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In the cortex, the timing of successive action potentials is highly irregular. 
This irregularity might arise from stochastic forces. If so, the irregular 
interspike interval reflects a random process and implies that an 
instantaneous estimate of the spike rate can be obtained by averaging 
the pooled responses of many individual neurons.!
In keeping with this theory, one would expect that the precise timing of 
individual spikes conveys little information.!

We assume that the generation of each spike depends only on an 
underlying continuous/analog driving signal, r(t), that we will refer to as 
the instantaneous firing rate. It follows that the generation of each spike 
is independent of all the other spikes, hence we refer to this as the 
independent spike hypothesis.!

If the independent spike hypothesis were true, then the spike train would 
be completely described a particular kind of random process called a 
Poisson process.!

Motivation !
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Probability of a spike sequence!

Assumption: The relationship between spikes and stimulus is stochastic!

],...,,[ 21 ntttp

Probability that a spike occurs within an interval !t :!

Spike train with a probability density!

ttpP != ][

!  requires to determine all probability densities!

Simplification:!
An action potential is independent of the presence of other spikes.!
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Homogeneous Poisson process!

Assume the average firing rate of a cell is constant:! rtr =)(

! Every sequence of n spikes over a fixed time interval has an equal!
!probability. (Example)!

Thus, the spike train with a probability! ],...,,[ 21 ntttP
can be expressed by a probability function that considers only the 
number of spikes!

][nPT
within a duration T!

Divide the time T into M bins of size !

! 

"t = T /M

We assume that !t is small enough such that we never get two 
spikes within any one bin. !
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][nPT is the product of three factors:!
•  the probability of generating n spikes within M bins!
•  the probability of not generating spikes in the remaining bins!
•  a combinatorial factor equal to the number of ways of putting n 

spikes into M bins !

The firing rate r determines the probability of firing a single spike in a small!
interval around the time t. The probability of a single spike occurring in one!
specific bin is!

tr!

The probability of n spikes appearing in n specific bins!
is! ntr )( !
The probability of not having a spike in a given bin!
is! tr!"1
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Homogeneous Poisson process!



The probability of having the remaining M-n bins without any spikes in them!
is! nMtr !"! )1(

The number of ways of putting n spikes into M bins is given by the binomial!
coefficient!

!)!(
!
nnM

M
!

n balls from a ballet with M balls!

nMn
T trtr

nnM
M

tnP !"!"
!#"= )1()(

!)!(
!

0
lim][

As a result we get!

0!"tFor the limit! M grows without bound (n is fixed)!
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Homogeneous Poisson process!

nMn
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M
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0!"tFor the limit! M grows without bound (n is fixed)!
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Homogeneous Poisson process!
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For large M:!

! 

M!
(M " n)!

# Mn = T $t( )n
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! 

PT [n] "
T #t( )n
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this leads to!

Homogeneous Poisson process!

rT
n

T e
n
rTnP !=
!
)(][

As a result we get the Poisson distribution!

Gaussian!
10=rT

Poisson distribution!
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For designing a spike generator within a computer program, we can use 
the fact that the probability of firing a spike within a short interval is!

As long as the rate varies slowly with respect the the time interval we 
can still use this approach. The rate function r(t) is sampled with a 
sampling interval of !t to produce a discrete-time sequence r[i].!

The program can simply progress in time through small time steps !t  
and generate, at each time step, a random variable xrand between 0 and 1 
and compare this with the probability of firing a spike.!

Poisson spike generator!

tr!

!
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rand
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xtr

Simple version:!

This method is appropriate for small steps !t, e.g. 1ms and each spike is!
assigned a discrete time bin, not a continuous time value.!
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Example:!

The instantaneous firing rate was chosen to be r=100 spikes/second, and 
the time binsize was chosen to be T=1msec.!

Poisson spike train! Spike count 
histogram!
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Discussion!

The poisson model provides a good description of some data, 
especially considering its simplicity.!

However, it does not provide the proper mechanistic explanation of 
neuronal response variability. Spike generation, by itself, is highly 
reliable and deterministic, as has been demonstrated by countless 
numbers of in vitro studies.!
The noise in in vivo neural responses is believed to result from the fact 
that synapses are very unreliable, not the spike generator!!
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