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Humanoid robot grasping with a soft gripper through a learned inverse
model of a central pattern generator and tactile servoing

Yuxiang Pan , Fred Hamker , and John Nassour

Artificial Intelligence, Computer Science, Chemnitz University of Technology, 09111, Chemnitz, Germany

Abstract— Grasping and manipulation are essential skills
that humanoid robots need in order to operate in the human
environment. Model-based methods require a precise calibra-
tion and suffer from high order non-linearity. While, neural-
based representations does not require a dedicated calibration
process to solve these tasks. However, some suffer from high
generalization error that reduces the accuracy or require large-
scale data collection. The role of sensory feedback is therefore
important to adapt the action. We present a control framework
to learn grasping with a soft gripper attached to a humanoid
robot arm. The inverse kinematic model of the arm is acquired
through motor babbling of a central pattern generator and
encoded by a feed-forward neural network. To overcome the
generalization error we provide the gripper with a tactile
sensors array at each finger. The tactile servoing is used to
correct the action before grasping. The proposed model has
been tested in simulation, and on the real robot where a soft
sensory gripper was used to interact with a human subject
(Tactile Servoing). Successful grasping was achieved thanks to
the integration of a learned inverse model with the sensory
feedback.

I. INTRODUCTION

Traditional methods based on inverse kinematics and hand-
eye coordination to solve robot grasping require calibra-
tion to build a precise representation of the end effector
in the camera space. This calibration suffers from time
consumption due to the non-linear optimization [1], [2]. A
feedforward neural network has been used to build an inverse
kinematics model for robotic arm and to perform the hand-
eye calibration [3]. A convolutional neural network with a
large scale data collection was proposed recently to address
the coordination problem for robotic grasping in 2D task
space [4]. Deep leaning methods require a large-scale data
collection (e.g., 800,000 grasp in [4]), which is not always
possible to do on a humanoid robot. A common problem
appears when a neural network is used to represent the
inverse kinematics model, it consists in the generalization
error. This error leads to inaccurate grasp. Pastor et al. has
addressed the role of sensory feedback in the adaptation of
motor program. Based on the expectation of tactile sensory
activation, tactile sensors implemented on a rigid robotic
hand has been used to adapt the motor patterns, named
dynamic movement primitives DMPs, during grasping in 2D
task space [5]. In this paper, we propose a framework to learn
robot grasping of an object with ArUco markers in 3D space
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Fig. 1: The control framework for grasping in 3D space.
The camera captures the position and the orientation of the
ArUco markers cube. Camera frame is used to represent
the desired position and orientation. A multilayer perceptron
neural network calculates the desired joints’ position θdesired
which will be subtracted from the current configuration θinit.
Joints variations Δθ are then introduced to the central pattern
generator modulation networks to obtain appropriate CPG
parameters that leads to the desired end-effector position. An
external camera has been used to cover larger space in front
of the robot that can not be viewed by the robot on-board
cameras. https://youtu.be/O6AxZUecGg8

for hand-eye coordination, see Fig. 1. We use a feedforward
neural network as an inverse kinematics representation and
a central pattern generator for motor patterns. Grasping is
performed with a soft robotic hand equipped with soft tactile
sensors. Grasping behavior is composed of two parts, the first
is generated by the neural network that encodes the hand-eye
coordination, while the second is a servoing behavior that is



generated using tactile sensors. This paper is organized as
follows. Section II represents the central pattern generator
model used to control robot joints, then it represents the
neural modulation of these patterns in the joint space. Section
III describes the motor babbling and the learning of inverse
kinematic model. Soft gripper and tactile sensory feedback
are presented in Sec. IV. Tactile servoing, reaching, and
grasping experiments are illustrated in Sec. V. Finally, we
present the conclusion in Sec. VI.

II. PATTERN GENERATION

A. Central pattern generator model

The Multi-layered multi-pattern central pattern generator
(MLMP-CPG) model is a computational neural model which
is used to generate rhythmic and non-rhythmic behavior
on the robots’ legs and arms [6], [7]. Each CPG model
controls one joint, and it is divided into three layers: Rhythm
Generator (RG), Pattern Formation (PF) and Motor Neuron
(MN), see Fig. 1.

Rhythm generation neurons (RG) are based on two cells
with self-rhythmic generation ability [8]. The neural model
for each neuron is represented by:

τm
dV

dt
= −(fast(V,σf ) + q − iinj), (1)

τs
dq

dt
= −q + q∞(V ), τm < τs, (2)

fast(V,σf ) = V −Af tanh((σf/Af )V ), (3)

q∞(V ) = σs(V − Es), (4)

where V is the membrane potential, and represents the
RG neuron output. q and q∞ are the slow current and its
steady state value, respectively. Af determines the width
of the N shaped current-voltage curve. τm and τs are time
constants. iinj is the injected current. σs and σf represent
the conductance for potassium and calcium currents, re-
spectively. Es is the reversal potential. Different patterns
such as quiescence, almost an oscillator, oscillations, and
plateau, can be generated by tuning the aforementioned cell
parameters. The current paper is built on the generation
of plateau patterns in the grasping task. Pattern formation
neurons (PFE , PFF ) receive input from RG neurons. The
activation function is expressed by:

PF =
1

1 + eα0·α(ψ0−wRG→PF·V )
, (5)

where α0 = 1 is the slope of the sigmoid, ψ0 = 0 defines
the center point. α represents the descending control from
the high-level controller that modulates the activation of the
pattern formation neuron PF , see Fig. 1. wRG→PF is the
weight of the synaptic connection between RG and PF neu-
rons. Each PF neuron projects to the corresponding motor
neuron (MN ). The activation function of each extensor and
flexor motor neuron is expressed by:

MN =
1

1 + eξ(β−(wPF→MN·PF+w·S)/2)
, (6)

where, ξ = 5 and β = 0.5 are the slope and threshold of
the sigmoid activation function, respectively, whose values
were set empirically. wPF→MN is the weight of the synaptic
connection between PF and MN neurons. S is the proprio-
ceptive sensory feedback, and w is its corresponding weight.
In the current study w is set to 0, because no sensory feed-
back is considered at the motorneuron level. CPG Patterns
are generated by RG neurons where iinj is responsible for
temporal coordination, while the spatial coordination is done
by varying α in PF neurons.

B. Pattern modulation

To modulate the amplitude of the generated pattern for
a desired joint motion, we used multilayer perceptron as
an approximation function. Since the rhythm generation
neurons select only the nature of a pattern, the pattern’s
amplitude modulation occurs in pattern formation neurons.
For example, to move one joint by Δθ from its current
configuration θinit, α in pattern formation layer has to be
tuned to perform that motion. Since the range of motion
for each joint may differ from other joints, each joint will
have its own MLP network to approximate the relationship
between α and Δθ, see Fig. 1. The desired joint angle is
the sum of the initial joint angle and the output of the CPG
(θ = θinit + Δθ). At the end of the motion, the new joint
angle becomes the initial one for the successive CPG pattern.
The training data for each joint’s neural network is collected

Fig. 2: The relationship between joints variation Δθ and the
pattern formation parameter α. A separated MLP neural net-
work was used for each joint to approximate the relationship.

by motor babbling. For a random α value in the CPG, the
joint perform a random motion Δθ. If a joint reaches one of
its mechanical limits, the training data producing this motion
will be eliminated from the training set. The neural network
for each joint has one input (Δθ), one output (α), and one
hidden layer with 25 neurons. As activation function, “Tanh”
was used for the output layer neurons, while “ReLu” was
used for the hidden layer. The loss is calculated using Root
Mean Squared Error (RMSE), which is the the average of
the square root of the errors between the predicted value and
the target value. Figure 2 shows the input-output relationship
after learning the pattern modulation for each joint. The
average of obtained error is around 0.0003[rad].



III. NEURAL NETWORK FOR INVERSE KINEMATICS

To solve the inverse kinematics problem, a multilayer
perceptron neural network is introduced to find the rela-
tionship between the 3D space and joint space, see Fig.
3. In this paper, the right arm of NAO humanoid robot
is used to perform grasping. The right arm of NAO robot
has 5 joints “ShoulderPitch”, “ShoulderRoll”, “ElbowYaw”,
“ElbowRoll” and “WristYaw”. To reduce the number of
training data that need to be collected, we have used only
the first four joints.

A. Data collection

To collect the data set which is required to train the
network, we have rigidly attached an ArUco marker cube to
the end-effector of the right arm. A camera has been fixed in
front of the robot ( distance of 80[cm]) to detect the positions
and orientations of the cube during motion. The robot was in
standing position, while the right arm moves with a random
selection of four joint angles. The right arm’s joint variables,
the position, and the orientation of the marker have been
collected. We have obtained 10,000 sets that will be used
for the learning process.

B. Learning

The MLP network dedicated for inverse kinematics has
six input neurons, which are the orientation parameters (ωx,
ωy, ωz) and the position parameters (Px, Py, Pz) of the
end-effector in the 3D Cartesian space, see Fig. 3(top). The
network has four output neurons representing the joint angles
(θS.P., θS.R., θE.Y., θE.R.), and 2 hidden layers with 25 neu-
rons with “sigmoid” activation function. Root mean square
error “RMSE” was selected as loss function. It calculates the
difference between the actual output and the desired one, (7):

RMES =

����
n�

i=1

(di − oi)2

n
(7)

where di is the desired value (ground truth labels), oi is
the network output at time i, and n is the number of data
set. During the training process, Cross-Validation is applied
to the MLP network. The training sample were split into
a training set and a testing set. 80% of the samples were
randomly selected for training, and 20% for testing. Because
this neural network has multiple inputs and the ranges of
these inputs are different, hence the inputs are normalized
into the range of 0 to 1 as follow:

P =
Pdesired − Pmin

Pmax − Pmin
,ω =

ωdesired − ωmin

ωmax − ωmin
, (8)

where Pdesired and ωdesired are vectors that describe the de-
sired end-effector’s position and orientation in the Cartesian
space, respectively. Pmin, Pmax, ωmin, ωmax are vectors that
describe the “min” and “max” values for the end-effector
position and orientation, they are obtained from the training
set. Figure 3.(bottom) shows the histogram of the error at
each joint after learning the inverse model.

Fig. 3: Inverse model neural network, two hidden layers with
25 neurons each layer, one input layer with 6 input neurons
and one output layer with 4 output neurons (top). Histograms
of the error of inverse kinematics based on the neural network
representation (bottom).

IV. SENSORY SOFT GRIPPER

To compensate the end-effector error caused by the gener-
alization error of the neural network, we divide the reaching
task into two subtasks: the first task uses the inverse model
encoded by the neural network, while the second task relies
on the tactile feedback to correct the network error.

A. fabrication and sensory set-up

Sensory feedback are essential to interact with environ-
ment and to adapt the robot actions. In our previous work,
a sensory soft hand has been developed [9]. The hand can
be easily worn by the Nao humanoid robot. In the current
work, we include 12 capacitive sensors to provide tactile
information. Sensors are made of conductive fabric sewed
on cloth fabric, where we used conductive threads to connect
the conductive fabrics to the capacitive touch sensor breakout
“MPR121” which is connected to a Raspberry Pi board. The
board is connected to the robot by an Ethernet cable.

B. Tactile feedback

There are 12 capacitive sensors on the soft gripper, three
sensors per finger, see Fig. 1. When a conductive object
approaches the gripper, the capacitive sensors will be ac-
tivated based on the object position and the distance from
each sensor. We determine the center position of the object
(yc, zc) with respect to the center of the gripper using:

fy =

Ny�

i=1

fi , yc = f−1
y

Ny�

i=1

fi · yi, (9)

where fi is the normalized ith sensor reading. yi is the
position of ith sensor on y − axis. Ny is the number of
sensors positioned on y − axis. Figure 4 illustrates the



Fig. 4: The sensory gripper was subject to different stim-
ulations from the sensors side (top). Capacitive sensors
activations in yellow and the center of stimulation in red
(bottom).

capacitive sensors activation (in yellow), and the center
position of the stimulation (in red) during the interaction
with a human hand. We show three different situations:
a small force applied on a single sensor, more important
force applied on one sensor, and two forces applied on two
different sensors at the same time.

V. EXPERIMENTAL RESULTS

A. Reaching a point

We first tested the MLP neural network that modulate the
inverse kinematics in the V-REP simulator. This has been
done by creating two virtual cubes in the simulator, one in
white color and one in red.

Each of whose sides has four different “ArUco” markers
which create a distinctive pattern. Then we placed a fixed
camera 80 [cm] away from the NAO robot and 40 [cm] above
the ground. The red cube was rigidly attached to the robot’s
hand, and it was set to be invisible to the camera as we used
it only to measure the error during the experiment. For a
given position and orientation for the white cube in the 3D
space (identified by the camera), the MLP neural network
is presented in Sec. III provides the desired joint angles for
right arm to reach the cube. The initial joint angle θinit will
be substituted from desired joint angle θdesired to work out
the desired motion Δθdesired, which is required for each joint
to reach the goal, see Fig. 1. For each joint variation, the CPG
modulation parameters α× iinj will be calculated as in Fig.
2. Then, a CPG plateau pattern will be generated at each
joint to move the robot hand into the desired configuration.
The error of the neural network for encoding the inverse
kinematics are presented by the difference in the translations
and orientations between both cubes. Ideally, the white cube
is overlapped by the red cube. But due to the mechanical
limitation of the robot (non-redundant), it is not possible
to reach a point inside the workspace with any desired
orientation. Figure 5 shows several reaching experiments in
V-REP simulation and also on the real robot with the sensors

Fig. 5: Reaching test in simulation and real robot. Error
is measured in simulation by the distance between the two
cubes’ center points after the action.

soft gripper. The distance between the two cubes’ center
points is used to measure the magnitude of the error. We
made 30 reaching trials in simulation, the maximum error
was 2.13 [cm] and average error was 0.43 [cm].

B. Following a trajectory

This section introduces experiments for a predetermined
hand trajectories. In the first experiment, the robot hand has
to move along a straight line (15 [cm] length) with a fixed
orientation, see Fig. 6. The motor commands are generated
by the CPG model, all joints use “Plateau” pattern that
start and end simultaneously. The desired line trajectory is
represented by a sequence of points in the Cartesian space
(1 [cm] distance between each two successive points). One
CPG pattern was employed to move the hand from one point
to another. The hand trajectory and the joints angles are
presented in “red”. We repeated the same experiment while
updating the desired hand orientation after reaching each
point to match the current hand orientation. The resulting
trajectory was significantly improved, hand trajectory and
joints angles are represented in “green”, see Fig. 6. The end-
point errors for the red trajectory are 2 [cm] on Y-axis, 2.5
[cm] on X-axis, 5.5 [cm] on Z-axis. These errors are reduced
with the green trajectory being 0.3 [cm] on Y-axis, 0.1 [cm]
on X-axis, 1.5 [cm] on Z-axis.

In the third experiment, the robot hand moves with a fixed
orientation in a three-dimensional space along a square-shape
trajectory composed of 16 points, see Fig. 7. In every step,
the end-effector moves 1 [cm] on the given direction in
Cartesian space and in every 4 steps it changes the direction.
Due to the limited orientation of the hand in the workspace,
the performed trajectory is not perfectly matching the desired
one.



Fig. 6: Two simulation experiments show the end-effector
following a desired trajectory ”in blue”. The arm has to
move by 15 [cm] along the negative Y direction. In the
first experiment (trajectory A presented in red), the desired
end-effector configurations ωx, ωy, ωz, Px, Pz are constant
along the trajectory (we used starting point configurations),
only the desired Py is varying. This results in a larger error
compared to the second experiment (trajectory B presented
in green), where the desired orientation parameters ωx, ωy,
ωz are updated after each action to match the new end-
effector orientation. The starting joints’ configurations of
right arm are as follow: ShoulderPitch 15◦, ShoulderRoll 0◦,
ElbowYaw 0◦, ElbowRoll 45◦, WristYaw 0◦.

C. Tactile servoing

The presented reaching experiments show that the neural
network model provide the joint angles that move the robot
hand to the target position with a deviation error. The
usage of a sensory feedback is therefore essential to correct
the reaching error in the three-dimensional space. Figure 8
demonstrates the tactile servoing with the MLP model for
inverse kinematics. When the hand is placed on the soft
gripper, the sensors on the soft gripper will be activated.
The center of stimulation is then calculated as in (9). The
coordination of this center will be translated into a translation
vector in the end-effector space. The translation vector is
provided to the inverse kinematics MLP network to find out
the corresponding motion pattern that will be generated by

Fig. 7: The end-effector moves along a 4 [cm] × 4 [cm]
square shape in X-Y plane (Left → Forward → Right →
Backward) with fixed orientation in Cartesian space. The
starting configurations of the right arm are ShoulderPitch
45◦, ShoulderRoll 0◦, ElbowYaw 100◦, ElbowRoll 45◦,
WristYaw 0◦.

the CPG to move the hand in the same direction of the
tactile stimulation. Figure 8 demonstrates tactile servoing
movement in three directions: up, right and left. It is worth
mentioning that if the object moves along the servoing and it
is no longer stimulating the hand sensors, another reaching
action will be executed based on the new object position with
respect to the camera view. In addition, a trajectory planning
algorithm cam be added on gthe top of the current grasping
model.

D. Grasping a cube

We demonstrate a grasping task of a cube in the 3D
space.The cube is within the robot’s workspace and has
conductive layers covered by ArUco markers at each side.
First, the position and the orientation of the cube in the
space were detected by the camera. These information are
then provided to the neural network which works out the
CPG patterns to reach the cube. Once the arm reaches its
final position, the tactile feedback is used to reduce the
reaching error with a servoing action that follows the center
of stimulation. Once, the cube is near the center of the
soft gripper (in a range of 1 [cm] from each side), the air
pumps will start to inflate into the soft gripper and grasp
the object. Figure 9 demonstrates the three phases (reaching,
tactile servoing, and grasping) for two experiments.



Fig. 8: Three different stimulations for tactile servoing.
Stimulations from upside, right side, and left side. Two CPG
actions are shown in each servoing.

VI. CONCLUSION

We presented a framework for grasping in the three-
dimensional work space based on the combination of a
learned inverse kinematic model and tactile feedback. Dis-
crete CPG patterns are generated and modulated at the joint
level. The framework does not require a manual calibration
and it works without the robot kinematics configuration.
Tactile feedback from a sensory soft hand is used to align
the object with the hand before grasping. Several simulations
and experiments were carried out on the NAO humanoid
robot. The results showed successful reaching and grasping
attempts with an acceptable error range. Compared with the
traditional inverse kinematics model obtained by mathemat-
ical analysis of the robot structure, this model approximated
by the neural network has advantages, such as fast com-
putation, independency from the robot dimension, and no
requirement for a manual camera calibration. The inverse
kinematic model of the arm was learned by a feed-forward
neural network through motor babbling of CPG patterns. The
sensory soft hand has the advantage of soft interaction, it also
compensates the generalization error of the neural network
through a tactile servoing phase before grasping.

Fig. 9: Two robotic experiments show three phases: reaching,
tactile servoing, and grasping. In reaching phase, a single
CPG pattern is required at each joint. In servoing phase, a
sequence of three patterns per joint is presented.
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