Proceedings
2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2010 2009 2008 2005 2004 2002 2000 1999 1998 1997 1996
2024
Fietzek, T., Ruff, C., Hamker. F.H. (2024)
A Brain-Inspired Model of Reaching and Adaptation on the iCub Robot
2024 IEEE International Symposium on Robotic and Sensors Environments (ROSE). 1-7. doi:10.1109/ROSE62198.2024.10591174.
PDF-document
2023
Larisch, R., Berger, L., Hamker, F.H. (2023)
Exploring the Role of Feedback Inhibition for the Robustness Against Corruptions on Event-Based Data
In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning ‐ ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. pp 197‐208. doi:10.1007/978-3-031-44198-1_17.
PDF-document
Farahani, A., Atoofi, P., Vitay, J., Hamker, F.H. (2023)
Implicit neural representations for deep drawing and joining experiments
Engineering for a Changing World: 60th ISC. Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 04-08 2023. doi:10.22032/dbt.58849.
PDF-document
2022
Fietzek, T., Dinkelbach, H.Ü, Hamker, F.H. (2022)
ANNarchy ‐ iCub: An Interface for Easy Interaction between Neural Network Models and the iCub Robot
IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2022). Chemnitz, 15-17 June 2022. doi:10.1109/CIVEMSA53371.2022.9853699.
PDF-document
Kuske, N., Ragni, M., Röhrbein, F., Vitay, J., Hamker, F.H. (2022)
Demands and potentials of different levels of neuro-cognitive models for human spatial cognition
E. Ferstl, L. Konieczny, & R. Stülpnagel (Eds.) KogWiss2022: the 15th Biannual Conference of the German Society for Cognitive Sciences, Albert-Ludwigs-Universität Freiburg:115-116. doi:10.6094/UNIFR/229611.
Farahani, A., Vitay, J., Hamker, F.H. (2022)
Deep Neural Networks for Geometric Shape Deformation
Bergmann, R., Malburg, L., Rodermund, S.C., Timm, I.J. (eds) KI 2022: Advances in Artificial Intelligence. Lecture Notes in Computer Science(), vol 13404. Springer, Cham. doi:10.1007/978-3-031-15791-2_9.
2021
Farahani, A., Vitay, J., Hamker, F.H. (2021)
Geometric Deep Learning and solutions for the industry
Workshop 3D-NordOst 2021. Tagungsband 23. Anwendungsbezogener Workshop zur
Erfassung, Modellierung, Verarbeitung und Auswertung von 3D-Daten, Berlin, 02./03.12.2021: 105-113. ISBN: 978-3-942709-27-9.
Atoofi, P., Vitay, J,, Hamker, F.H. (2021)
Geometric Deep Learning: Graph Neural Networks, Challenges, and Breakthroughs
Workshop 3D-NordOst 2021. Tagungsband 23. Anwendungsbezogener Workshop zur Erfassung, Modellierung, Verarbeitung und Auswertung von 3D-Daten, Berlin, 02./03.12.2021:115-124. ISBN: 978-3-942709-27-9.
2020
Schröder, E., Braun, S., Mählisch, M., Vitay, J, Hamker, F.H. (2020)
Feature Map Transformation for Fusion of Multi-Sensor Object Detection Networks for Autonomous Driving
Computer Vision Conference (CVC 2019). In: Arai K., Kapoor S. (eds.) Advances in Computer Vision. CVC 2019. AISC 944:118-131. doi:10.1007/978-3-030-17798-0_12.
PDF-document
Forch, V., Vitay, J., Hamker, F.H. (2020)
Recurrent Spatial Attention for Facial Emotion Recognition
LocalizeIT Workshop, Chemnitzer Linux-Tage. Chemnitz, 16.-17. 3. 2019. Chemnitzer Informatik-Berichte 2020:1-8.
PDF-document
2019
Nassour, J., Vaghani, S., Hamker, F.H. (2019)
Design of Soft Exosuit for Elbow Assistance Using Butyl Tubes Rubber and Textile
Wearable Robotics: Challenges and Trends (Werob2018) Springer, Cham. Biosystems & Biorobotics book series (BIOSYSROB) 22:420-424. doi:10.1007/978-3-030-01887-0_81.
Nassour, J., Hamker, F.H. (2019)
Tactile and Proximity Servoing by A Multi-modal Sensory Soft Hand
Wearable Robotics: Challenges and Trends. WeRob 2018. - Springer, Cham. Biosystems & Biorobotics book series (BIOSYSROB) 22:396-400. doi:10.1007/978-3-030-01887-0_76.
Nassour, J., Hamker, F.H. (2019)
Enfolded Textile Actuator for Soft Wearable Robots
2019 IEEE International Conference on Cyborg and Bionic Systems. 18-20 September, 2019. Technical University of Munich, Germany. doi:10.1109/CBS46900.2019.9114425.
Dinkelbach, H.Ü., Vitay, J., Hamker, F.H. (2019)
Scalable simulation of rate-coded and spiking neural networks on shared memory systems
Conference on Cognitive Computational Neuroscience. 13-16 September 2019, Berlin, Germany. doi:10.32470/CCN.2019.1109-0.
Schmid, K., Vitay, J., Hamker, F. H. (2019)
Forward Models in the Cerebellum using Reservoirs and Perturbation Learning
Conference on Cognitive Computational Neuroscience. 2019, Berlin, Germany. doi:10.32470/CCN.2019.1139-0.
PDF-document
2018
Nassour, J., Ghadiya, V., Hugel, V., Hamker, F.H. (2018)
Design of New Sensory Soft Hand: Combining Air-Pump Actuation with Superimposed Curvature and Pressure Sensors
The First IEEE-RAS International Conference on Soft Robotics (RoboSoft2018). Livorno, Italy, April 24-28. doi:10.1109/robosoft.2018.8404914.
Vaghani, S., Pan, Y., Hamker, F.H., Nassour, J. (2018)
Gait Transition between Simple and Complex Locomotion in Humanoid Robots
International Conference on the Simulation of Adaptive Behavior (SAB2018). Frankfurt, Germany, 26 July. doi:10.1007/978-3-319-97628-0_10.
Makkar, D., Atoofi, P., Hamker, F.H., Nassour, J. (2018)
Motor Program Learning for Humanoid Robot Drawing
2018 IEEE-RAS. 18th IEEE International Conference on Humanoid Robots (HUMANOIDS 2018). Beijing, China, November 6-9 2018, pp. 1-9. doi:10.1109/HUMANOIDS.2018.8624958.
Pan, Y., Hamker, F.H., Nassour, J. (2018)
Humanoid robot grasping with a soft gripper through a learned inverse model of a central pattern generator and tactile servoing
IEEE International Conference on Humanoid Robots (HUMANOIDS 2018). Beijing, China, November 6-9.
PDF-document
Schröder, E., Mählisch, M., Vitay, J., Hamker, F.H. (2018)
Fusion of Camera and Lidar Data for Object Detection using Neural Networks
12. Workshop Fahrerassistenzsysteme und automatisiertes Fahren FAS2018. Waiting im Altmühltal, 26.09.-28.09.2018, Uni-DAS e.V., 138-146.
PDF-document
Larisch, R., Teichmann, M., Hamker, F.H. (2018)
A Neural Spiking Approach Compared to Deep Feedforward Networks on Stepwise Pixel Erasement
Artificial Neural Networks and Machine Learning - ICANN 2018. - Cham : Springer International Publishing. 253-262. doi:10.1007/978-3-030-01418-6_25.
Winter, M., Kronfeld, Th., Brunnett, G., Dinkelbach, H.Ü. (2018)
Semi-Automatic Task Planning of Virtual Humans in Digital Factory Settings
Proceedings of CAD'18 CAD Solutions LLC. 283-287. doi:10.14733/cadconfP.2018.283-287.
2017
Lötzsch, W., Vitay, J., Hamker, F.H. (2017)
Training a deep policy gradient-based neural network with asynchronous learners on a simulated robotic problem
In: 47. Jahrestagung der Gesellschaft für Informatik e.V. (GI). 2143-2154. doi:10.18420/in2017_214.
PDF-document
Jamalian, A., Bergelt, J., Dinkelbach, H.Ü., Hamker, F.H. (2017)
Spatial Attention Improves Object Localization: A Biologically Plausible Neuro-Computational Model for Use in Virtual Reality
In: The IEEE International Conference on Computer Vision (ICCV). 2724-2729. doi:10.1109/ICCVW.2017.320.
PDF-document
2016
Jamalian, A., Beuth, F., Hamker, F. H. (2016)
Attentive Robot Vision
In: M. Eibl, M. Gaedke (Eds.), Proc Studierendensymposium Informatik 2016 der TU Chemnitz (TUCSI 2016), 161-164. ISBN: 978-3-944640-85-3.
PDF-document
Schwarz, A., Beuth, F., Hamker, F. H. (2016)
Learning of Spatial Invariances for Object-Ground Separation
In: M. Eibl, M. Gaedke (Eds.), Proc Studierendensymposium Informatik 2016 der TU Chemnitz (TUCSI 2016), 127-132. ISBN: 978-3-944640-85-3.
PDF-document
Gussev, J., Dinkelbach, H.Ü., Beuth, F., Hamker, F. H. (2016)
Reinforcement Learning with Object Localization in a Virtual Environment
In: M. Eibl, M. Gaedke (Eds.), Proc Studierendensymposium Informatik 2016 der TU Chemnitz (TUCSI 2016), 111-116. ISBN: 978-3-944640-85-3.
PDF-document
Jüngel, S., Beuth, F., Hamker, F. H. (2016)
Entwicklung einer virtuellen Versuchsumgebung zur experimentellen Untersuchung von Raumorientierung und visueller Aufmerksamkeit
In: M. Eibl, M. Gaedke (Eds.), Proc Studierendensymposium Informatik 2016 der TU Chemnitz (TUCSI 2016), 87-98. ISBN: 978-3-944640-85-3.
PDF-document
Jamalian, A., Beuth, F., Hamker, F.H. (2016)
The Performance of a Biologically Plausible Model of Visual Attention to Localize Objects in a Virtual Reality
In: A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887. 447-454. doi:10.1007/978-3-319-44781-0_53.
PDF-document
Villagrasa, F., Baladron, J., Hamker, F.H. (2016)
Fast and Slow Learning in a Neuro-Computational Model of Category Acquisition
In: A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886. 248-255. doi:10.1007/978-3-319-44778-0_29.
PDF-document
2015
Teichmann, M., Hamker, F. H. (2015)
Intrinsic Plasticity: A Simple Mechanism to Stabilize Hebbian Learning in Multilayer Neural Networks
In: T. Villmann, F.-M. Schleif (Eds.), Proc Workshop New Challenges in Neural Computation - NC² 2015, Machine Learning Reports 03/2015, 103-111. ISSN: 1865-3960.
PDF-document
Beuth, F., Hamker, F. H. (2015)
Attention as cognitive, holistic control of the visual system
In: T. Villmann, F.-M. Schleif (Eds.), Proc Workshop New Challenges in Neural Computation - NC² 2015, Machine Learning Reports 03/2015, 133-140. ISSN: 1865-3960.
PDF-document
Supplementary Material
2014
Beuth, F., Jamalian, A., Hamker, F.H. (2014)
How Visual Attention and Suppression Facilitate Object Recognition?
In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (Eds.), Artificial Neural Networks and Machine Learning - ICANN 2014, 24th International Conference on Artificial Neural Networks, Lecture Notes in Computer Science 8681, Springer Heidelberg, 2014. 459-466.
PDF-document
Truschzinski, M., Müller, N., Dinkelbach, H.Ü., Protzel, P., Hamker, F.H., Ohler, P. (2014)
Deducing human emotions by robots: Computing basic non-verbal expressions of performed actions during a work task
IEEE Multi-conference on Systems and Control (MSC2014)/International Symposium on Intelligent Control (ISIC).
Debnath, S.; Nassour, J. (2014)
Extending cortical-basal inspired reinforcement learning model with success-failure experience
Development and Learning and Epigenetic Robotics. Joint IEEE International Conferences, 293-298. doi:10.1109/DEVLRN.2014.6982996.
PDF-document
Debnath, S.; Nassour, J.; Cheng, G. (2014)
Learning diverse motor patterns with a single multi-layered multi-pattern CPG for a humanoid robot
Humanoid Robots. 14th IEEE-RAS International Conference on. 1016-1021, 18-20. doi:10.1109/HUMANOIDS.2014.7041489.
PDF-document
Kermani, K., Teichmann, M., Hamker, F. H. (2014)
Role of Competition in Robustness under Loss of Information in Feature Detectors
In: T. Villmann, F.-M. Schleif (Eds.), Proc Workshop New Challenges in Neural Computation - NC² 2014, Machine Learning Reports 02/2014, 16-19. ISSN: 1865-3960.
PDF-document
2010
Beuth, F, Wiltschut, J, Hamker, F. H. (2010)
Attentive Stereoscopic Object Recognition.
In: T. Villmann, F.-M. Schleif (Eds.), Proc Workshop New Challenges in Neural Computation - NC² 2010, Machine Learning reports 04/2010, AG Computational Intelligence, University of Leipzig, 41-48. ISSN: 1865-3960.
PDF-document
Fix, J., Schroll, H., Anton-Erxleben, K., Womelsdorf, T., Treue, S., Hamker, F. H. (2010)
Influence of spatial attention on the receptive field shape of neurons in monkey area MT
Proceedings of Neurocomp 2010, 147-152.
2009
Beuth, F., Ritter, M. (2009)
Verschmelzendes Clustering in Artmap.
In: Workshop Audiovisuelle Medien (WAM2009), Chemnitz, Germany. 93-106.
PDF-document
2008
Vitay, J., Hamker, F. H. (2008)
Binding objects to cognition: A brain-like systems approach to the cognitive control of visual perception. International Conference on Cognitive Systems.
(CogSys 2008), Karlsruhe, Germany.
2005
Hamker, F. H. (2005)
A population-based inference framework for feature-based attention in natural scenes.
In: M. De Gregorio et al. (eds.), International Symposium on Brain Vision & Artificial Intelligence (BV&AI 2005), LNCS 3704. Berlin, Heidelberg: Springer-Verlag, 147 - 156.
PDF-document
Hamker, F. H. (2005)
Modeling Attention: From computational neuroscience to computer vision.
In: L. Paletta et al. (eds.), Attention and Performance in Computational Vision. Second International workshop on attention and performance in computer vision (WAPCV 2004), LNCS 3368. Berlin, Heidelberg: Springer-Verlag, 118 - 132.
PDF-document
2004
Hamker, F. H. (2004)
Vision as an anticipatory process.
Invited Contribution. In: H.-M. Gro� et al. (eds.), SOAVE 2004, 3rd Workshop on Self Organization of Adaptive Behavior. Fortschritt-Berichte VDI, Reihe 10, Nr. 743. D�sseldorf: VDI Verlag, 79-93.
PDF-document
Hamker, F. H., Zirnsak, M., Calow, D., Lappe, M. (2004)
Planned action determines perception: A computational model of saccadic mislocalization.
In: U. Ilg et al. (eds.), Dynamic Perception. Infix Verlag, St. Augustin, 71-76.
PDF-document
2002
Brause, R., Hamker, F., Paetz, J. (2002)
Septic shock diagnosis by neural networks and rule based systems.
In: Schmitt, et al. (eds.), Computational Intelligence Processing in Medical Diagnosis. Springer Verlag, New York, 323-356.
Hamker, F. H. (2002)
How does the ventral pathway contribute to spatial attention and the planning of eye movements?
In: R. P. Würtz & M. Lappe (eds.) Dynamic Perception. St. Augustin: Infix Verlag, 83-88.
PDF-document
Hamker, F. H., Worcester, J. (2002)
Object detection in natural scenes by feedback.
In: H. H. B�lthoff et al. (eds.), Biologically Motivated Computer Vision. Lecture Notes in Computer Science. Berlin, Heidelberg, New York: Springer Verlag, 398-407.
PDF-document
2000
Paetz, J., Hamker, F. H., Th�ne, S. (2000)
About the Analysis of Septic Shock Patient Data.
Medical Data Analysis, Proceedings of the First International Symposium ISMDA 2000. Lecture Notes in Computer Science, vol. 1933. Heidelberg: Springer-Verlag, 130-137.
PDF-document
Hamker, F. H. (2000)
Distributed competition in directed attention.
In: G. Baratoff, H. Neumann (eds.) Proceedings in Artificial Intelligence, Vol. 9. Dynamische Perzeption. Berlin: AKA, Akademische Verlagsgesellschaft, 39-44.
PDF-document
1999
Hamker, F. H. (1999)
The role of feedback connections in task-driven visual search.
In: D. Heinke, G. W. Humphreys & A. Olson (eds.) Connectionist Models in Cognitive Neuroscience, Proc. of the 5th Neural Computation and Psychology Workshop (NCPW'98). London: Springer Verlag, 252-261.
PDF-document
Hamker, F. H. (1999)
Life-long learning in incremental neural networks.
In: D. M. Dubois (eds.) International Journal of Computing Anticipatory Systems. CHAOS, Liege, Belgium, 3:65-74.
1998
Hamker, F. H. (1998)
Lebenslang lernfähige Zellstrukturen: Eine Lösung des Stabilitäts-Plastizitäts-Dilemmas?
In: Proceedings der CoWAN '98, Cottbus 1998. Sharker Verlag, 17-37.
Hamker, F. H., Gross, H.-M. (1998)
A lifelong learning approach for incremental neural networks.
In: Fourteenth European Meeting on Cybernatics and Systems Research (EMCSR'98), Vienna, 599-604..
1997
Hamker, F. H., Gross, H.-M. (1997)
Task-based representation in lifelong learning incremental neural networks.
In: VDI Fortschrittberichte, Reihe 8, Nr. 663, Workshop SOAVE'97 - Selbstorganisation von adaptivem Verhalten, Ilmenau, 99-108..
PDF-document
Hamker, F. H., Gross, H.-M. (1997)
Object selection with dynamic neural maps.
In: Proceedings of the International Conference on Artificial Neural Networks (ICANN'97). Lausanne: Springer-Verlag, 919-924.
PDF-document
Hamker, F., Pomierski, T, Gross, H.-M., Debes, K. (1997)
Ein visuomotorisches Sortiersystem auf der Basis von Farbmerkmalen.
In: VDI Fortschrittberichte, Reihe 8, Nr. 663, Workshop SOAVE'97 - Selbstorganisation von adaptivem Verhalten, Ilmenau, 232-238.
PDF-document
1996
Hamker, F. H., Gross, H.-M. (1996)
Intentionale Aufmerksamkeit: Ein alternatives Konzept f�r technische visuo-motorische Systeme.
In: Proceedings des Workshops der GI-Fachgruppe 1.0.4 Bildverstehen "Aktives Sehen in technischen und biologischen Systemen", Hamburg, 101-108.
PDF-document
Hamker, F. H., Gross, H.-M. (1996)
Region Selection: Segmentation, Classification and Task Relevance in a single Grouping Mechanism.
In: Proceedings of the IEEE International Conference on Neural Networks (ICNN'96), Washington, 1540-1545.
Hamker, F. H., Gross, H.-M. (1996)
Task Relevant Relaxation Network for visuo-motory Systems.
In: Proceedings of the International Conference on Pattern Recognition (ICPR'96), Vienna, 406-410.