the cortical microcircuit. This improves the flex-
ibility of the model, however it is a drawback in terms of specific predictions about
the putative implementation within the microcircuit. As compared to our model, their
model has no clear definition of a receptive field as it lacks the spatial pooling opera-
tion in layer 2/3. So it cannot replicate experiments where spatial attention is directed
to only a part of the receptive field, e.g. biased competition with spatial attention and
selectivity versus sensory interaction (Tab. 2, rows 1 and 3).

To recapitulate, the biased competition experiments with spatial attention (Reynolds
et al., 1999) use two stimuli which are placed within a receptive field at different po-
sitions. In our model, a spatial pooling operation is realized by excitatory connections
from layer 4 to layer 2/3. By these converging connections, the neuronal responses of
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Figure 11: Comparison of our model with spatial pooling (a, b) with the model of Reynolds & Heeger (2009)
lacking pooling (c, d), in a spatial biased competition experiment. a) The proposed mechanistic cortical
microcircuit of attention. Notation is similar to Fig. 2. Attentional modulation of neurons and connections
are denoted by the increase or decrease of the symbols thickness. b) For our model with spatial pooling, the
responses of the input layer, layer 4 and layer 2/3 are illustrated over all location within the receptive field.
The responses of the upward moving stimulus are denoted by blue (unattended) and green colors (attended
own) whereby the downward one is shown in red, but for simplicity only in the input. The model assumes
symmetrical receptive fields, thus the recorded cell is located in the center, denoted by a dotted line. c) Model
without spatial pooling proposed by Reynolds & Heeger (2009). Notation is identical to a). To facilitate a
comparison with a), the mathematical formulation of the model is illustrated as a neuronal circuit. d) For the
model without spatial pooling, responses of the input and the recorded layer. Notation is identical to b).

a neuron in layer 4 stimulate the recorded neuron (Fig. 11b, green arrow) which de-
fines the receptive field by its bottom up connectivity. Thus, any amplification caused
by spatial attention to a part of the receptive field will amplify also the recorded neu-
ron (blue versus green curve in layer 2/3). Using this mechanism, the proposed model
replicates the physiological data (Section 3.1), i.e. that the attended response is higher
as the unattended one.

Contrary to our model, Reynolds & Heeger (2009) (Fig. 11c, d) use a spatial broad-
ening of the stimulus instead of a pooling operation. Indeed, in the unattended condi-
tion, this approach is effective as the neuron at the center location is activated (Fig.
11d, blue). Attending the stimulus location amplifies also the neuronal response at the
location of the stimulus (Fig. 11d, green). However, this amplified response induces
a stronger suppression at the other locations, thus the response will decrease at the
recorded neuron located at the center. This decrease is obviously in contrast to the
observed amplification in biased competition (Lee & Maunsell, 2010a) as shown in
Fig. 2 (Section 3.1). However, if the model of Reynolds & Heeger (2009) would be
extended by a spatial pooling layer, it could theoretically simulate this biased competi-
tion paradigm. In summary, any attention experiment which requires to spatially attend
only a part of the receptive field and to record at another location, cannot be simulated
by a single layer neuronal model.

Others (Boynton, 2009; Lee & Maunsell, 2009, 2010a,b) published simpler com-
putational models based on divisive normalization. The model of Boynton (2009) is
primary intended to simulate the modulation of the contrast response function. Thus,
their model has a contrast and feature dimension, but no spatial dimension and no at-
tention or suppression field. Attention is modeled in a very abstract parametric fashion
and not by an intrinsic mechanism, rather it is applied via three independent param-
eters: the multiplicative scaling of a tuning curve, a baseline gain and a shift of the
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tuning curve to the left. These parameters allow to fit the model to data with respect to
the attentional modulation of the neuronal tuning curve and contrast response function
(Tab. 2), but make it unlikely that the model can account for other data. In particular it
lacks any suppression mechanism.

Another simple model based on divisive normalization is from Lee & Maunsell
(2009) (also used and described in Lee & Maunsell (2010a,b)). Their model simu-
lates a response based on a driving input and a normalization which may involve one
or two stimuli. The normalization term in the denominator of the neuronal response
function operates as suppression. It is simulated via an exponential function based on
the contrast and a non-linearity, a somewhat different type of normalization compared
to Carandini & Heeger (2012). A stimulus is only encoded by a single rate variable
instead of a neuronal population, so the model lacks tuning curve characteristics. To
overcome this limitation, they model only the interactions between two stimuli. More
precisely, they firstly calculated the tuning curve for a single stimulus from the phys-
iological data without using their model. Secondly, they simulate the interactions by
passing the previously calculated tuning curves of the two stimuli to their model which
then modulates and normalizes the responses (Lee & Maunsell, 2010a). Due to this
procedure, their model can explain the change in the neuronal response when a second
stimulus is added in the receptive field, but not the response towards the single stimu-
lus itself. In summary, they simulate biased competition and feature pooling, both with
spatial attention (Tab. 2, rows 1 and 2). The research group of Maunsell uses in Ni
et al. (2012) a new model to explain their findings that neurons are modulated differ-
ently strong by attention. Their approach is called tuned normalization and it is more
in line with the approach of divisive normalization. Otherwise, this model incorporates
the same ideas as the previous one (Lee & Maunsell, 2009, 2010a,b). In summary, their
model contains all necessary mechanisms (amplification, normalization and suppres-
sion) except spatial pooling to simulate all considered attention experiments (Tab. 2),
so it could theoretically simulate more experiments as the published biased competition
experiments.

Spratling (2008) proposed an attention model which has a higher biological plausi-
bility as the previously reviewed models because it explicitly includes neural connec-
tions. The model contains two stages, possible representing two different brain areas
(Spratling, 2012), whereby each stage contains two sublayers: a prediction and an error
layer. The prediction layer sends an expectation signal to the error layer, so the error
layer can minimize the reconstruction error. Attention signals are deployed to the pre-
diction layer, which are then transported to the error layer. Spatial attention is applied
to stage 1 and feature-based attention to stage 2. Thus their and our model have a sim-
ilar structure because both use two layers to simulate a single cortical area, but their
model is fundamentally different in all other aspects. Spratling (2008) can replicate a
few attention paradigms with his model: modulation of the contrast response function,
modulation of the neuronal tuning curve, and the decrease of reaction times (Tab. 2).
A different version of his model (Spratling, 2010) can replicate additionally the data of
MacEvoy et al. (2009) (competition and feature pooling without attention) and of Ca-
vanaugh et al. (2002a) (surround suppression without attention). However, this model
variant does not contain attention signals and so we do not include it into our list of
attention models (Tab. 2).
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An attention model which has the advantage to precisely simulate the cortical mi-
crocircuit is Wagatsuma et al. (2013). Their model is a revised version of an existing
model of the V1 microcircuit (Potjans & Diesmann, 2012) consisting of layers 2/3, 4,
5, and 6. Their model uses spiking neurons to allow a precise modeling of the temporal
effects of attention. Thus the model is focused on replicating such effects like oscilla-
tions, but it can also replicate two experiments considered here (Tab. 2): the scaling
and the sharpening of neuronal tuning curves. However, due to the high complexity
of the neuronal circuit, it cannot easily explain which mechanisms are necessary for a
particular attention effects. Moreover, the range of simulated experiments is presently
too small to draw general conclusions about the role of connections in the simulated
microcircuit. There exist also a few other models based on spiking neurons (Ardid
et al., 2007; Buia & Tiesinga, 2008; Hugues & José, 2010), but with much less realistic
modeling of the microcircuit and no further advantages.

4.2. Model limitations

The proposed model of visual attention focuses on the explanation of single unit
recordings by means of a mechanistic cortical microcircuit of attention. Thus, the
model covers the information processing necessary for replicating the neural firing rates
emerging in these experiments, but it simplifies all other aspects as much as possible to
keep the model simple and focused. For example, the model contains only layer 4 and
layer 2/3 of the cortical microcircuit (Douglas & Martin, 2004) and only the necessary
part of its connectivity.

Furthermore, to allow an easy visualization of neuronal responses, we model only
a single feature dimension, and a single spatial dimension instead of two spatial retino-
topic dimensions. We also do not simulate any feature integration or learning in the
visual cortex, hence all layers use the same features.

As the model focuses on the simulation of a cortical microcircuit of attention, ex-
periments involving multiple areas cannot be simulated. In previous studies, we fo-
cused on the interaction of the visual cortex with the frontal eye field (Hamker, 2005b)
to address the temporal dynamics of attention and the interplay between feature-based
and spatial attention. Moreover, splits of spatial attention have been addressed (Zirn-
sak et al., 2011). Furthermore, attention effects operating simultaneously on multiple
levels cannot be simulated as this case might also involve multiple areas. One exem-
plary experiment is object based attention in the form where a subpart of an object is
attended which induces attention to the whole object and to other subparts (Mitchell
et al., 2004; Reynolds & Heeger, 2009).

Furthermore, temporal effects of attention are beyond the grasp of this model.
For example, attention modifies the pattern of neural oscillations (Jensen et al., 2007;
Grossberg & Versace, 2008), decreases the transmission delays (Sundberg et al., 2012),
decreases the variability of the neuronal response (Mitchell et al., 2007) or enhances
the temporal coupling of neurons (Gregoriou et al., 2009). These findings may be cru-
cial to understand the full neural implementation of the proposed cortical microcircuit
of attention and would require a different level of implementation detail.
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4.3. Physiological origin of suppression

At present, it is not accurately known (Reynolds & Heeger, 2009) how the basic
mechanisms of attentional processing, i.e. amplification, normalization and suppres-
sion, are implemented in the cortical microcircuit of a visual area (Douglas & Martin,
2004). As the mechanics of amplification and normalization in our model are inspired
by (Reynolds & Heeger, 2009) and (Carandini & Heeger, 2012), we would like to refer
to this literature about the physiological foundations of the first two mechanisms. Very
recent research shows also additional possibilities, for example Brosch & Neumann
(2014) have proposed an implementation of amplification via interneurons. Concern-
ing the suppression mechanism, our model proposes a new and more concrete imple-
mentation, so we will substantiate this point by relating our model to the suppression
literature.

In our model, suppression is implemented for simplicity only via connections from
layer 2/3 to layer 4. In the cortical microcircuit (Potjans & Diesmann, 2012), such
connectivity could be realized by a chain of anatomical connections: excitatory con-
nections from layer 2/3 to layer 5/6, excitatory connections from layer 5/6 to layer 4,
and inhibitory connections within layer 4. However, we are aware that there exist also
other possibilities to implement the suppression in the cortical microcircuit (Potjans
& Diesmann, 2012). We have chosen layer 2/3 as starting point for the suppression
as layer 2/3 is the entry point for feedback connections from higher areas (Douglas &
Martin, 2004). Feedback seems to transport suppressive signals from higher to lower
areas.

In principle, suppressive signals can be transmitted via feedforward, lateral or feed-
back connectivity (Gilbert, 1998). Feedback connections seem to be involved in sur-
round experiments. The reviews of Carandini & Heeger (2012) and Gilbert (1998)
rule out feedforward connections, Bair et al. (2003) concludes that suppression of neu-
ronal response originates from feedback signals, and Angelucci et al. (2002) found a
correspondence between the spatial extend of feedback connections and of surround
suppression. Lateral connections seem mostly to be involved in low contrast experi-
ments. Angelucci et al. (2002) found that the receptive field size of low contrast stimuli
corresponded to the extent of lateral connections. Hunt et al. (2011) found that excita-
tory lateral connections typically resemble large structures available in natural scenes,
like edges or circles, denoted as co-linearity or co-circularity. A study by Cass & Spe-
har (2005) links these two facts together: they found that the range of collinear contrast
facilitation is consistent with long-range horizontal transmission. In conclusion, sup-
pression mediated by feedback from higher areas can be easily incorporated into our
model.

4.4. Relevance of the model for psychophysical experiments

The proposed attention model of the cortical microcircuit can explain the data of
several physiological attention experiments, but the model mechanisms are also very
relevant for psychophysical experiments.

One psychophysical aspect of attention is its selective processing, because it selects
task relevant stimuli under many distractors (Carrasco, 2011). The selection might be
necessary to not overload the visual systems limited capacity (Todd et al., 2005), or
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to save energy as the brain’s metabolic cost depends mostly on the neuronal activity
(Carrasco, 2011). In the model, such a selection can be achieved by amplification
of the target and by suppression of distractors. Visual search (Lee & McPeek, 2013)
is a typical experiment involving such a selection. Suppression is also observed in
crowding (Whitney & Levi, 2011) where the visibility of a stimulus is reduced if it is
shown with nearby stimuli. One influential factor for the reduced visibility may be our
proposed top-down suppression mechanism.

Besides the selection of stimuli, attention increases the behavioral acuity of sub-
jects by increasing contrast sensitivity, by decreasing reactions times, or by reducing
external noise (Carrasco, 2011). The increased contrast sensitivity is also visible in the
simulated physiological data as attention causes an appropriate modulation of the con-
trast response function (Section 3.2). Noise reduction can be realized by amplifying
the neuronal response of the target, and by suppressing all other neuronal responses.
Therefore, many psychophysical aspects of attention will rely on the mechanisms pro-
posed in our model.

4.5. Influence of model parameters
Our model contains several free parameters that have been tuned to fit different

data sets. However, the model should not be dominated by the particular setting of its
parameters. Hence, the model should be able to qualitatively fit the data with a fixed
parameter set, and parameter variations should only be necessary for a quantitative
fit. The model includes parameters (Tab. 1) to modify the contrast response function
(parameters vE, pE), to scale the influence of amplification (vFEF-L4, vPFC-L2) or suppression
(vFEAT, pFEAT, vSUR, pSUR), to add an un-modulated baseline (β), and to change the neuronal
tuning in the feature space (tuning curve). We evaluated if the model can qualitatively
fit the data by fixing all parameters to a reasonable value, denoted as standard parameter
set (Tab. 1, row ‘std’). Only the neuronal tuning curve was allowed to be freely chosen
because of the heterogeneous response characteristics of neurons in different cortical
areas.

The results, illustrated in the supplementary materials, show a satisfying qualitative
fit for nine of the twelve experiments. In two experiments (Sundberg et al. (2009), Fig.
9b; Williford & Maunsell (2006), Fig. 6), our results reproduce all significant effects of
the original publication, but differ notable from the data. In one experiment (Cavanaugh
et al. (2002a), Fig. 9a), a significant effect cannot be reproduced. The deviations result
in all three data sets from an inappropriate strength of the surround suppression.

We found that the surround suppression strength (vSUR) and non-linearity (pSUR) vary
strongly among data sets (Tab. 1). In the V4 data of Sundberg et al. (2009) (Fig. 9b),
the surround suppression is weak which we quantitatively fit by setting vSUR = 0.55.
Contrary, the V1 data of Cavanaugh et al. (2002a) (Fig. 9a) was best fitted with a strong
surround suppression of vSUR = 0.8. Besides these two data sets, the surround suppres-
sion mechanism is also used for suppression from close, adjacent neurons in four data
sets (Fig. 3b, 6, 7, 8a). These were fitted optimally by vSUR = 0.5, 1.0, 0.75, 0.5. Thus
the standard value for vSUR is chosen as a compromise of all these values: vSUR = 0.5.

The strength of the non-linearity pSUR varies as well. In the data sets of Sundberg
et al. (2009) and Cavanaugh et al. (2002a), pSUR = 2.5 and pSUR = 2.0 results in the best

29



1) Ampli-
fication

2) Nor-
malization

3) Spatial
pooling

4a) Feature-based
suppression

4b) Surround
suppression

Biased competition
with spatial att.

+ + +

Biased comp. with
feature-based att.

+ +

Contrast gain + +

Response gain + + +

Scaling +

Sharpening + +

Surround suppression + +

Table 3: Overview about the primarily involved mechanisms in each experiment. The related explanation of
a mechanism in a particular experiment can be found in Section 3.

fit. However, in experiments with suppression from close, adjacent neurons, disabling
the non-linearity by setting pSUR = 1 results in the best fit. The diversity might depend
on factors such as if the suppression originated from neurons in the far (Fig. 9a, 9b) or
close surround (Fig. 3b, 6, 7, 8a). We have chosen as standard value pSUR = 1 as this
value allows to fit more data sets. Unfortunately, this standard value prevents that the
model can reproduce the significant increase of receptive field at lower contrasts in the
data of Cavanaugh et al. (2002a), as discussed in the supplementary materials. Yet, the
model still shows suppression from the surround at all contrasts. As a side effect, high
values for pSUR decrease the influence of the suppression as well.

Therefore, the fits of Sundberg et al. (2009) and of Williford & Maunsell (2006)
differ notable as the suppression has an incorrect strength. The standard values of
vSUR = 0.5, pSUR = 1.0 results in a suppression which is too strong for the experiment of
Sundberg et al. (2009), which is optimally fitted by vSUR = 0.55, pSUR = 2.5, and is too
weak for the experiment of Williford & Maunsell (2006), which is optimally fitted by
vSUR = 1.0, pSUR = 1.0.

In summary, the standard model can replicate the main effects of all data sets with
minor deviations regarding surround suppression effects. Thus, all parameters could be
fixed for a qualitative fit except the surround suppression parameters vSUR, pSUR. There-
fore, we conclude that primarily the model mechanisms, and not the free parameters
are responsible to account for the data sets.

5. Conclusion

In this work, we proposed a new mechanistic model of the cortical microcircuit to
explain the neuronal response modulation caused by visual attention. For this purpose,
we unify existing proposals of attention into a new neurocomputational model and un-
derline psychophysical and physiological concepts of attention with constraints from
neuroanatomy. We found that many visual attention effects can be explained by a few
mechanisms: 1) amplification of the response of a single neuron, 2) divisive normaliza-
tion of this response, 3) spatial pooling within the receptive field, and 4) suppression
between neurons encoding different features or different locations. By these effects
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(Tab. 3), we are able to explain the following broad variance of physiological single-
unit observations by a single model: biased competition with spatial or feature-based
attention; modulation of the contrast response function resulting in contrast or response
gain; modulation of the neuronal tuning curve resulting in scaling or sharpening; and
modulation of surround suppression. Moreover, our model can predict attention ef-
fects and mechanisms in novel paradigms, which we demonstrated by combining the
paradigms of biased competition and surround suppression.

The current model could be used as a core element in larger models of visual atten-
tion that include multiple areas in the visual cortex and control structures like FEF/LIP
and PFC/7a. Such a system-level model could simulate very well psychophysical ex-
periments as already demonstrated by a previous system-level model of attention of
our group (Hamker, 2005b,a) for receptive field dynamics (Hamker & Zirnsak, 2006),
spatial compression (Zirnsak & Hamker, 2010), or the split of spatial attention (Zirnsak
et al., 2011). Besides psychophysics, our model may also inspire computational vision
models for robots, e.g. Antonelli et al. (2014).
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