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Abstract

This research demonstrates the usefulness of visual flow field information for the robotic
navigation task of heading direction estimation. Egomotion parameters are directly com-
puted on the basis of normalized normal flow fields derived from image sequences. Advan-
tages over the traditional half-plane approach constitute the computation of unique minima
and the applicability over a larger motion state space. At the same time the method pre-
serves the desired properties of robustness towards statistical and systematic errors as well
as real-time processing capability. The performance 1s evaluated with synthetic as well as
real image sequences.




1 Introduction

The perception and control of motion has long been an exciting interdisciplinary field of research.
It draws on many fields including psychology, biology, computer science and engineering [1]. The
perception of motion may be separated into three categories: First, the movement of objects
relative to the stationary observer, second, the movement of the observer relative to the sta-
tionary scene, and third, the independent motion of the observer relative to the moving objects
in the scene. Clearly, the third category is the most general one and its solution would include
the first two categories as special cases. The ambitious goal pursued during the 1980s was to
develop such a general purpose motion module. However, the unsatisfactory performance of a
plethora of algorithms has led some researchers to rethink the role of motion vision.

It has been postulated that vision should be looked at from a purposive point of view [2,
3, 4]. This branch of motion research develops a repertoire of visual algorithms that enables
the computation of partial information in a simple way from partial measurements. People
sometimes criticize such algorithms because they are ”incomplete” and ”qualitative”. Some
robotic engineers however have come to prefer simple but fast and working systems. Not seldom
they are influenced by biological navigation experts such as the bee and the fly [5, 6]. It has been
postulated that biological vision systems utilize different strategies for the mentioned different
motion categories also related to different tasks currently of interest to the insect [7, 8]. In
context of active computer vision, Fermiiller also distinguished between the first two separate
categories by giving two algorithmic strategies [9] rather than viewing them in the global context
of the third category.

Here we are interested in a fast and robust solution to the second situation, especially for
the application in real-time robotic tasks. We develop a model for the recovery of the heading
direction of a camera in motion that is important in mobile robot applications and hand-eye
coordination tasks of stationary robots. We distinguish between 1. the robot heading direction
(RHD) estimation and 2. the camera heading direction (CHD) estimation. No doubt: the RHD
estimation is important. On one hand it may be more or less precisely available via the encoder
readings of the robot motors. On the other hand if the CHD is known we may transform this to
the robot coordinate system to yield the RHD (more or less precisely). What is the motivation
to estimate the CHD first? Besides the possible subsequent estimation of the RHD, the CHD
estimation is justified by serving at least two further purposes: the estimation of relative depth
(structure, distance, time-to-contact) and the independent motion detection (segmentation and
estimation). Both applications may build upon the CHD computation. The exclusive processing
in the camera measurement space is highly preferred since otherwise erroneous transformations
(camera calibration) become necessary. The CHD estimation can therefore be viewed as only an
intermediate step towards important tasks related to the survival of the systems, i.e. breaking
in time or obstacle avoidance.

We derive the dynamic information via visual flow field analysis. We allow the camera motion
to be purely translational. The scene independent rotational motion may be available via gyro
sensors. We follow a qualitative approach in that we only use the normalized normal flow vectors
as input to the estimation process and avoid the intermediate optical flow field estimation.

The paper is organized as follows: Section 2 reviews relevant equations for motion processing.
In section 3 we develop the cost function. The behavior of the algorithm in the context of several
error cases is investigated in section 4. Section 5 provides insight into the performance of the
algorithm in real imagery situations and we conclude with a summary and future work in section

6.



2 Review on motion processing

The goal of this module is to provide estimates on egomotion (direction of translation) in the
case of a stationary scene. We first look at the geometry and then show how the flow fields are
being derived from the images.

2.1 Differential geometry

When objects move in front of the camera or the camera moves through the environment, then
corresponding changes are induced in the images. A relative motion between camera and object
motion is registered in the images. According to a classical result in the kinematic theory every
rigid body motion may be decomposed into six components (Fig. 1).
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Figure 1: Tmaging geometry of the object point (z°) — image point (z') as well as of the object
velocity (v°) — image velocity (') transformation; the motion parameters ¢ and w are indicated.
Optical axis - image plane intersection point = (0,0, f)~.

The 2D motion field on the image plane due to the 3D relative motion between the observer
and the scene separated into translation and rotation terms is given by the motion equations

[10]:
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During flow field analysis, our system operates in a pure translational mode, i.e., w = (0,0,0)7.
The equations then simplify to:
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with (zf,y7)" as the egomotion parameters to be estimated by this module. They describe the
direction of translation, i.e., the intersection of the vector originating in the camera nodal point
with the infinite plane containing the image plane. In the pure translation case, all motion field
vectors originate at this location [11] and it is commonly called the focus of exzpansion (FOE).

2.2 Normal flow fields

Differential methods of flow field computation in general provide qualitative measures which can
be exploited for robot navigation tasks. Only the speed perpendicular to a moving edge, i.e.,

the normal component u” can be recovered exactly. With n = ﬁ, the projection of u onto
the gradient direction n may be expressed in terms of the spatiotemporal derivatives
1 1
w=(u-n)-n=— ’ 4
i = (ww)n Igw(]y) g
with a magnitude of ||u"| = WA 14 is the normal flow field, i.e., the optical flow [11]
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along the gradient direction.

Figure 2: The aperture problem.

projected onto the direction of the intensity gradient. This field can be quickly computed and
we will therefore base our analysis on the use of this normal flow field. It approximates the
geometrically given normal motion field for the case of large spatial intensity gradients [12]:

1 dl

H—H@HIWE—O- (5)
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Note that the formulation of the normal flow field originates in the constancy of object

intensity. This so-called ”brightness constancy” (BC) is typically violated for non-lambertian

surfaces, apparent motion situations due to reflecting surfaces and camera gain variations be-
tween successive frames.



3 Cost function

3.1 General formulation

The starting point are Eqns.(3). One may consider a two-dimensional egomotion state e :=
(zf,yf). This € along with the scalar field ¢ := Zo(;fyy,) (scaled depth field) yields a vector field
(motion field) »* = (v}, v})" on the (z',') image plane (Fig. 1); that is, (¢, () is mapped to v’
with Eqns.(3).

The inverse problem is treated, namely, to find (e, () from v'. It is specifically explicated
as follows: First, the normal flow field »" is estimated from the spatio—temporal derivatives
(I,,1,,1,) of the intensity image I(z',y",t) (see Eq. (4)). Its normalized version is denoted by
n". Second, a necessary condition for a good v'(e,() is that it has a positive scalar product
(v'(€,¢) - n*) (half plane constraint).

Traditionally, voting mechanisms have been proposed for solving for the FOE by intersecting
the half planes corresponding to various confident normal flow vectors (Fig. 3) [12]. It has been
argued that this can be done in real-time.
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(a) Step function depending on op- (b) Intersection of half planes corre-
tical flow vector deviation angle a. sponding to selected normal flow vec-
Dark areas indicate angles for vectors tors. Dark area indicates the region
pointing into the half plane contain- containing the FOE.
ing the FOE.

Figure 3: Utilizing the half plane constraint.

In the following, we propose an advantageous convergent algorithm for computing the FOE.
In order to motivate our approach we argue that the positive scalar product can be used for a
heuristic search procedure as follows:

1. Pick prospective (zf, y/)T location.

2. V image points (2',y")
if (v(¢,() n*) <0 ERROR=ERROR+1
else SUCCESS=SUCCESS+1

3. Evaluate the FOE choice on the basis of ERROR

4. Goto 1 or Exit

As an improvement, the positive scalar product can also be formalized with the angle a
between v'(e, () and n*, the cosine and signum functions as follows

sgn (cosa) > 0, (6)



As opposed to the discrete matching we propose to use the continuous criterion
cos a is maximal. (7)

This enables us to convert the undesired search into a minimization task of a cost function. This
is equivalent to

5(1 —cosa) is minimal and positive. (8)
and by multiplying with [|2’]]
%(HﬁiH — |lv'|l cosa) is minimal and positive. (9)
The term in the above equation is expressed using a scalar product
5 (126 Ol = (e, ¢) ) (10)

i.e. the projection of the optical flow direction onto the normalized normal flow vector. The
above function of (¢,() is denoted as the elementary cost measure for a pixel location z'

e 7 1 7 7 2
e, ¢ 2) = 5 (26, Ol = (e, ¢) - %)) - (11)
In order to obtain a global estimation of (e, (), we first propose to minimize the sum of the
elementary cost measures

C'(e,Q) =Y C(e, ¢, ). (12)

3.2 Normalization

The costs C'¢ contribute to C” depending on the angle between the motion field vector v’ and
its projection onto the normal flow direction n". More precisely, the vector length (magnitude)
difference however is computed. Besides the desired dependence on the angle a;, the magnitude
difference involves a dependence on the absolute vector magnitude: for the same angle, higher
magnitudes contribute a higher portion to the error measure. In order to eliminate this property,
we propose the normalized version of C' as the final cost C.

1 1 e i
0(674)=§Z<m0 (GC,&))- (13)
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3.3 Detailed formulation
From Eq. (11) and Eq. (13) we obtain

Cle,z') =53, (1 - %) (16)

with £ = (2" — 2 y' — y/)T, ie. alinear function of the FOE variables / and y/. A side effect
of the normalization is the achievement of environmental invariance (independence of depth).




4 Error analysis

4.1 Error measure

For the evaluation of the developed algorithm a suitable error measure was needed. Although
the FOE constitutes a location on the image plane it seems appropriate to measure the deviation
angle between true and estimated translation direction. This angle ¢ is given by

§ = L@ ,2))
2t 2t
= L8] Y (17)
f f
_ 2z
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4.2 Cost function evaluation

Here we present experiments with a Simon [13] simulator image sequence in order to illustrate
the quality of the cost functions. The synthetic sequence is computed by moving the camera
towards a static scene comprised of a single planar object. In order to introduce environmental
randomness the intensity distribution is chosen to be a superposition of gaussians with peaks at
random locations on the object plane. Intensity derivatives are computed analytically.

In the sequence considered here (Fig. 4a) the camera moves in direction of the center of the
first quadrant, i.e, to the top right. The FOE is at location zf = (—=25,25)", where (0,0)"
denotes the image center, x (y) is counted positive leftwards (upwards) and the image is of size
(100,100). The normal flow field (Fig. 4b) indicates a broad representation of vector orientations.
The dependence of flow vector magnitude on the distance from the FOE is clearly visible. The
cost plots C'(zf,y/) (Fig. 5) indicate the the FOE as the location with minimum error. In this
case it is found to within 1 pixel from the true location. The error surface does not introduce
any local minima, where optimization algorithms could get stuck. For further clarification we
plot the sign of the /- and y/- derivative of the error function in Fig. 6. We identify a single
line separating the positive and negative monotonic regions in both derivative images. We can
locate the FOE where the superposed lines of both images intersect (Fig. 6¢).

4.3 Statistical noise

The first experiment evaluates the sensitivity of the algorithm on statistical noise. Gaussian
noise of varying degree of variance and zero mean was added to the intensity derivatives I, I,
and [I,. This includes the various sources of statistical noise up to this processing stage, e.g.
intensity quantization errors or errors in discrete spatiotemporal derivative computation. The
signal to noise ratio is computed to be

Zimage pizels (|II‘| + |Iy| + |If|)
Zimage pixels (|Ig| + |Ig7| + |Itn|)

(18)

— = logy,

N

with I}, I7, I} as the additive gaussian noise components on the derivatives. Fig.7 presents the

results. We observe a breakpoint at log,, % =0 or % = 1. Hence, additive noise up to an

amount equivalent to the signal component is tolerable for error angles in heading direction of
6 =0.1,i.e. about 6 degrees.



N AT T
—_— ol N e N N U BT SO
‘('//;\(<'\'\’\K’\-\k(,‘,rA‘.,
4+ Nem = NN 48k e v 74,
\4§<\§<§\‘/‘:::(K‘t A aa
R A ARk aaaa x
o RSN Il
N A AR v vt by a e
x ,‘(v‘\'\'\A‘¢»?*«““ksgq<
\, «w\'\'\{_r\x/(“,<,+u~s‘
\\l\\,/’\/\/,x./,(.4~‘uw¢
PR R I T R
\?j//jl‘:*tl"‘l"‘ll‘l“’
P //jhl"”"ljk‘(‘\
= jZ;:// RS R RSN
\f L e Vll\‘S”‘/\,\'\
A VNS
/x M ///’\J/ s
/‘/1/ N \u N VRS
A DS -AE SYRNAN
apg s /[\u}
B AN NN é((

3
i
3N
<
“

S

~

-

(a) Camera view (Resolution 100x100). (b) Normal flow field (subsampled by 4).

Figure 4: The synthetic test sequence.
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zf,y7).
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(a) 3D cost function contour plot C(z’, y7). (b) 2D cost function contour plot C

Figure 5: The cost function surfaces. The cost function minimum is clearly visible and can be
exactly retrieved by gradient descent techniques.
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(a) Sign of the cost function x- (b) Sign of the cost function y- (c) Intersection indicates the
derivative. derivative. FOE location.

Figure 6: Sign of the cost function derivatives.

© | I | I I
2 T
+
- +
o
o
K e
0
+
- + +
o +
© e b b o
g GRS N T +T+ maEs
N ST
¥ + Fk
1) +
N + + +
K P =
o %m
g T T T T T T

S /N (Iloog 10)

Figure 7: Error in translation direction estimation é as a function of the signal to noise ratio £
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on the spatiotemporal intensity derivatives.



4.4 Direction of translation

This experiment checks the performance for different heading directions. Possible directions
on the half sphere corresponding to positive z values are parameterized in spherical coordinates
(Fig.8) by the elevation angle o bounded by [_7”, %] counting from the optical axis z the azimuth
angle B describing the rotation around the optical axis bounded by [_7”, %] counting from the
y-axis and the translation magnitude ||t||. The varying egomotion parameters are expressed in

.
/V Z
Figure 8: Convention for the spherical coordinate system angles (the poles lie on the z-axis):

elevation angle a rotates around the (-x)-axis with origin on the z-axis. The azimuth angle
rotates around the (-z)-axis with origin on the y-axis.

<«

cartesian coordinates as

t, = ||t||sinasin g
t, = ||t||sincacosp (19)
t. = |t|lcosa

For some |t]| and 3% < o < ¥ and 5* < 3 < § the ¢ error is plotted in Fig.9a. The high
frequency content is due to the specific underlying sequence. Clearly visible are breakdown
locations on the infinite image plane for FOE locations approximately % the image size outside
the image plane.

This result demonstrates a major improvement over the heuristic search procedure introduced
in section 3.1. Whereas conventional voting algorithms fail for FOIs outside the image region,
this algorithm reaches its breakpoint further outside the image. It also relates to findings by

Waxman [14] describing the benefits of large field of views.

4.5 Rotational noise

Although assuming translational motion in order to gain maximal information we expect remain-
ing rotational components. Aloimonos and Duric [15] investigated the effect of this systematic
noise on the extend of the voting region S due to rotational motion components. They have
shown that it depends on the angle between the direction of translation and the axis of rota-
tion as well as rotation-to-translation ratio. Here we provide the corresponding results for our
algorithm. Two experiments seem suitable.

4.5.1 Rotation axis

This experiment investigates the influence of the location of the rotation axis on the FOE

Wy Wy

T
estimation. Fig. 10 plots the error for varying directions of the rotation axis (“’” w—y) on
the half sphere. As the rotation axis deviates more and more from the translation axis, the
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(a) Error surface plotted for a 200x200 sup- (b) Distribution of measurements: homo-

port region. The center 100x100 region cor- geneous sampling on the half sphere corre-

responds to the image plane. sponding to positive z values projected onto
the image plane.

Figure 9: Error in translation direction estimation § as a function of the FOE location (a/, /).

vector magnitudes, i.e. the heading direction estimation errors, increase. Most important, no
singularity can be found in this smoothly varying vector field.

4.5.2 Rotation magnitude

Here, the influence of the rotation magnitude is tested. Fig. 11 illustrates the error with varying
magnitude due to a certain rotation. For small rotation components, we observe a linear increase
in estimation error. For high rotation magnitudes the error converges towards the maximum

error, i.e. & or 90 degrees.

5 Performance evaluation

5.1 Real imagery

Various real sequence evaluations have been completed to demonstrate the performance of the
algorithm. As examples we chose to use the benchmark NASA-Ames sequence (Fig.13a) !
as well a sequence recorded at Ilmenau using the mobile robot MILVA (Fig.12). The robot
(0.58m height, 0.69m width and 1m long) is an autonomous mobile platform with air tires.
During translational motion images are digitized and transferred to the on-board computer. For
our detailed investigations the images were downloaded to a host computer via Ethernet. For
the MILVA sequence (Fig. 14a). one image was shot every centimeter of robot motion. The

!This calibrated motion sequence was made public at the 1991 IEEE Workshop on Visual Motion.



Figure 10: Vector field description of error in translation direction estimation é as a function
of the location of the rotation axis intersecting the image plane. The vector origins specify
these intersection points. The vectors themselves indicate the offset in magnitude and direction
between the true FOI location and the estimated FOE location. The examples here is given for
lw|| = 0.01 and an FOE at (0,0)".
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Figure 11: Error in translation direction estimation é as a function of absolute value of rotation

|lw||. Three runs for different scenes are distinguished by different markers. Examples for
t=(0,0,100)7, & = 0.7 and § = —0.8.



Figure 12: The mobile robot MILVA.

spatiotemporal derivatives are computed by binomial filters. The normal flow fields were checked
for high confidence, i.e. very low and very high magnitude entries were marked non-confident.

5.2 Cost functions
5.2.1 Shape of the error function within image region

Of particular interest is the shape of the error function for real imagery cases. We demonstrate
results for the two sequences: the benchmark NASA-Ames sequence (Fig.13) and the MILVA
sequence (Fig. 14). In the (2/,y7)" - plane, C(e,2') is positive, has a single minimum and is
monotonically increasing with distance from the FOE. Accordingly, we determine the focus of
expansion (27, /)" with minimal cost C' by gradient descent (see section 5.3).

5.2.2 Cost function in larger areas

This examination demonstrates the shape of the error function also in areas outside the image
support region. We used an area of 9x9 images (Fig. 15). Overall we find that the shape of
the function is considerably influenced by the FOE’s location, the textural information and the
motion state. The error function rises symmetrically in all directions if the FOE lies at (0,0). For
the common case of off-centered translational motion, the available normal flow vector directions
are biased towards one direction. This results in a shape distortion with a shape symmetry axis
through (0,0)" and (2/,y7)". In all of our tested real sequences we observed only a single
minimum.

5.3 Cost minimization by gradient descent

In principle, different methods are suited for discovering the global minimum. It proved best to
use the Polak Ribiere conjugate gradient descent method [16, ch.10]. In this section we provide
insight into the performance of this minimization technique.
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(b) Normalized normal flow field (subsam-
pled by 9

~—

(c) 3D cost function contour plot C(z7, y7).

(d) 2D cost function contour plot C(z’,y7).

E) “%

(e) Sign of cost function x- (f) Sign of cost function y- (g) Intersection indicates the
derivative. derivative. FOE location.

Figure 13: The NASA-Ames real sequence.
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(b) Normalized normal flow field (subsam-
pled by 11).

(a) Image out of the sequence.

i

(d) 2D cost function contour plot C(z’,y7).

(e) Sign of cost function x- (f) Sign of cost function y- (g) Intersection indicates the
derivative. derivative. FOE location.

Figure 14: The MILVA real sequence.
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(a) 3D cost function contour plot C(«f, y¥) (b) 3D cost function contour plot C(«f, y¥)
of the NASA sequence. of the MILVA sequence.

Figure 15: Ixtended cost function surfaces: The cost was computed for FOE locations
(45Nt < ol < 45N —4 5N < y/ < 4.5N7°“*) with N°'* as the number of columns
in the image, N"°%* as the number of rows in the image and with the origin at the image center.
Hence, a 9x9 image region was computed for prospective FOFE locations. The cost functions still
are monotonically decreasing. The global minima are clearly visible and can be exactly retrieved
by gradient descent techniques.
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5.3.1 Dependence on starting point

Does the starting point (gradient descent initialization) influence the performance? One image
out of every sequence is selected and every 10th pixel location is used as a starting point for
gradient descent. In Fig. 16 the angle between the estimated FOL of the gradient descent and
the minimum of the error function (compare Eq. (17)) is presented. For the NASA sequence no
false estimations occur. For the MILVA sequence the algorithm has difficulties at some starting
points in long distances from the minimum despite the fact that only one minimum exists.
Overall, the success is based on the shape of the error function and the termination criterion.
From the shape of the cost functions (see section 5.2.2) and the results here we conclude that it

(a) Angle for the NASA sequence. (b) Angle for the MILVA sequence.

Figure 16: Angle between the estimated FOLE of the gradient descent and the minimum of the
error function for different starting points.

is best to commence the gradient descent at (0,0)7.

5.3.2 Number of iterations

Fig. 17 shows the number of iterations required. The absolute value depends on the value of
the termination criterion. It is therefore not of too much interest. Nevertheless, the iteration
count is very low overall. Interesting is the distribution of the iteration count. It remains almost
constant for the varying starting points considered.

5.4 Tracking FOE through time

The tracking of the FOE over time indicates the robustness of our approach. We calculated
the error functions of 10 successive images and plotted the minima onto an image out of each
sequence (I'ig. 18). Because of our real image shooting conditions in a real environment, all
potential error influences accumulate. Nevertheless the MILVA sequence displays an almost
constant FOE for the sequence. For the NASA-Ames sequence the true FOE is known to be
at (25,32). The gradient descent determined the minimum around (26,34) hence a deviation of
about 2 pixels for the complete sequence.
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(a) Iterations for the NASA sequence. (b) Iterations for the MILVA sequence.

Figure 17: Number of required iterations for different starting points.

(a) Image of the NASA sequence. (b) Image of the original MILVA sequence.

Figure 18: Tracking the FOLE through time in real sequences.



6 Conclusion

We have presented a robust and fast way to compute the camera heading direction. The al-
gorithm was extensively tested with synthetic as well as with real image sequences. The main
results are:

e The developed cost function exhibits only single minima in all sequences tested. The
function is of monotonic shape for large viewing angles.

e Statistical noise equal to the signal value is tolerable for the achievement of a few degrees of
arc accuracy in heading direction estimation. Cutting [17] showed that humans require an
accuracy of about 1° of visual arc for the judgement of heading in order to avoid obstacles
successfully while running and driving.

o Heading directions with FOE’s outside the image region can be estimated reliably up until
a breakpoint location.

¢ Rotational noise continually degrades the estimation process; no singularities have been
detected.

o Gradient descent performance indicates real-time capability and a definite FOE initializa-
tion suggestion at (0,0)7.

The beneficial characteristics of this approach are that only the direction of normal flow vec-
tors are used as input (qualitative information) and no assumptions about the scene are made
(environmental invariance).

The good results listed in section 4.4 suggest future experiments towards tiling the image and
computing relative FOE’s for each (possibly overlapping) subimage. This segmentation could
then allow for the coarse detection of independently moving objects in the scene. The results of
the FOE estimation process will be further used to compute depth maps from ’'time-to-contact’
information derived from Eqns. (3) and (4) in order to allow for obstacle avoidance behavior.
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