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A B S T R A C T   

In numerous activities, humans need to attend to multiple sources of visual information at the same time. 
Although several recent studies support the evidence of this ability, the mechanism of multi-item attentional 
processing is still a matter of debate and has not been investigated much by previous computational models. 
Here, we present a neuro-computational model aiming to address specifically the question of how subjects attend 
to two items that deviate defined by feature and location. We simulate the experiment of Adamo et al. (2010) 
which required subjects to use two different attentional control sets, each a combination of color and location. 
The structure of our model is composed of two components “attention” and “decision-making”. The important 
aspect of our model is its dynamic equations that allow us to simulate the time course of processes at a neural 
level that occur during different stages until a decision is made. We analyze in detail the conditions under which 
our model matches the behavioral and EEG data from human subjects. Consistent with experimental findings, our 
model supports the hypothesis of attending to two control settings concurrently. In particular, our model pro
poses that initially, feature-based attention operates in parallel across the scene, and only in ongoing processing, 
a selection by the location takes place.   

1. Introduction 

The brain uses the mechanism of visual attention, selecting the 
relevant and important items from all of the available information, while 
ignoring other irrelevant information, to make efficient behavioral re
sponses (Carrasco, 2011). In many everyday activities, people need to 
monitor multiple sources of information simultaneously (Hüttermann & 
Memmert, 2017), e.g., while walking, driving, cooking, doing sports. 
The ability to attend to more than one stimulus simultaneously is called 
divided attention (Dannhauser et al., 2005). 

Many theories, especially the earlier ones, propose that the focus of 
attention is limited to one area or item (Heinze et al., 1994; LaBerge & 
Brown, 1989; Posner, Snyder, & Davidson, 1980), which is still - to some 
degree - investigated (Jans, Peters, & De Weerd, 2010). Some studies, 
however, provide evidence, under appropriate circumstances, for mul
tiple spatial foci (Awh & Pashler, 2000; Dubois, Hamker, & VanRullen, 
2009; Frey et al., 2014; Hamker, 2004; Kawahara & Kumada, 2017; 
Zirnsak, Beuth, & Hamker, 2011) or for a review, see Jans et al. (2010) 
cf. Cave, Bush, and Taylor (2010). Further, attention may not be static 
over longer periods of time, but also sample the space in a 7–12 Hz 

rhythm (Gaillard et al., 2020; Jia, Liu, Fang, & Luo, 2017). 
However, divided attention has often been studied with an atten

tional control set for a single feature. An attentional control set (ACS) 
contains representations of parameters that control the goal of atten
tional selection of a target, such as a particular feature and/or a location 
(Adamo, Pun, & Ferber, 2010; Folk, Remington, & Johnston, 1992; 
Grubert & Eimer, 2016). 

Adamo, Pun, Pratt, and Ferber (2008) suggested that their observed 
reaction time pattern resulting from spatial cues that matched the ACS 
supports the evidence for two ACSs for color and location. In their 
experiment, subjects were required to respond to a target color only at a 
particular location, but at the same time to a different target color at 
another location. Targets were preceded by non-predictable cues which 
were congruent or incongruent to the target in location, or in color, or in 
both. The reaction times were shortest when the cue matched the target 
both in the color and location, and longest when the cue did not match 
the target both in the color and location. Partially matching cues 
resulted in reaction times in between. Based on the behavioral reaction 
times, Adamo et al. (2008) concluded that humans can maintain two 
ACS for different locations in space. 
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However, reaction time data is not always conclusive about the un
derlying neural processes. In a later study, Adamo et al. (2010) repeated 
almost the same experiment, now combined with ERP measurements. 
Although, the behavioral results of their second study were consistent 
with their previous one, their cue N2pc data provides no evidence for 
two ACS for the conjunction of color and location. They found that all 
cues that match the color of the ACS capture attention, regardless of 
their spatial match with the ACS. They also investigated the rapid 
disengagement hypothesis, according to which all cues elicit attention, 
but then attention becomes rapidly disengaged for non-matches. As the 
target N2pc amplitude was affected by the spatial match of the cue to the 
following target, regardless of their color match with the ACS, their data 
does not confirm a rapid disengagement of attention. The P3, an ERP 
component associated with attention employing to the candidate target 
at late stages, e.g., encoding into working memory (Adamo et al., 2010; 
Irons & Remington, 2013), showed a differential activation for targets 
dependent on the match of the cue with the ACS. 

Irons, Folk, and Remington (2012) investigated whether simulta
neous attentional control settings for multiple colors capture attention, 
regardless of their location. Subjects were required to identify the target 
character which appeared in either of two predefined colors along with a 
distractor character in an irrelevant color in one of 4 locations. The 
target was preceded with a non-predictable cue. The authors varied the 
cue to match the color of the target (relevant match), or the color of the 
second ACS (relevant nonmatch), or having no match with any ACS 
(irrelevant). Although the reaction time is fastest for cues matching the 
target, their results show that all cues matching either ACS lead to a 
significant cueing effect compared to cues that do not match the ACS, 
which confirms the hypothesis that subjects can use simultaneous 
attentional control settings for multiple colors. Thus, the study of Irons 
et al. (2012) partially supported the results of Adamo et al. (2010), but 
addressed only the aspect of allocating attention to multiple color-based 
ACSs and not to conjunctions of color and location. 

In a later study, Irons and Remington (2013) investigated if two ACSs 
can be maintained also when they are defined as conjunction of color 
and location. They designed an experiment with two simultaneous 
RSVPs of letters at the right and left of fixation. Subjects had to identify a 
target letter which could be either in green within the left stream or in 
red within the right stream, while colors varied for the individual letters 
within the stream. A relevant distractor letter had a target color but was 
presented at the wrong side, e.g. green in the right stream. They 
observed that, when a relevant distractor was presented prior to the 
target, it led to an attentional blink. Their observation suggests that 
subjects are not able to use two conjunctive ACSs. 

The hypothesis of allocating attention to two ACS in two different 
locations was also not confirmed by Becker, Ravizza and Peltier (2015) 
and Liu and Jigo (2017). Becker et al. (2015) discussed that the obser
vation of Adamo et al. (2010) about the effect of congruency of cue and 
target on the reaction times, may not be clear evidence for the simul
taneous allocation of two ACS, but rather it could be that the cue primes 
the color or location of the target or both. Becker et al. (2015) designed a 
paradigm with 8 locations for the stimuli and two possible targets. They 
did not use cues to avoid any possible priming effect. Subjects had to 
identify the target letter which could be either red in the left hemifield or 
green in the right hemifield. The target was accompanied by distractors 
which could be relevant or irrelevant to the ACSs. The relevant dis
tractor appeared in the same hemifield of the target and with the color of 
the other possible target. Their results showed that the relevant dis
tractors decreased the performance significantly more than the irrele
vant distractors. Since the relevant distractors were matching one of the 
two possible targets in color, but not in location, Becker et al. (2015) 
concluded that the subjects were allocating their attention globally to 

the two defined colors rather than allocating to two different possible 
locations for the targets. Liu and Jigo (2017) discussed that there is a 
limitation in attending to two different colors simultaneously. They used 
a cueing paradigm showing a circle of noisy colored dots in a fixed 
location, asking the subjects for color detection. They compared three 
conditions of presenting no cue, one cue, and two cues by applying 
different levels of coherence for the target and measuring the detection 
threshold. Their results showed that the subjects had a better perfor
mance in one cue and two cue conditions compared to no cue, but the 
performance decreased in the two cue compared to the one cue condi
tion. They concluded that attention to two colors is possible, but leads to 
a cost compared to a single cue condition. 

Berggren et al. (2017) explored whether space and color are equal 
components of an attentional template, such that subjects can search for 
a particular color in only a part of the visual field and ignore the other. 
Their task design should ensure that subjects apply the feature-location 
combination to obtain a good performance. Similar to Adamo et al. 
(2010), the N2pc amplitude was comparable for both matching and non- 
matching cues. Thus, attentional capture, measured by the N2pc, can not 
be selective to only a particular feature in space, even when it would be 
beneficial for the task performance. Their results support the view that 
initially, attention is allocated in spatially global fashion to all features 
(regardless of location) that match the target, but only later, attention 
narrows down to the full target sets. 

As the more recent studies suggest that subjects, during their first 
allocation of attention, are not able to fully rely on the color/space 
combination of two ACS, but rather search globally for color only 
(Adamo, Pun, & Ferber, 2010; Becker, Ravizza, & Peltier, 2015; 
Berggren, Jenkins, McCants, & Eimer, 2017; Irons & Remington, 2013), 
the question arises of how such attentive selection develops over time. 
Further, it is not yet clear how the congruency of cue and target stimulus 
affects the behavioral responses and the ERP measurements in the 
experiment of Adamo et al. (2010). In order to better understand the 
putative underlying neural processes of how ACS may be implemented 
and affect attention and how cues capture attention, particularly with 
respect to their match or non-match to properties of the ACS, we 
designed a neuro-computational model of attention and decision mak
ing. Previous models often focused on either feature-based or spatial 
mechanisms and the neural mechanisms of feature-based attention 
combined with spatial attention has been rarely studied (Andersen et al., 
2011). However, the combination of these two mechanisms is required 
to explain the debates about the tasks of attending to two features in 
combination with two locations. The role of two ACSs is also not much 
investigated in previous computational models. 

By means of our neuro-computational model we aim to provide a 
better understanding of the following questions. When we agree with 
the more recent evidence that subjects are only able to initially search 
globally for the two color features, how does then attention develop over 
time and what are the underlying neural mechanisms of it? Why does the 
reaction time data of Adamo et al. (2008) has been taken as evidence for 
two conjunctive ACSs for color and location? Although Adamo et al. 
(2010) confirmed the reaction time pattern, their ERP data does not 
support evidence for two conjunctive ACSs. Were the results affected by 
priming as hypothesized by Berggren et al., 2017? When subjects may 
initially search globally for color, why does the data of Adamo et al. 
(2010) show a similar RT for partial matches of the cue to the target, in 
either location or color, but no imbalance between these two conditions? 

We investigate the conditions which allow us to replicate the data of 
Adamo et al. (2010) and provide predictions about the underlying 
neural activities. For this purpose, we extended recent modeling work 
(Beuth & Hamker, 2015; Zirnsak, Beuth, & Hamker, 2011) to allow for 
multiple attentional task sets, consistent with the idea of a spatially 
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global feature-based attention template proposed by Berggren et al., 
2017, and integrated our model of attention with a simple model of 
decision making based on the framework of Cohen, Dunbar, and 
McClelland (1990). 

2. Materials and methods 

2.1. Experiment description 

We simulated the experiment of Adamo et al. (2010), in which the 
authors ask human subjects to maintain and apply two attentional 
control sets (ACS) at a time. The subjects are required to respond to two 
target items jointly defined by a particular color and location, e.g. blue 
on the left side and green on the right side. Their design is of particular 
interest for at least two reasons. First, the transfer of attention from the 
cue to the target is not trivial and the mechanisms are not well explored 
by neuro-computational models of attention. Second, the relationship 
between the reaction time and physiological data is not clear. The RT 
data suggests the possibility of forming two different ACSs to different 
locations, while the ERP data rejects this possibility consistent with 
more recent studies (Becker, Ravizza, & Peltier, 2015; Berggren, Jen
kins, McCants, & Eimer, 2017). 

The experiment was simulated by presenting a stream of images 
which constitutes the input to our model (Fig. 1). First, a fixation image 
appeared which consisted of two squares with thin gray borders on black 
background presented on both sides of the center of the image. In the 

experiment, the fixation image was presented for 1000 ms and with a 
fixation cross in the center of the image. We changed for our model the 
presentation time to 100 ms and omitted the fixation cross, because at 
100 ms, the model already reached its baseline activity level, as revealed 
by control simulations and the model had been predefined to fixate at 
the image center. Afterwards, a cue image appeared which could either 
contain a blue, green, or gray (as neutral) cue in form of a colored border 
at one of the two squares. We used the same input stream as in the 
experiment, so the cues were of course non-predictive of the targets. 
Then, a delay image, which was identical to the fixation image, was 
presented for 100 ms, and finally, the target image appeared containing 
the blue filled square on left or the green filled square on right. After 
target presentation, the basic input, which was the fixation stimulus, 
was shown and we waited until the response exceeds a defined threshold 
for a maximum of 750 ms, again as in the experiment. A vice versa 
combination was also performed in the experiment via a secondary 
participant group to account for subject specific-biases, which are not 
present in the model. Therefore, we simulated the model for both input 
streams with either blue on left target stimulus or green on right target 
stimulus. We averaged the results of both cases to get the final results. 
All of the images in the stimulus sequence were considered with roughly 
the same stimulus size and position details as in the experiment. The 
blue and green color used in the stimuli were chosen to induce equal 
activity in the color encoding cells of the model. Also the gray color was 
chosen to induce balanced activities associated to the blue and green 
color. The human subjects’ task was to press a button as quickly and as 
accurately as possible when they see one of the two defined targets. 
Similar to the experiment, the correct response in the simulation was to 
decide for pressing a button when detecting the target stimulus of blue 
on the left or green on the right. The experiment included also no target 
trials, where the target was shown in a target color, but at the opposite 
location, i.e. trials with a blue filled square on right or a green filled 
square on left, in which subject should not respond. We also simulated 
no target trials to constrain our model parameters. Here, the model is set 
to avoid a response. The model parameters are identical in all 
conditions. 

The cue stimuli could be matching or unmatching with respect to the 
color (C) and spatial location (S) of the targets. Four conditions were 
considered as in the experiment. The conditions are shown in Fig. 2, for 
the example of the target of a blue square on the left. Corresponding 
conditions were considered for the target of a green square on the right 
in terms of congruency of cue and target stimulus. In condition S+C+, 
the cue is matching the target in both, in location (spatial match, S+) 
and color (color match, C+). In condition S+C-, the cue is matching the 
target in location, but had the opposite color (color non-match, C-). In 
condition S-C+, the cue is matching the target in color, but was pre
sented at the opposite location (spatial non-match, S-). Finally, in con
dition S-C-, the cue is not matching the target neither in location and nor 
in color. The condition of the neutral cue was also simulated in which, 
the cue contained gray bordered squares in both sides. 

Fig. 1. Stimulus sequence in one example trial, used as input in our model. The 
images were presented as in the experiment of Adamo et al. (2010). The 
sequence consisted of the fixation, cue, delay, target image and again the delay 
until the model’s response. The cue could either match or not match the ACS or 
be a neutral cue. The target was either a blue square presented on the left side 
or a green square presented on the right side. The stimuli above reflect a S+C- 
condition as the cue matches the spatial location (S+), but not the color (C-) of 
the ACS in relation to the target. See main text for the abbreviations and details. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 2. Conditions considered in the simulation of the study of Adamo et al. (2010). In the experiment, four conditions were considered in relation to the congruency 
of the cue and the target in terms of color (C) and spatial location (S). In the presented conditions, the target is the blue square on the left. See main text for details 
about the conditions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.2. Model overview 

The model is composed of two components named “attention” and 
“decision making” (Fig. 3). The attention component models the dy
namics of selection, and the decision-making component models the 
higher cognitive stage for the behavior of subjects in order to decide 
about to press the button as a response or not. 

2.2.1. The attention component 
The attention component (Fig. 4) is a slightly modified and extended 

version of previous work (Beuth & Hamker, 2015; Zirnsak, Beuth, & 
Hamker, 2011) and its biological plausibility has been previously 
demonstrated (Hamker, 2005). We build upon the version of Zirnsak 
et al. (2011), who proposed in their model reentrant processing from the 

FEF visuomovement cells being more consistent with data from Cohen 
et al. (2009) and Ray, Pouget, and Schall (2009), compared to the FEF 
movement cells earlier proposed by Hamker (2005). The model is 
composed of rate coded neural layers that represent different areas of 
the brain engaged in attentional processing. It comprises the visual areas 
LGN, V1, and V4, the prefrontal cortex (PFC) functioning in executive 
control, and the frontal eye field (FEF) functioning in saccade planning. 
We first explain the model regarding the functions of its different areas 
and then their mathematical description. 

The input of the model is a RGB image per time step, providing via 
LGN/V1 the bottom-up signal which interacts in V4gain and V4pool 
with top-down attention processing. V4gain receives spatial feedback 
from the FEF, while V4pool receives the goal-driven or top-down signals 
from PFC. This layered V4 architecture has been motivated by Beuth and 

Fig. 3. Diagram of the model. Two components are 
considered to model the behavior of the subjects, 
attention selection and decision-making. The atten
tion component is composed of neural layers that 
represent different areas of the brain engaged in 
attentional processing, including visual areas LGN/ 
V1 and V4, the prefrontal cortex (PFC) for providing 
the ACS, and the frontal eye field (FEF) for providing 
a spatial reentrant signal. The decision-making 
component receives the information from the cells 
in the V4 layer of the attention network, which are 
connected to be activated by the green (blue) square 
on the right (left) side of the image. It provides the 
response representing the button press when either 
target (the blue square on the left or the right square 
on the right) is shown.   

Fig. 4. Diagram of the attention component, 
illustrated for the condition of S-C- as an 
example. The cue and target stimulus are 
shown together in one image just for illus
tration purpose. The model is composed of 
the visual areas LGN, V1, and V4gain which, 
for simplicity, realize only the bottom-up 
processing of the input image. The visual 
V4pool receives the excitation signal from 
V4gain and in parallel, it receives top-down 
attention signal from PFC which interacts 
with the bottom-up processing. V4pool sends 
the activities to FEF, which performs saccade 
planning. FEF is composed of 3 parts na
med FEF-visual (FEF-v), FEF-visuomove
ment (FEF-vm), and FEF-movement (FEF-m) 
cells, respectively functioning in (i) visual 
processing, (ii) interface between visual and 
movement processing, and (iii) movement 
processing to plan the saccade. The parts 
simulate the representative cell types in the 
FEF (Schall, 1991). FEF-vm sends back its 
activity to V4gain to modulate the response 
in the visual areas. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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Hamker, 2015 inspired by the main cortical pathways and is not 
included in the model version of Zirnsak et al. (2011). 

First, the image is processed by lower level visual areas LGN and V1 
that encode simple features. We model here only the color features 
relevant for the task: A red-green (RG) and blue-yellow (BY) color dif
ference channel. The layers are implemented based on the physiological 
properties of the cells in these brain areas (Gegenfurtner, 2003). The 
feature-encoding neurons are spatially arranged, constituting reti
notopic planes. The color contrasts are computed based on the differ
ences between combined responses of L, M cone cells, and S cone cells, 
respectively, referring to large, middle, and small wavelength cones. 

The core of the model composed of V4gain and V4pool implements 
the Biased Competition framework (Desimone & Duncan, 1995), where 
V4gain roughly refers to layer 4 and V4pool to layer 2/3 of area V4. This 
principal circuit of the model has been demonstrated to be consistent 
with neural recordings of numerous attention experiments (Beuth & 
Hamker, 2015) and has been here extended to full images. The neurons 
in V4gain and V4pool layer are grouped into two channels covering the 
feature-spaces and arranged in retinotopic planes similar as in V1. The 
activities of neurons in the V1 layer are sent to neurons of V4gain to be 
modulated by spatial and feature-selective top-down signals. The neu
rons of V4pool, which have larger and overlapping receptive fields 
compared to V4gain neurons, spatially pool the modulated activities of 
V4gain to increase spatial invariance. 

V4pool layer receives a top-down signal from PFC maintaining the 
target color and sends, in turn, a feature-based feedback to V4gain layer, 
amplifying the activity of a number of V4gain cells, within its receptive 
field. In parallel, V4pool neurons project their activities to the FEF 
layers, which are involved in the planning of eye movements to the 
target location. As no saccades are required in this task, the FEF here 
only provides a spatially selective feedback signal to V4. The FEF of the 
model is composed of 3 parts named FEF-visual (FEF-v), FEF-visuo
movement (FEF-vm), and FEF-movement (FEF-m) which are defined 
based on cell properties of the FEF area in the brain (Schall, 1991; 
Zirnsak et al., 2011). The activity of FEFv neurons is computed based 
on the maximum activity over all feature channels of V4pool at each 
location, and its output represents a kind of saliency map. Due to the top- 
down target color bias to V4, the saliency map is task-specific. 
FEFvm cells have some properties of both visual and movement cell 
types. FEFvm combines FEFv activities in the form of a center (+)-sur
round (-) type. The FEFvm projects its activities to V4gain (reentrant 
theory). This recurrent loop modulates the activities in V4gain by 
exciting the responsive cells to the target location and suppressing the 
nonresponsive ones, leading to the emergence of spatial attention. In 
case of eye movements, a second recurrent loop over FEFm iter
ates until the activities of FEFm neurons exceed a specific threshold and 
plan a saccade (eye movement). However, here the model is set into 
fixation mode as required by the task by continuously suppressing 
the FEFm activity. 

2.2.2. The equations of the attention component 
We here provide the mathematical description of the model and the 

equations of each layer. Please also refer to previous models of Beuth 
and Hamker (2015), Zirnsak, Beuth and Hamker (2011), and Beuth 
(2019). In each layer, we consider a population of neurons and 
dynamically update their firing rates. Attention emerges by the dy
namics of the recurrent system, so we describe the firing rate changes by 
differential equations over time. This makes it possible to model the 
temporal dynamics of attention. 

In the following equations, the firing rates of neurons are denoted by 
rarea
d,i,x. The superscript refers to the associated area and the subscript refers 

to the neurons’ indices. The index x refers to the neuron’s location in a 

topographically organized layer, the index d refers to the associated 
feature channel (red-green, blue-yellow), the index i refers to the 
preferred feature in a channel which is associated with the ith neuron in 
the population. The weights are denoted as follows: warea1− area2

x,x′ is the 

connection weight between the neurons of two areas, warea/x refers to 
spatial-lateral connection weights within an area and warea/i is the 
connection weight of the cells at a specific location in a specific channel. 

2.2.2.1. LGN layer. The LGN layer refers to the processes in the lateral 
geniculate nucleus (LGN) of the brain and consists of three kinds of cells: 
Parvo (L-M), Konio (S-(L+M)), and Magno (L+M) that are respectively 
associated with the processing of Red-Green contrast, Blue-Yellow 
contrast, and grayscale feature. In order to simulate these cells, the 
image is transformed from RGB to LMS cone space, and the responses of 
the L, M, and S cone cells are computed. The L-M cells have four types: 
two types of ON cells and two types of OFF cells. The ON cells are excited 
in the center by L/M cones and inhibited in the surround by M/L cones 
named respectively L+M− and M+L− and the OFF cells vice versa: 
L− M+, and M− L+ . 

2.2.2.2. V1 Layer. Each neuron in V1 has a preference for a specific 
feature, so different neurons encode different features. The neurons are 
grouped into two channels. Channel 1 neurons encode the red-green 
(RG) color contrast and the channel space is arranged between the 
cells exited by red (L+M− , M− L+) and the cells exited by green (M+L− , 
L− M+). Similarly, Channel 2 neurons encode the blue-yellow (BY) color 
contrast and the channel space is arranged between the cells exited by 
blue (S+LM-) and the cells exited by yellow (LM+S-). 

The firing rates of V1 neurons are calculated based on the feature 
values and the simulated responses of LGN cells by the following 
equations. The numbers 1, 2 in the indexes of firing rates refer respec
tively to RG and BY channels and the v values represent the simulated 
responses of LGN cells. 

rV1
d=1,i =

i − 1
L − 1

(
0.5vL+M− + 0.5vM− L+)+

L − i
L − 1

(
0.5vL− M+ + 0.5vM+L− ) (1)  

rV1
d=2,i =

i − 1
L − 1

vS+LM− +
L − i
L − 1

vLM+S− (2)  

where L = 8 is the number of cells in each channel. 

2.2.2.3. V4gain layer. V4gain layer receives the activities of the V1 
layer and amplifies or suppresses this bottom-up input by spatial in
formation from FEFvm, and feedback from the V4pool layer which in 
turn receives a feature-based top-down signal from the PFC. The firing 
rates of V4gain neurons are updated by the following equations. 

∀d, i, x : τV4g∂rV4g
d,i,x

∂t
= E′

d,i,x⋅Ad,i,x − rV4g
d,i,x(((Ed,i,x⋅Ad,i,x)*wV4g/x)*wV4g/i+σ) (3)  

Ed,i,x = 0.6⋅ max
x′∈RF(x,V1)

(wV1− V4g
x,x′ ⋅rV1

d,i,x′ ) (4)  

∀d, i, x : τE′ ∂E′

d,i,x

∂t
= Ed,i,x − E′

d,i,x, τE′

=

{
1, ∂E′

d,i,x ≥ 0
40, ∂E′

d,i,x < 0
(5)  

Ad,i,x = 1+ASP
d,i,x +AFEAT− V4g

d,i,x (6)  

ASP
d,i,x = max

x′ ∈RF(x,FEFvm)

(wFEFvm− V4g
x,x′

⋅r− FEFvm
x ) (7)  

AFEAT− V4g
d,i,x = max

x′ ∈RF(x,V4p)
(wV4p− V4g

x,x′
⋅rV4p

d,i,x′
) (8) 
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In the equations, the variables E and A denote the effects that a 
neuron receives, respectively, the excitatory and the amplifying one. 
The variable E′ represents phasic excitation and the parameters τ = 15 
ms and σ = 1.5 respectively refer to the time constant and attention 
contrast gain factor. The symbol * denotes convolution. 

The excitation to each V4gain cell is obtained by pooling V1 cells 
firing rates (Eq. 4) and then converting the obtained tonic excitation E to 
the phasic activation E′ (Eq. 5). Phasic activity is obtained via a delayed 
decrease of the tonic activity, implemented by a slow time constant for 
decrease of neuronal activities and a fast time constant for increase (Eq. 
5) to mimic parts of the iconic memory and thus to avoid that V4gain 
activities rapidly decrease to zero during the intervals like the delay 
stimulus. The amplification signal A is computed as the sum of spatial 
and feature information of attention (Eq. 6) based on the studies (Saenz, 
Buracas, & Boynton, 2002). V4gain cells receive spatial feedback from 
FEFvm (Eq. 7, modeled by 2D-Gaussian weights with σ = 0.83,

∑
w =

1) and feature-based feedback from V4pool cells (Eq. 8, modeled by 2D- 
Gaussian weights with σ = 2.6). Furthermore, V4gain cells receive 
feature-based inhibition from the other cells that encode different fea
tures (wV4g/i, modeled by 2D-Gaussian weights with σ = 0.4,

∑
w = 1, 

base inhibition b = 0.1), and also they receive spatial inhibition from 
surrounding cells (wV4g/x, modeled by 2D-Gaussian weights with σ =

2.8,
∑

w = 1). 

2.2.2.4. V4pool layer. V4pool layer spatially pools the activities of 
V4gain neurons over each feature, but also receives top-down feature- 
based attention feedback from the PFC layer. The firing rates of V4pool 
neurons are updated by the following equations. 

∀d, i, x : τV4p∂rV4p
d,i,x

∂t
= Ed,i,x⋅Ad,i,x − rV4p

d,i,x(((Ed,i,x⋅Ad,i,x)*wV4p/x)*wV4p/i + σ) (9)  

Ed,i,x = max
x′ ∈RF(x,V4g)

(wV4g− V4p
x,x′

⋅rV4g
d,i,x′

) (10)  

Ad,i,x = 1+AFEAT− V4p
d,i,x ,AFEAT− V4p

d,i,x = wPFC− V4p⋅rPFC
d,i (11)  

where E and A respectively refer to excitation and amplification. The 
parameters τ = 15 ms and σ = 0.75 respectively refer to the time con
stant and attention contrast gain factor. Excitation is executed by 
pooling V4gain activities modulated by Gaussian weights (Eq. 10). The 
amplification signal from the PFC is modeled via one-to-one connections 
between feature-encoding cells (Eq. 11). V4pool cells also receive the 
spatial-surround and feature-based self-inhibition respectively via 2D- 
Gaussian weights wV4p/x and wV4p/i in Eq. 9. 

2.2.2.5. PFC layer. The PFC layer sends a feature-based attention signal 
to V4pool layer, amplifying the activity of those V4pool cells that have 
responded to the target features. The firing rates of PFC cells are 
assumed to arrive from a working memory that encodes the target in
formation defined as the expected features of V4pool cells. 

2.2.2.6. FEFv layer. FEFv receives its input from V4pool layer in a ret
inotopic projection, and computes the maximum activity over all feature 
channels of V4pool at each location and thus, encodes the conspicuity of 
each location. The firing rates of FEFv neurons are simulated by the 
following equations. 

∀x : τFEFv∂rFEFv
x

∂t
= wV4g− FEFv∙

1
#D
∑

d′
max

i′
rV4g

d′ ,i′ ,x − rFEFv
x − wFEFv

inh
1

#FEFv
∑

x′
rFEFv

x′

(12) 

where the parameter τ = 10 ms refers to the time constant and #D 
refers to the number of channels in V4gain. 

2.2.2.7. FEFvm layer. FEFvm cells have some properties of both visual 
and movement cell types. They get activated by visual information, but 
also encode target location information to initiate the saccade. In the 
model, the cells are organized to encode both visual and movement ef
fects. FEFvm receives feedforward excitatory and surround inhibitory 
drive from FEFv (rFEFv

x′ in Eq. 13) and the saccade information from FEFm 
(rFEFm

x in Eq. 13). The FEFvm activities project back to V4gain, providing 
a dynamic spatial attention signal. The firing rates of FEFvm neurons are 
updated by the following equations. 

∀j, x : τFEFvm∂rFEFvm
j,x

∂t
=

∑

x′
wFEFv− FEFvm

x,x′ ,j rFEFv
x′ + wFEFm− FEFvm

j rFEFm
x

− rFEFvm
j,x − wFEFvm

inh

∑

x′
r−

FEFvm
x′

(13)  

∀x, x′

, j : wFEFv− FEFvm
x,x′ ,j = g

(
x, x′

, a+⋅sj− 1, σ+
1

)
(14)  

g(x, x′

, a, σ) = a⋅exp

(

−

(
x1 − x′

1

)2

2σ1
+

(
x2 − x′

2

)2

2σ2

)

(15)  

where the parameter τ = 10 ms refers to the time constant and the 
function g represents a two-dimensional Gaussian function. Depending 
on j, the Difference of Gaussian function has different positive peak 
values, implemented by the factor sj− 1. 

2.2.2.8. FEFm layer. FEFm cells encode target location information by a 
competition among locations, which is implemented by the following 
equations. The activity of FEFm cells is formed by a local excitation 
signal from FEFvm and a global long-range inhibition.   

∀x : τFEFm∂rFEFm
x

∂t
= wFEFvm− FEFm

∑

x′
r−

FEFvm
x′ +

∑

x′
wFEFm/xrFEFm

x′ − rFEFm
x

−
1

#FEFm

∑

x′
r−

FEFvm
x′ − wFEFm

inh

∑

x′
rFEFm

x′ − wFixrFix

(16)  

where the parameter τ = 10 ms refers to the time constant. rFix refers to 
the fixation cells of the FEF (Hamker, 2005) that prevent the execution 
of saccades by suppressing the FEFm activity during the time when 
saccades are not allowed. The level of suppressing is adjusted by the 
parameter wFix = 3. 

The competition among the locations is continued until FEFm cells 
firing rates exceed a defined threshold at time point t0, which is 
considered as the occurrence of a saccade. Due to the inhibition of the 
movement cells in the current experiment, saccades are not triggered. 

2.2.3. The decision-making component 
The decision-making component of the model is based on the 

framework proposed by Cohen et al. (1990) to model the Stroop task. 
This part is a simple extension to the model of attention and serves the 
task to map stimuli onto a decision. In these networks, the ACSs with 
respect to the decision are hard coded in the connectivity. Using the 
proposed network, we implement the process of accumulating the in
formation over time. The network (Fig. 5) consists of four layers, a 
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conjunctive layer to converge the information from the attention 
component, a categorial layer to combine the information, a target layer 
to identify the targets, and a decision layer which computes the final 
behavioral decision. The processing in the network is performed by 
spreading activation in the network through the connections between 
the units. 

The activities from the cells in the V4pool layer of the attention 
network are spatially pooled to obtain neurons selective to green (blue) 
on the right (left) side of the image. The categorial layer computes 
categorial activation in 4 units representing the blue and green color 
information combined with the right and left location information. Each 
of the units in the categorial layer projects to both of the units in the 
target layer. The target layer consists of 2 units, where each one accu
mulates the evidence for seeing one of the two possible targets. Finally, 
the evidence for blue on left and green on right are compared with a 
response threshold in the decision layer. When the activation of one of 
the target units exceeds the threshold, the decision about pressing the 
button is made and the associated time is reported as the “decision” 
time, but also, we use the word reaction time, when we compare the 
model with the data, taking the assumption that there is no systematic 
variability in the motor response preparation across different conditions. 
The response threshold is defined so that its value allows to make correct 
responses in the target present condition (button-press) and the no 
target condition (no button-press). In order to mimic the variability 
among the subjects for making the decision to press the button, and also 
the inter-subject variability, we applied a variable decision threshold 
chosen randomly from a Gaussian distribution (σ = 0.1). 

The units in the categorial layer are connected to the units in the 
target layer in a way that each of the response units receives excitatory 

input from the units having matching information and inhibitory input 
from the units having unmatching information (Fig. 5). 

Similar to the equations in the attention component, we update the 
activation of the neurons of the higher-level cognitive stage of decision- 
making. In categorical and target layer, the activation of the units is 
calculated based on the weighted sum of the activations from the pre
vious layer (Eq. 17) and then applying a moving average over time, 
using the Eqs. 18 and 19 respectively for categorial layer and target 
layer. 

actj(t) =
∑

i
acti(t)wij (17)  

where actj refers to the activation of a specific unit j in the layer n that 
receives the signals from the unit i with activation acti in layer n − 1 and 
wij is the connection weight between the two units. 

categorial layer : actj
−

(t) = actj
−

(t − 1)+ τ*(actj(t) − actj
−

(t − 1)) (18)  

target layer : actj
−

(t) = actj
−

(t − 1)+ τ*actj(t) (19)  

where actj
−

(t) is the time average of the activation in unit j at time t, 
actj(t) is the activation in unit j at time t, and τ is the time constant. The 
time course of processing in the network is provided by Eqs. 18 and 19 
which is similar to the differential equations used in the attention 
component. 

A logistic function (Eq. 20) is applied for the categorical layer on Eq. 
18 similar to Cohen et al. (1990) to limit the response by a nonlinearity. 

outputj(t) =
1

1 + e− k*actj
−

(t)
(20)  

where outputj(t) is the calculated output of unit j at time step t and 

actj
−

(t) is obtained by Eq. 18. k refers to gain factor. 

2.2.4. Choice of parameters 
The decision threshold and the parameters in the decision making 

network (the weights between the categorial layer and target layer) and 
the parameters in the attention network (the time constant for the phasic 
activity in V4gain layer and the strength of the feedback signal sent from 
FEFvm to V4gain) were set to respond correctly for target present trials 
and for no target trials (no button press). To meet these conditions, we 
tried different sets of weights in the decision making network (Fig. 5) 
and observed that setting the equal weights for color and location con
necting the categorial layer to the target layer (Fig. 5) lead to best re
sults. This indicates that subjects may consider color and location 
equally for their final decision. Too large values for color makes the 
model being too sensitive in the no target condition as here the correct 
color is shown at an incorrect location. Similarly, large values for 
location lead to difficulties with condition 4 in no target case, as the cue 
fully matches the second defined target. This further justifies the 
balanced parameters for color and location. 

Further, the sum of inhibitory weights is set to be equal to the sum of 
excitatory weights in the connections between categorical layer and 
target layer (Fig. 5) to avoid fast but steady accumulation of target ev
idence in no target trials. Contrary, too weak activation does not allow to 
accumulate evidence in correct target trials. 

The parameters gain factor and time constant in the equations of 
decision network (Eqs. 18, 19 and 20) were set so, that a variable de
cision threshold does not lead to very extreme response times. In addi
tion to setting the parameters of decision making network, we also set 
the strength of the feedback signal sent from FEFvm to V4gain, so that 
we do not have too small or too big effects for the location information in 
the decision making network. Further, we set the time constant for the 
phasic activity in V4gain layer, so that the values of the responses in no 
target trials have enough difference to the correct target trials that 

Fig. 5. Diagram of the decision-making component of the model. The decision 
network receives the information from the cells in the RG and BY channels of 
V4pool layer of the attention network, to compute activations of conjunction 
units such as green (blue) square on the right (left) side of the image. The 
categorial layer separates color from position leading to simple categorial re
sponses. The target layer is composed of 2 neurons representing the two 
possible targets, one for the blue square on the left and the other for the green 
square on the right, illustrated by the two rectangles next to the neural units in 
the figure. The decision layer computes the final behavioral decision, e.g. 
button press. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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allows us to separate them by a response threshold. 

3. Results 

We used almost the same stimuli and conditions as those in the 
paradigm of Adamo et al. (2010), as illustrated in Figs. 1 and 2. Our 
model has been designed so that the activities of the layers in the 
attention network change over time and finally settle to the activities 
representing the attended feature and location. The final behavioral 
output of the model is the decision time representing the time of pressing 
the response button. The calculated decision times are averaged be
tween both target stimuli of blue on left and green on right. 

Adamo et al. (2008) concluded from their behavioral data that 
humans can maintain two spatially distinct ACSs. Their logic was that 
full attentional capture occurs for S+C+ trials and thus speeds up the 
response time, while S-C+ and S+C- lead only to a partial match and 
thus should show similar response times, as observed in their data. 
Further, they did not expect to see a difference between S+C+ and S+C- 
trials when subjects cannot form conjunctive ACSs. 

As shown in Fig. 6a, our model however predicts rather similar de
cision times for S+C+ and S+C- trials, although we tried to tune the 
model parameters to see a stronger difference between these conditions. 
Thus, our model clearly deviates from the reaction time data of Adamo 
et al. (2008) and Adamo et al. (2010). The experimental mean reaction 
times (Fig. 1 in Adamo et al. (2010)) depend on the conditions of how 
the cue matches the ACS in the order S+C+ < S+C- < S-C+ < S-C- with 
the values of 445 ms (±25 ms), 490 ms (±20 ms), 500 ms (±18 ms), and 

519 ms (±18 ms) respectively, where the RT for S+C- and S-C + are not 
significantly different from each other (the values in the parentheses 
indicate the standard error in the related condition). When we directly 
compare the model response data to the experimental data (Fig. 6c,e) we 
see a particularly strong deviation in the S+C+ condition. The deviation 
of the model RT to the subject RT, however, makes sense, because our 
model searches globally for color only, regardless to their location. Thus, 
it behaves as expected by Adamo et al. (2008). Importantly, Adamo et al. 
(2010) found the same type of reaction time distribution like Adamo 
et al. (2008), but their ERP data clearly showed a Cue N2pc for all cues 

Fig. 6. Model mean decision (reaction) times in the 
four conditions of the experiment using the approach 
of accumulating the information (a) from target 
onset and (b) 50 ms before target onset. The error bar 
in each condition represents the standard error of the 
mean in that condition. The dashed line shows the 
reaction time in the neutral, no cue condition. The 
model decision times have been computed based on 
1000 trials of a variable decision threshold in each 
condition and stand for the raw decision times as we 
do not consider motor preparation and execution. 
Responses are averaged between both target stimuli 
of blue on left and green on right. The difference 
between RTs of conditions to each other and to 
neutral RT in our results compared to data in Adamo 
et al. (2010) is shown in (c) and (e) respectively 
using the approach of accumulating the information 
from target onset and in (d) and (f) respectively using 
the approach of 50 ms before target onset.   

Table 1 
Comparing the RT results of different integration approaches. The results are 
averaged between both target stimuli of blue on left and green on right and the 
values in the parentheses indicate the standard error in the related condition. 
The bolded row shows the results that made the best fit to the experimental RTs.   

RT in four conditions of the experiment 

Integration 
approach 

S+C+ S+C- S-C+ S-C- 

From target onset 122.1 ms 
(±3 ms) 

130.5 ms 
(±2.8 ms) 

137.8 ms 
(±3.1 ms) 

153.3 ms 
(±3.3 ms) 

From 25 ms before 
target onset 

109.7 ms 
(±3.2 ms) 

130.6 ms 
(±2.9 ms) 

137.4 ms 
(±3.2 ms) 

153.7 ms 
(±3.4 ms) 

From 50 ms before 
target onset 

92 ms 
(±3.3 ms) 

130.7 ms 
(±2.8 ms) 

135.4 ms 
(±3 ms) 

153.8 ms 
(±3.4 ms)  
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and not just for the one that matches the ACS. Thus, there is obviously a 
conflict between behavioral and physiological data. As no parameter 
tuning could make the model match to the behavioral data, we tested if 
decision priming could explain the dissociation. The task requires 
human subjects responding to features that are already part of the cue 
stimulus (color and location). Although subjects were instructed not to 
respond to the cue, they may already start the decision making process 
on the features of the cue. In the model results presented in Fig. 6a, we 
started integration upon target onset. When we start 50 ms prior to 
target onset we see a clear shift of the reaction time pattern closer to the 
experimental data (Fig. 6b), while no other parameters have been 
changed. This improved match with the data is also visible in Fig. 6d,f 
that shows the difference between RTs of conditions to each other and to 
the neutral RT in our results compared to data in Adamo et al. (2010). 
The results, which are averaged between both target stimuli of blue on 
left and green on right, are presented in Table 1. The results in Table 1 
are shown also for the integration from 25 ms before target onset to 
compare the different starting times for integration of information. 

Fig. 7 shows that the particular choice of the threshold does not 
determine our result. If we accumulate the information from target onset 
(Fig. 7a), we can not find a good threshold value to strongly separate the 
S+C- from the S+C+ condition as observed in the data. While when we 
accumulate the information from 50 ms before target onset (Fig. 7b), the 
obtained RT pattern fits well to those from human subjects. Models with 
different parameters do not change this fundamental model prediction. 

We now look in more detail how the model, in the condition of 
integration of 50 ms prior to target onset, predicts the development of 
attention in the four different conditions. Therefore, we first have a look 
at the neuronal responses in the visual cortex, more precisely in visual 
area V4. Fig. 8 visualizes the activation of selective neurons in V4pool, 
from fixation onset until the end of the simulation in a typical trial of 
each of the four conditions. The neural activities are shown for the case 
that the target stimulus is the blue square on the left. We depict those 
neurons, whose preferred stimuli are part of the ACS either in color or 
location. The neural activities are boosted in conditions, where the cue 
or target matches the attentional template (blue and green). The gray 
colored stimuli, which is a mixture of RGB colors, also induces some 
activities in the neurons representing green/blue. The response to the 
cue is not spatially selective, but reflects the match with the target color 
template only (compare condition S+C+ vs. S-C+ and S+C- vs. S-C-), as 
the attentional top-down signal acts globally on the whole input, i.e. 
independent from the spatial location of the stimulus, PFC increases the 

gain of all blue and green encoding cells in their entire visual field. This 
is consistent with the fMRI evidence provided by Serences and Boynton 
(2007) that feature-based attention acts globally on the entire visual 
field. Eimer (2014) also discusses that the template signals in PFC are 
mostly location independent. During presentation of the delay image, all 
of the activities decrease to some extent. The response to the target 
stimulus (here, the image including the blue square on the left) develops 
from different starting conditions triggered by the cue and thus, affects 
the reaction times differently in the four conditions. 

The activities of the attention component are passed to the decision- 
making component. The conjunctive layer pools the activities from 
V4pool neurons in a way to encode the green (blue) square on the right 
(left) side of the image, which implements parts of the rule to respond as 
required. 

Fig. 9 shows the activation of the neurons in the categorial layer 
which integrates the information of the conjunctive layer to compute a 
categorical activation in the 4 units representing the blue and green 
color information and also right and left location information. The same 
explanations of Fig. 8 apply here. Initially, the left and right activities 
indicate on which side a cue matches the target color. Since there is no 
difference between the conditions with a spatial matching or non- 
matching cue to the ACSs, attention is not allocated to two different 
colors in two different locations, but rather, attention is allocated 
globally to the two colors of blue and green. However, later after cue 
onset, the difference between the four conditions becomes different as 
either the most active color or location switches in the S+C-, S-C+, and 
S-C-, but not in the S+C+ condition. In the conditions S+C-, S-C+ and S- 
C- compared to S+C+, the non-target information is more active and 
acts as distracting neuronal information to identify the target stimulus. 
This leads to slower accumulation of the information in the response 
unit associated with the presented target and resulting in slower 
response time, particularly in condition S+C-, S-C+, and S-C-. 

Color and location information become combined in the target layer 
for accumulation of evidence for each target (Fig. 7). Possible negative 
evidence is set to zero during the accumulation. When the accumulated 
evidence for one of the two defined targets exceeds a threshold, the 
selection time for a button press is registered. 

The similarity of the RTs in S+C+ and S+C- conditions in case of no 
decision priming (Fig. 6a and Fig. 7a) can be explained as follows. In 
condition S+C-, since the color of the cue matches the color of one of the 
ACSs, the activity of V4pool cells increases by receiving top-down signal 
from PFC, and the increased activities are sent to FEFv layer. This causes 

Fig. 7. Comparing the accumulation of the 
evidence in the target layer between two 
cases of (a) accumulating the information 
from target onset vs. (b) accumulating from 
50 ms before target onset. The figure illus
trates the response of blue on left for the 4 
conditions, while the blue on left target 
stimulus is presented. The arrangement 
shows when the accumulated evidence in the 
target layer in each of 4 conditions reaches 
the decision threshold, which determines the 
reaction time. (For interpretation of the ref
erences to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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that FEFvm layer sends stronger reentrant signals to V4gain in the 
location of the activated color which would be the left location in this 
case. Please note, that the FEF pools over feature space and thus its re
sponses are invariant to feature identity. In consequence, the presented 
target benefits from the cue induced attentional capture effect, although 
the cue met the defined target color but not the defined target location. 

S+C+ and S+C- will not lead to identical responses, due to an 
additional object/feature priming effect, as the cue in S+C+ activates 
overlapping neuron populations with the target stimulus (Fig. 8). 

The similarity of the RTs in S+C– and S–C+ conditions can be 
explained in a similar way. In condition S+C-, since the color of the cue 
matches the color of one of the ACSs, the activity of V4pool cells in
creases by receiving top-down signal from PFC, and the increased ac
tivities are sent to FEFv layer. This causes that FEFvm layer sends 
stronger reentrant signals to V4gain in the location of the activated color 
which would be the left location in this case. In consequence, more left 
information will be accumulated in the decision network which 

increases the location-related excitatory influence to “blue in left” 
response unit. However, since the cue does not match the color of the 
correct response (as the target stimulus in this case is blue in left), it 
increases the color-related inhibitory influence to “blue in left” response 
unit. In condition S-C+, the color of the cue matches the color of the 
ACS, but the cue is presented at the wrong location. Since the cue 
matches the color of the target, it increases the color-related excitatory 
influence to “blue” response unit, which is a form of feature/object 
priming. Therefore, in both conditions of S+C- and S-C+, the sum of 
excitatory and inhibitory influences to the response units is almost equal 
which leads to similar RTs in these two conditions. 

We also investigated how the RT results are affected by FEFvm 
reentrant signals, which implements attentional capture in the model. 
Fig. 10 shows the results when we integrate the information from target 
onset and deactivate FEFvm reentrant signals. Without any decision 
priming and without attentional capture one would expect rather equal 
responses. However, the benefit of the S+C+ condition can be traced 

Fig. 8. The course of neural activities in the highest visual layer of the model, V4pool from fixation onset until the end of the simulation in four conditions. The 
neural activity plotted in different colors is obtained from 4 individual model neurons which match the preferred color and location indicated in the legend. The 
dashed lines show the onset time of cue and target stimuli. The conditions are presented on top of the plots, including the cue and target image per condition. The 
activities are shown for the case that the target stimulus was the blue square on the left. The conditions S+C+, S+C-, S-C+, and S-C- refer respectively to the 
conditions that the presented cue image included: (i) the blue color around left square, (ii) the green color around left square, (iii) the blue color around right square, 
and (iv) the green color around right square. Note, that the responses for the neurons encoding blue on the right and green on the right are almost identical in the top- 
panel, hence, we have illustrated the activity for blue on right using increased line width to differentiate these two activities. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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back to a feature/object and location priming benefit (Fig. 9) while the 
S-C- condition suffers as the cue does neither prime location nor color. 

In summary, we have explained under which conditions our model 
replicates the experimentally observed behavioral data. In order to 
know how the attentional processing is affected by the attentional 
control sets and the congruency of cues and targets, we now compare 
our model activity to ERP signals of Adamo et al. (2010). We chose 
V4pool layer of the model as a comparison to activities of ERP signals 
recorded from parietal, parieto-occipital, and occipital channels. The 
V4pool layer of the model simulates a part of the brain area V4 in the 
visual cortex, located in the occipital lobe. V4 might not be a complete 
match to the recording sites, but still gives us a good hint to compare the 
model with ERP dynamics and provide some knowledge about the in
cidents in ERP signals. 

The Cue N2pc recorded by Adamo et al. (2010) aims at testing in how 
far a cue that matches the attentional control set (ACS) in location 
triggers spatially selective attention (good cue) compared to a non- 
matching cue (bad cue). In order to compare the results of the model 
with Cue N2pc signals, we computed the average of mean V4pool ac
tivities of all model neurons (not only the selected ones plotted for 
visualization purposes previously) for the conditions illustrated in 
Fig. 11 which resembles the averaging effect of the ERP measurements 
in the brain. The presented activities are averaged between the results of 
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Fig. 9. The course of neural activities in the categorial layer of the decision-making network for the categories blue, green, right, and left, from 50 ms before target 
onset until the end of the simulation in four conditions. The dashed line shows the onset time of target stimuli. The activities are shown for the case that the target 
stimulus was the blue square on the left. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. The difference between RTs of four conditions to neutral RT, where 
FEFvm reentrant signals are deactivated and the information is accumulated 
from target onset. The error bar in each condition represents the standard error 
of the mean in that condition. Responses are averaged between both target 
stimuli of blue on left and green on right. 
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using blue on left target stimulus and green on right target stimulus. We 
computed the difference between ipsilateral and contralateral activities 
to obtain a comparable activity to Cue N2pc (Fig. 12) which represents 
the difference between the ipsilateral and contralateral brain hemi
sphere relative to the attended location. When we compare good cues 
and bad cues, both show a Cue N2pc with similar amplitude and latency, 
which is consistent with the experimental results where no significant 
differences have been found between both cues (Fig. 2 in Adamo et al. 
(2010)). This shows that any cue triggers an attentional shift. The good 
cues match one of two ACSs both in color and location. The bad cues 
match one of two ACSs only in color, but not in location. Therefore, the 
similarity of the results for good and bad cues demonstrates that 
initially, attention is allocated in spatially global way to the cues based 
on their color matching with the ACSs, irrespective the match of their 
location with ACS. In the model, this is reflected by feature-based 

attention to color. 
The Target N2pc recorded by Adamo et al. (2010) reveals the amount 

of spatial attention triggered after target presentation. They categorized 
Target N2pc recordings into four conditions of S+C+, S+C-, S-C+, S-C- 
referring to the congruency of the cue to the ACS, as the following target 
stimulus always matches the ACS in the trials considered (Fig. 3 in 
Adamo et al. (2010)). We computed a model Target N2pc, by taking the 
difference between ipsilateral and contralateral mean V4pool activity in 
each of the four conditions (Fig. 13). The presented activities are aver
aged between the results of using blue on left target stimulus and green 
on right target stimulus. 

After presenting the target (which is either blue on left or green on 
right), the activity in the location of the target develops differently in the 
four conditions dependent on the congruency of cue and target: 
Consistent with the spatial congruency effect reported in the 
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Fig. 11. V4pool mean activity at the ipsilateral side and contralateral side of the cue, shown for good cues (a) and bad cues (b) from fixation onset until the end of the 
simulation. The activities are averaged between S+C+ and S-C- conditions to represent the activities for good cues and between S+C- and S-C+ conditions to 
represent the activities for bad cues. The dashed lines show the onset time of cue and target stimuli. The presented activities are averaged between the results of blue 
on left and green on right target stimuli, where the schematic figure beside the titles of the figures illustrates the conditions for the example case of blue on left target 
stimulus. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Difference of V4pool mean activity at the location of right and left 
stimulus compared between good cues and bad cues from fixation onset until 
the end of the simulation. This difference activity is a comparable measurement 
to the N2pc. Good and bad cues show a similar difference activity, albeit the 
slight distance between both curves. The dashed lines show the onset time of 
cue and target stimuli. 

Fig. 13. Difference of V4pool mean activity at the location of right and left 
stimulus, shown for all four conditions of S+C+, S+C-, S-C+, and S-C- from 
fixation onset until the end of the simulation. This difference activity is again a 
comparable measurement to the N2pc. The dashed lines show the onset time of 
cue and target stimuli. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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experiment, the peaks appearing after target onset, occur faster in the 
conditions when the target and the preceding cue are spatially 
congruent (S+C+ and S+C-) compared to the spatially incongruent 
conditions (S-C+ and S-C-). Also, consistent with the color congruency 
effect reported in the experiment, in color congruent conditions, the 
peaks occur slower (compare S+C+ vs S+C- and S-C+ vs S-C-). In terms 
of the peak amplitudes, spatially congruent conditions (S+C+ and S+C-) 
have a higher amplitude compared to spatially incongruent conditions 
(S-C+ and S-C-) which is again consistent with the experiment (Fig. 4 in 
Adamo et al. (2010)). 

The Cue N2pc and Target N2pc components observed in the exper
iment can be explained by the dynamics of the presented model. The 
V4pool layer of the model receives reentrant signals of spatial attention 
from FEFvm layer. These spatial reentrant signals focus the attention 
over one location and induce a competition between locations. After the 
initial rise elicited by the cues, a further increase is caused by reentrant 
processing via the FEFvm, visible in the Cue N2pc signal (Fig. 12). 
Reentrant processing is also visible in the mean FEFvm activities 
(Fig. 14). The FEFvm activities are presented for the case that the target 
stimulus is blue on left. While the S+C+ and S-C- conditions are quite 
obvious, a comparison between S+C- and S-C+ is particularly inter
esting. In the S-C+ condition, the cue with the target color is at the 
wrong location and thus does not provide a strong reentrant processing 
of the target, while the cue in the S+C- condition, although it does not 
match the full ACS, it matches the color target template and thus leads to 
a strong spatial reentrant processing at the target location. 

4. Discussion 

The phenomenon of how our attention system processes two distinct 
visual attentional control sets at a time has been debated much recently, 
but has not been investigated by neuro-computational models. We 

designed and simulated a neuro-computational model of attention and 
decision making to better understand the neural correlates of how two 
ACSs capture attention. We simulated the experiment of Adamo et al. 
(2010) who asked subjects to focus their attention on two different 
colors combined with two different locations. Cues presented prior to 
the target influence the decision time of the network towards the target 
stimulus. Importantly, in the experiment of Adamo et al. (2010), all 
locations are cued by changing the luminance, so that the match to the 
ACS is relevant (Anderson & Folk, 2012), but not any stimulus-driven 
attention (Belopolsky et al., 2010). Therefore, consistent with contin
gent capture theory (Folk et al., 1992), the simulation results can be 
interpreted based on the effect of the top-down effects of ACSs and the 
congruency of cue and target. However, given the hypothesis that 
attention is initially driven by a global color-based signal, the observa
tions of Adamo et al. (2010) are not easy to interpret. The reaction time 
pattern has been interpreted by Adamo et al. (2008) as an indication for 
two ACS for color and location. Our model suggests that the reaction 
time data is distorted by decision priming, as we could only replicate the 
behavioral data when we start to integrate already upon cue informa
tion. Further, our model indicates some additional priming, such as 
object/feature and location priming. Inter trial priming reported in some 
studies (Büsel, Pomper, & Ansorge, 2019; Irons et al., 2012) may also 
play some role, but our model does not include any properties for this. 

Importantly, the model also replicates the electrophysiological data 
of Adamo et al. (2010), which allows us to take it as a basis to better 
understand the involved neural processes. Visualizing the dynamics of 
neural activities in the model enables us to understand the observations 
of Adamo et al. (2010) about the congruency of cue and target stimulus 
and also the congruency of cue and attentional control sets. Adamo et al. 
(2010) found that the N2pc to cues that fit an ACS, called good cues, 
does not significantly differ from the N2pc to the one of cues that do not 
fit to the ACS, called bad cues, and conclude that all cues capture 
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Fig. 14. FEFvm mean activity at target side (left) and 
target opposite side (right), shown for all four condi
tions of S+C+, S+C-, S-C+, and S-C- from fixation 
onset until the end of the simulation. The FEFvm ac
tivities are an indicator for a reentrant signal from the 
FEF. The activities are shown for the case that the 
target stimulus is blue on left. The dashed lines show 
the onset time of cue and target stimuli. (For inter
pretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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attention. This may be surprising as the nature of the cue has a clear 
effect on the reaction time of the subjects. Our model suggests that the 
cue image is not filtered early by its match to the ACS to determine the 
amount of spatial attention, but that initially, only a feature-based 
attention signal for both target colors operates in parallel, regardless 
of the location of stimuli in the scene. This model assumption is 
consistent with the conclusions derived by Becker, Ravizza, and Peltier 
(2015), Berggren, Jenkins, McCants, and Eimer (2017), and Irons and 
Remington (2013) who proposed that colors of two ACSs are attended 
globally. This explains that cues, which have a full match to the ACS, do 
not initially capture more attention than those, which only have a color 
match. 

This early feature-based bias also explains the observation by Adamo 
et al. (2010) that the Target N2pc latency is shorter for congruent 
location (S+), as here, a cue that matches the ACS in color is at the same 
location as the target. Any cue that is consistent with the feature-based 
attention signal gets slightly more enhanced than any other cue. This 
slightly more enhanced signal contributes to the accumulation process, 
but in addition, is sent to the FEF and re-enters the visual cortex and 
enhances the response to the target. Such combination of feature and re- 
entrant spatial attention is a core component of our model (Hamker, 
2003; Hamker, 2005; Moore & Armstrong, 2003) and helps to better 
understand the complex nature of the data from Adamo et al. (2010). For 
example, the models like Bundesen, Habekost, and Kyllingsbæk (2005) 
may not explain this observation. Because first, in their model, when the 
model is cued by location, the pertinence values which determine the 
attentional weights, are determined before stimulus presentation and 
when the model is cued by feature, the pertinence values are determined 
longer after stimulus presentation. Therefore, they do not apply the 
spatial feedback in their model. Second, the selection mechanism in 
their model is based on identifying the category of objects rather than 
spatial selection. Denison et al. (2021) presented a model for the dy
namics of temporal attention using a normalization model implemented 
in three layers of sensory, attention and decision making, However, their 
model does not include a spatial reentrant processing loop, which is 
crucial for attentional capture. Similarly, Guided Search 6.0 (Wolfe, 
2021) mainly aims at replicating set-size dependent reaction times, but 
it has no natural model dynamics to provide a component comparable to 
N2pc. It assumes a very fast scanning of attention (20 times per second), 
which is different from our model. A following binding and recognition 
process modelled by drift diffusion is similar to our decision process. 

With respect to Target P3, Adamo et al. (2010) found differential 
effects of P3 amplitude and P3 latency. P3 amplitude mainly depended 
on whether the cue has the same color as the target but not if the cue 
fully matches the ACS. P3 latency is particularly interesting for cues 
presented at the same side as the target, as latency is shortest if the cue 
matches the color of the ACS (S+C+) and longest, if they do not match 
the ACS (S+C-). Although the Target P3 includes processes somewhat 
beyond what we can simulate with our model, we can at least provide 
some intuition. P3 amplitude could be affected by the recurrent loop 
between V4gain and V4pool cells, e.g. recurrent processing in the visual 
cortex that boosts features that match between the preceding cue and 
the target, in this experiment their color. The short P3 latency is likely 
affected by the re-entrant processing via the FEF, as a cue that does not 
match the ACS (C-) leads to weaker activation of the FEF neurons which 
in turn provides a weaker gain to the target leading to a reduced loop 
activity. 

When we relate physiological measures such as N2pc to the amount 
of reentry from the FEF in our model, N2pc measures the relative dif
ference of attention between two locations, while the reentry from the 
FEF in our model (but see also Juan, Shorter-Jacobi, & Schall, 2004; Ray, 
Pouget, & Schall, 2009) indicates the overall amount of attention 
directed to a particular location. This interpretation is consistent with 
previous experimental (Dubois et al., 2009) and computational (Zirnsak 
et al., 2011) studies, which suggested that transiently, attention can be 
directed to multiple non-contingent items until it converges into a 

sustained mode, where the focus of attention is on one item. 
To summarize, the results of our computational model support the 

idea that subjects do not filter the visual scene initially by feature and 
color, but apply a global feature search. Reaction time data that suggests 
ACS for different locations in space, e.g. Adamo et al. (2010), Adamo 
et al. (2008), could be distorted by priming as predicted by our model. 
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