
LINEAR AND QUADRATIC LOCAL MODELS FOR ICE-NETWORKS

Mark Schäfer and Werner Dilger

Chemnitz University of Technology
 09107 Chemnitz, Germany

{mark.schaefer, werner.dilger}@informatik.tu-chemnitz.de

ABSTRACT

ICE-Networks are hybrid Neural Networks that are
capable of fast initial learning and continuous learning,
They have been developed for predicting the development
of technical processes. ICE-Networks have a dynamic
structure, they are built up starting from empty networks
during the training process. This construction process is
continued as long as the network is in use thus the network
can yield an actual prognosis at any time.
 An ICE-Network is a layered network consisting of
four layers. The units of the first hidden layer are RBF-
neurons, called prototypes, and combine subsets of input
vectors into so called local models that are maintained in
the units of the second hidden layer. The type of the local
models can be predefined by the developer of the ICE-
Network, they can be linear or of higher order. In this
paper the preciseness of the prognosis made by linear and
quadratic models and the efficiency of computing those
models are compared.

1. INTRODUCTION

ICE-Networks were developed by M. Tagscherer in his
PhD thesis [6]. The purpose of ICE-Networks was to
predict the next few steps that will happen in a technical
process, represented by the values of certain parameters.
Therefore an ICE-Network should be used on-line as a
component of a control system and for the same reason it
should be capable of continuous learning in order to adapt
itself to the ongoing process.
 However, ICE-Networks can also be used off-line to
find a function for a given set of time dependent parameter
values that describe some unknown process. They adapt to
this function on the basis of local models which they
produce incrementally from the input values. The local
models are constructed and continuously restructured
during the training process until the whole set of local
models satisfies a certain quality criterion.
 In [6] (cf. also [3]) linear models are used, but the
question is raised whether higher types of models would
yield better results, i.e. adapt better to the underlying
function. The question is, how much better the results
would be and how this pays against the loss of efficiency.
In this paper we try to give an answer to the question. We

compared linear with quadratic models but did not deal
with higher order models because they would be too
inefficient. The result is that quadratic models are
considerably better than linear ones but need eight times
more computing time than those. This may be prohibitive
for on-line use of the ICE-Networks at present, however,
with ever faster processors it may soon come into reach.
 In the rest of the paper we describe the structure,
functioning and the training process of ICE-Networks
(section 2). We then define the basic measure for the
quality of local models that we use throughout the paper
(section 3). In the following two sections the computation
of the quality measure for the two types of models is
described. Finally in section 6 we sum up the results and
discuss some open problems.

2. ICE-NETWORKS

An ICE-Network is a layered Neural Network with four
layers. The units of the input layer are fully connected to
those of the first hidden layer. They deliver the whole
input vector to each unit of that layer. The units of the first
hidden layer are called prototypes. They are RBF-neurons
with Gaussian type activation function which has the
advantage over mostly used sigmoid type activation
functions that the adaptation of the units has only local
side effects (cf. [5]). The purpose of the prototypes is to
combine the input vectors of a certain receptive field into a
local model. For this end a group of prototypes is
connected to exactly one unit in the second hidden layer.
The units of this layer are called local models. The
connections between the first and second hidden layer are
bidirectional so that each group of prototypes connected
with a certain local model can influence this unit and vice
versa. The purpose of a local model is to maintain a model
of the function to be adapted according to the input values
of the receptive field that is represented by its attached
prototypes. Finally the output layer consists of only one
unit that combines the local models into one global model.
Figure 1 shows the structure of the ICE-Network
 ICE-Networks can be considered as hybrid networks.
On the one hand they have the feature of self organizing
maps ([2]) with the dynamic construction of the network
during the training process. Similar approaches are the
Growing Cell Structures [1] and the Neural Gases [4].

.

. . .

. . .

Local models

Prototypes

Figure 1: Structure of an ICE-Network

 The learning process is supervised. At the beginning
of the training process the two hidden layers are empty.
With the first input vector a prototype and a local model
are generated. The position of the prototype is equal to the
input vector, the receptive field covers the whole domain
of input vectors, and the local model is a constant whose
value is equal to the expected target value for the
respective input. When additional vectors are fed into the
network it has to be decided if a new prototype must be
generated and added to one of the groups of prototypes
attached to a local model or if only one of the existing
prototypes has to be adapted to the new value. This
decision depends on the difference between the modeled
and the target function. If the difference is less than some
parameter α, only the prototype with the highest activation
is moved a bit in the direction of the input vector. If it is
greater than α, a new prototype is generated and added to
one of the groups. It depends on the position of the vector
in the input domain and on the receptive fields that have
been discriminated so far to which local model the new
prototype is added. In a beginning phase all new
prototypes are put together in one local model. This local
model is then no longer a constant value but some function
of the target values that have been seen so far. The type of
that function has been chosen before, in [6] it is a linear
one.
 In each step of the training process the receptive field
of the prototypes is adjusted. This is controlled by a
parameter λ. If two neighboring prototypes p1 and p2 have
overlapping receptive fields then the activation of p2 at the
position of p1 must not exceed λ. If it does, the receptive
field of p2 is reduced. This happens in most cases when a
new prototype is introduced. Figure 2 illustrates the
situation.

new
prototype

new
prototype

reduced
receptive fields

existing
local model

λ

Figure 2: Reduction of receptive fields

 When a new prototype is introduced it is checked
whether the activation values of the already existing
neighboring prototypes at the position of the new one is
greater than λ. If not, the local model of these prototypes
is split. This situation is illustrated in figure 2. New
separated local models are generated and all three models
are constant values equal to the respective target values,
cf. figure 3.

new
prototype

new local
models

reduced
receptive fieldsλ

new
models

Figure 3: Generation of new local models

 When additional prototypes are generated in the next
steps of the training process, the local models again
become linear, usually non-constant functions and adapt
better to the target function. A number of different steps
can be made that improve the adaptation, cf. [6].
 Tagscherer also made some experiments with higher
order local models. He showed that better results can be
obtained with such models but he did not make an
analytical investigation of this point.

3. QUALITY MEASURES FOR LOCAL
MODELS

In order to analyse the quality of different local models we
need a measure for the difference of two functions, namely
the function represented by the local models and the target
function. For this purpose the mean square difference
(MSD) of two functions f and g is defined as follows:
 Let f, g: ℜ n → ℜ be two functions. The mean square
difference of f and g in the lower and upper bounds (a1, a2,
…, an) and (e1, e2, …, en) (ei > ai for all i) MSDf,g is
defined as

∏ ∫ ∫ ∫
=

− −−=
n

i

e

a

e

a

e

a

nniigf

n

n

dxdxdxxxxfgaeMSD
1

1221
21

,

1

1

2

2

),,,()()(: KKK

0,: ff MSDMSD = (1)

 As was described in section 2, in the training process
of an ICE-Network local models are split whenever the
difference between the network prognosis and the target
function yy ˆ− becomes greater than α.. Thus after a

finite number of steps for time invariant functions it holds
α≤−∀)(ˆ)(xxx yy . Therefore in this case we can give

a simple estimation for the mean square difference:

)2(

)()(

),,,()()(

2

1

2

1

1

1
1221

21
,

1

1

2

2

α

α

=

⋅−−=

−−≤

∏∏

∏ ∫ ∫ ∫

==

−

=

−

n

i
ii

n

i
ii

n

i

e

a

e

a

e

a

nniigf

aeae

dxdxdxxxxfgaeMSD
n

n

KKK

 For the investigation of local models it is sufficient to
consider the difference function yyfd ˆ: −= , or, more

generally, the type of the difference function and its free
parameters. The value of the difference function is always
less than α and it can be shown that the MSD does not
depend on the integration bounds. The question is now
how the free parameters must be chosen such that the
value of the difference function stays within the interval
[−α;α] throughout the whole domain, which is defined as
[−1;1]n. The set of tuples that satisfy this condition forms
the parameter space Φ.
 In the following discussion of the quality of linear and
quadratic local models we do not use the mean square
difference directly because it compares only two given
functions. Rather we are interested in types of functions of
which we do not know the exact parameter values in
advance, therefore we can only compute the expectation
value of the mean square difference E(MSD) over all
possible realizations of the function type. To each function
type corresponds a point in the parameter space Φ and all
points are assumed to be equally likely.

4. LINEAR MODELS

A linear model is a linear function ℜ→ℜ= nŷ with

x'mx ⋅=)(ŷ . For the local models we set
iiy ρς =)(ˆ

for all i. Thus we have the following equation system

=

⋅

+
p

n
p
n

pp

n

n

m

m

m

ρ

ρ
ρ

ςςς

ςςς
ςςς

MM

L

MMOMM

L

L
2

1

1

2

1

21

22
2

2
1

11
2

1
1

1

1

1

 (3)

 For a satisfactory computation of a linear model p = n
+ 1 prototypes are sufficient. The equation system (3) has
to be solved with p = n + 1 each time when any prototypes
of the local model are to be modified.
 For one-dimensional target functions the difference
function is 0111)(axaxf d += . The function is of degree

2 and dimension 1, thus the parameter space is

ℜ×ℜ⊆Φ1
2 and it holds

[] αα ≤+⋅≤−−∈∀Φ∈∀ 0111
1
201 1;1),(axaxaa

 The parameter space is illustrated in figure 4.

a1

a0

−α

α −α

α

Figure 4: The parameter space 1
2Φ

 Since with higher order difference functions it
becomes more and more difficult to determine the
parameter space, we generally transform the difference
function in polar form and view it as a parameterized
function depending on x1 in the space (a0, a1). The borders
of the parameter space have the equation α=+ 011 axa .

For the representation with polar coordinates we need for
each angle δ0 the distance l(δ0) > 0 of the point of
intersection of a line through the origin with angle δ0 to
the a0-axis with the border of the parameter space.
Between a0, a1, and l(δ0) the following relation holds:

⋅=

)sin(

)cos(
)(

0

0
0

1

0

δ
δ

δl
a

a

From this we can compute the distance function as

)cos()sin(
)(

010
0 δδ

αδ
+

=
x

l

 Now the borders of the parameter space can be easily
determined by computing the minimum of x1. In order to
do this the derivation of the distance function is used:

2
010

0
0))cos()(sin(

)sin(
)('

δδ
δαδ

+
⋅

−=
x

l

This function has nowhere the value zero, therefore only
the borders x1 = −1 and x1 = 1 have to be considered. Thus

we get the region shown in figure 4. The probability
density in this space is constant, namely the reciprocal of
the area 22

1
α

. Therefore the expectation value

)(
df

MSDE is

2

1

1

011
2

011

)(
2

9

4

)(
2

1

2

1
)(

0

0

α

α

α

α

α

α

=

+⋅= ∫∫ ∫
−−

−

−−

dadadxaxaMSDE
a

a

fd

 For two-dimensional target functions the difference
function is

0112221),(axaxaxxf d ++= .

The parameterized equation of the border is

 α=++ 01122 axaxa (4)

Therefore for l(δ0,δ1) we have

⋅=

)cos(

)cos()sin(

)sin()cos(

1

10

10

2

1

0

δ
δδ
δδ

l

a

a

a
 (5)

From (4) and (5) we can compute

)sin()cos()cos()sin()cos(1011021 δδδδδ
α

++
=

xx
l (6)

From (6) the partial derivation with respect to x1 and x2
can be determined:

)sin()cos()cos()sin()cos(

)cos()sin(

1011021

10

1 δδδδδ
δδα
++

−=
∂
∂

xxx

l

)sin()cos()cos()sin()cos(

)cos(

1011021

1

2 δδδδδ
δα

++
−=

∂
∂

xxx

l

Again, as in the case of one-dimensional functions, both
functions do nowhere become zero, thus there exist no
local minima and it is sufficient to consider the border of
the region. In this case it is even sufficient to consider the
corners because on the other parts of the border the partial
derivations disappear. Figure 5 shows the parameter space.
Its volume is 3

3
4 α , hence the probability density 34

3
α

.

The expectation value of the mean square difference is

a1

a0

a2

1

-1

-1

1

Figure 5: The parameter space 2
3Φ

2

1

1

1

1

01212
2

01122

)()(
3

5

48

)(

4

1

4

3
)(

0

0

10

10

α

α

α

α

α

α

α

α

=

++

⋅=

∫ ∫

∫ ∫ ∫

− −

−

−

−−

−−

−−−

dadadadxdxaxaxa

MSDE
a

a

aa

aa

fd

 We omit the derivation of the expectation value for
three-dimensional functions. The result is

2

45

133α

5. QUADRATIC MODELS

A quadratic target function ŷ has the form

⋅

=

+++++
+++=

1

)(ˆ

1

2

2
1

1

11

2

12

1221111

2
2

2
222

2
112

n

n

n

n

nn

nn

x

x

x

x

m

m

m

m

m

mxmxmxm

xmxmxmy

M

M

M

M

K

Kx

This results in an equation system that corresponds to (3),
however with a (2n + 1) × (2n + 1) – matrix. A one-
dimensional difference function now has the form

0
2
1211: axaxafd ++=

In order to determine the parameter space the function is
transformed in polar form. The parameterized equation for
the border is

α=++ 011
2
12 axaxa

and we have

)sin()cos()cos()sin()cos(
),(

10110
2
11

10 δδδδδ
αδδ

++
=

xx
l

The derivation with respect to x1 is

)sin()cos()cos()sin()cos(

)cos()sin()cos(2(

10110
2
11

1010

1 δδδδδ
δδδα

++
+

−=
xx

x

dx

dl

This function has a minimum at)cos()sin(102
1

1 δδ−=x .

The volume of the parameter space can be determined
only numerically. The value is approximately 3.73313α3
and the expectation value is approximately 0.2429α2.
 For two-dimensional and three-dimensional target
functions we get by a similar computation for the
expectation value the values E(MSD) = 0.32691α2 and
E(MSD) = 0.6603α2 respectively.

6. RESULTS AND OPEN PROBLEMS

In the following table the results for the value E(MSD) in
the different cases are summarized.

E(MSD) one-dimen-
sional

two-dimen-
sional

three-dimen-
sional

linear 0.4444α2 9.6α2 2.9556α2

quadratic 0.2492α2 0.3269α2 0.6603α2

 Obviously quadratic models are considerably better
than linear ones. On the other hand, they require eight
times the computation time of linear models. This is an
important criterion for the investigation of time variant
functions but not for that of time invariant functions which
can be done off-line. However, it is not known how often
the computation has to be performed on the average so this
value does not tell us too much, it may be the case that in
practice the reqiured time is less than eight times.

 The approach we have made is well suited to compute
the approximation quality of linear and quadratic models.
However, if we try to compute this property for higher
order models or even completely other types of models we
get unbound parameter spaces for which the expectation
value for the mean square difference can not be computed.
For this kind of models a more general approach is
required.
 In our approach we have assumed that all instances of
a function type are equally likely. This need not be the
case. The probability values result from the training
process, therefore an empirical investigation or a more
precise analysis could lead to a refined assumption about
the values.

7. REFERENCES

[1] Fritzke, B., Growing cell structures – s self-organizing
network for unsupervised and supervised learning. Neural
Networks, 7(9): 1441 – 1460, 1994.

[2] Kohonen, T., Self-Organization and Associative
Memory 3, Springer Series in Information Sciences,
Springer, Heidelberg, 1989.

[3] Lewandowski, A., Tagscherer, M., Kindermann, L.,
Protzel, P., Improving the fit of locally weighted
regression models. Proc. of the Sixth Int. Conf. on Neural
Information Processing (ICONIP ’99), 371 – 374, Perth,
1999.

[4] Martinetz, T, Schulten, K., A neural-gas network
learns topologies. In Kohonen et al. (eds.): Proc. Int. Conf.
on Artificial Neural Networks, Espo, vol. 1, 397 – 402,
North-Holland, Amsterdam, 1991.

[5] Poggio, T., Girosi, F., Networks for Approximation
and Learning. Proc. of the IEEE, 78, 1481 – 1497, 1990.

[6] Tagscherer, M., Dynamische Neuronale
Netzarchitektur für Kontinuierliches Lernen. PhD thesis,
Chemnitz University of Technology (http://archiv.tu-
chemnitz.de/pub/2001/0072/data/tagscherer.pdf), 2000.

	Index
	ICONIP 2002
	SEAL 2002
	FSKD 2002
	Global Search

	ICONIP Home Page
	Conference Info
	Welcome Message
	About Singapore
	Venue
	Organized By
	Sponsors and Support
	Organizing Committee
	Program Committee
	Reviewers
	Support Team

	Sessions
	Tuesday, 19 November, 2002
	TueAmRm1-Neuroscience I
	TueAmRm2-Architectures I
	TueAmRm3-Architectures II
	TueAmRm4-Learning and Memory I
	TueAmRm5-Perception, Emotion, and Cognition I
	TueAmRm6-Vision and Auditory Models
	TueAmRm7-Learning Algorithms I
	TueAmRm13-Special Session on Neuroinformatics Researche ...
	TuePmRm1Ss1-Special Session on Anatomical Brain Imaging
	TuePmRm2Ss1-Architectures III
	TuePmRm3Ss1-Architectures IV
	TuePmRm4Ss1-Learning and Memory II
	TuePmRm5Ss1-Learning Algorithms II
	TuePmRm6Ss1-Neurodynamics and Spiking Neurons I
	TuePmRm7Ss1-Learning Algorithms III
	TuePmRm1Ss2-Special Session on Functional Brain Imaging
	TuePmRm2Ss2-Architectures V
	TuePmRm3Ss2-Learning Algorithms IV
	TuePmRm4Ss2-Learning Algorithms V
	TuePmRm5Ss2-Learning Algorithms VI
	TuePmRm6Ss2-Neurodynamics and Spiking Neurons II
	TuePmRm7Ss2-Special Session on Intelligent Systems in B ...
	TuePmRm13Ss2-Pattern Recognition I
	TuePmRm14Ss2-Face Recognition
	TuePmRm15Ss2-Vision and Robotics
	TuePmRm16Ss2-Speech and Natural Language Processing
	TuePmRm17Ss2-Biomedical Applications I
	TuePmRm18Ss2-Applications I
	TuePmRm23Ss2-Biomedical Applications II
	TuePmRm24Ss2-Applications II

	Wednesday, 20 November, 2002
	WedAmRm1-Special Session on Support Vector Machines and ...
	WedAmRm2-Self-Organizing Feature Maps and Vector Quanti ...
	WedAmRm3-Implementation of Neural Networks on Reconfigu ...
	WedAmRm4-Statistical Neural Network Models I
	WedAmRm5-Radial Basis Function Networks
	WedAmRm6-Support Vector Machines and Kernel Methods I
	WedAmRm7-Special Session on Complex-Valued Neural Netwo ...
	WedPmRm1Ss1-Special Session on Neural Networks for Cont ...
	WedPmRm2Ss1-Neuroscience II
	WedPmRm3Ss1-Special Session on Trends in Global Optimiz ...
	WedPmRm4Ss1-Special Session on Multi-Stability, Percept ...
	WedPmRm5Ss1-Perception, Emotion, and Cognition II
	WedPmRm6Ss1-Applications of Genetic Algorithms
	WedPmRm7Ss1-Cognitive Science
	WedPmRm1Ss2-Special Session on Neural Networks for Cont ...
	WedPmRm2Ss2-Self-Organizing Feature Maps and Vector Qua ...
	WedPmRm3Ss2-Hardware Implementation of Neural Networks
	WedPmRm4Ss2-Statistical Neural Network Models II
	WedPmRm5Ss2-Independent Component Analysis
	WedPmRm6Ss2-Support Vector Machines and Kernel Methods ...
	WedPmRm7Ss2-Reinforcement Learning I
	WedPmRm12Ss2-Special Session on Artificial Immune Syste ...
	WedPmRm13Ss2-Neuroscience III
	WedPmRm14Ss2-Neurobiology and Neurophysiology
	WedPmRm15Ss2-Learning and Memory III
	WedPmRm16Ss2-Neurodynamics and Spiking Neurons III
	WedPmRm17Ss2-Architectures VI
	WedPmRm18Ss2-Learning Algorithms VII
	WedPmRm23Ss2-Architectures VII

	Thursday, 21 November, 2002
	ThuAmPS1-Plenary: Harold Szu
	ThuAmRm1-Learning Algorithms VIII
	ThuAmRm2-Modeling with Neural Networks
	ThuAmRm3-Pattern Recognition II
	ThuAmRm4-Fuzzy Neural Systems
	ThuAmRm5-Intelligent Control
	ThuAmRm6-Evolutionary Neural Systems
	ThuAmRm7-Data Mining
	ThuAmRm12-Symbolic-Neural Hybrid Systems
	ThuPmRm1Ss1-Special Session on Neuroinformatics Researc ...
	ThuPmRm2Ss1-Biomedical Applications III
	ThuPmRm3Ss1-Pattern Recognition III
	ThuPmRm4Ss1-Robotics
	ThuPmRm5Ss1-Computer Vision
	ThuPmRm6Ss1-Time-Series Prediction
	ThuPmRm7Ss1-Signal Processing
	ThuPmRm12Ss1-Natural Language Processing
	ThuPmRm1Ss2-Bioinformatics
	ThuPmRm2Ss2-Biomedical Applications IV
	ThuPmRm3Ss2-Applications III
	ThuPmRm4Ss2-Finance and Electronic Commerce
	ThuPmRm5Ss2-Special Session on Neural Networks for Time ...
	ThuPmRm6Ss2-Speech Recognition
	ThuPmRm7Ss2-Image Processing
	ThuPmRm12Ss2-Handwriting and Fingerprint Recognition
	ThuPmRm13Ss2-Statistical Neural Network Models III
	ThuPmRm14Ss2-Support Vector Machines and Kernel Methods ...
	ThuPmRm15Ss2-Self-Organizing Feature Maps and Vector Qu ...
	ThuPmRm16Ss2-Reinforcement Learning II
	ThuPmRm17Ss2-Pattern Recognition IV
	ThuPmRm18Ss2-Learning Algorithms IX

	Papers not Presented
	NAP-ICONIP-Papers not Presented

	Keynote Speech
	Panel Discussions
	Plenary Speech

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1. NATURAL NEURAL SYSTEMS
	1.1 Neuroscience
	1.2 Neurobiology
	1.3 Neurophysiology
	1.4 Brain imaging
	1.5 Learning and memory
	1.6 Other
	2. NEURAL NETWORK MODELS
	2.1 Learning algorithms
	2.2 Neural network architectures
	2.3 Neurodynamics and spiking neuron
	2.4 Statistical neural network models
	2.5 Other
	3. COGNITIVE SCIENCE
	3.1 Learning and memory
	3.2 Neurobiological systems
	3.3 Perception, emotion, and cognition
	3.4 Selective attention
	3.5 Vision and auditory models
	3.6 Other
	4. HYBRID SYSTEMS
	4.1 Evolutionary neural systems
	4.2 Fuzzy neural systems
	4.3 Symbolic-neural hybrid systems
	4.4 Other
	5. HARDWARE IMPLEMENTATION
	5.1 Analog, digital, and hybrid neuro-chips
	5.2 Artificial retina and cochlear chips
	5.3 DSP and software implementaion
	5.4 Other
	6. APPLICATIONS
	6.1 Computer vision
	6.2 Data mining
	6.3 Expert system
	6.4 Finance and electronic commerce
	6.5 Human-computer interaction
	6.6 Intelligent control
	6.7 Natural language processing
	6.8 Pattern recognition
	6.9 Robotics
	6.10 Sensorimotor systems
	6.11 Signal processing
	6.12 Speech recognition
	6.13 Time series prediction
	6.14 Other
	7. Other ICONIP'02 topic
	2. Trends in Global Optimization
	3. Connectionist intelligent system in bioinformatics
	6. Multi-stability, perceptual ambiguity, and the brain
	7. Support vector machines and kernel methods
	8. Neural networks for time series predictions
	10. Complex-valued Neural Networks
	11. Brain Imaging
	14. Neural networks for optimization
	15. Neuroinformatics Researches in Asian and Pan-Pacifi ...
	16. Neural Networks for Control Applications
	17. Artificial Immune Systems and Their Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mark Schaefer
	Werner Dilger

