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ABSTRACT 

ICE-Networks are hybrid Neural Networks that are 
capable of fast initial learning and continuous learning, 
They have been developed for predicting the development 
of technical processes. ICE-Networks have a dynamic 
structure, they are built up starting from empty networks 
during the training process. This construction process is 
continued as long as the network is in use thus the network 
can yield an actual prognosis at any time. 
 An ICE-Network is a layered network consisting of 
four layers. The units of the first hidden layer are RBF-
neurons, called prototypes, and combine subsets of input 
vectors into so called local models that are maintained in 
the units of the second hidden layer. The type of the local 
models can be predefined by the developer of the ICE-
Network, they can be linear or of higher order. In this 
paper the preciseness of the prognosis made by linear and 
quadratic models and the efficiency of computing those 
models are compared. 

1. INTRODUCTION 

ICE-Networks were developed by M. Tagscherer in his 
PhD thesis [6]. The purpose of ICE-Networks was to 
predict the next few steps that will happen in a technical 
process, represented by the values of certain parameters. 
Therefore an ICE-Network should be used on-line as a 
component of a control system and for the same reason it 
should be capable of continuous learning in order to adapt 
itself to the ongoing process. 
 However, ICE-Networks can also be used off-line to 
find a function for a given set of time dependent parameter 
values that describe some unknown process. They adapt to 
this function on the basis of local models which they 
produce incrementally from the input values. The local 
models are constructed and continuously restructured 
during the training process until the whole set of local 
models satisfies a certain quality criterion. 
 In [6] (cf. also [3]) linear models are used, but the 
question is raised whether higher types of models would 
yield better results, i.e. adapt better to the underlying 
function. The question is, how much better the results 
would be and how this pays against the loss of efficiency. 
In this paper we try to give an answer to the question. We 

compared linear with quadratic models but did not deal 
with higher order models because they would be too 
inefficient. The result is that quadratic models are 
considerably better than linear ones but need eight times 
more computing time than those. This may be prohibitive 
for on-line use of the ICE-Networks at present, however, 
with ever faster processors it may soon come into reach. 
 In the rest of the paper we describe the structure, 
functioning and the training process of ICE-Networks 
(section 2). We then define the basic measure for the 
quality of local models that we use throughout the paper 
(section 3). In the following two sections the computation 
of the quality measure for the two types of models is 
described. Finally in section 6 we sum up the results and 
discuss some open problems. 

2. ICE-NETWORKS 

An ICE-Network is a layered Neural Network with four 
layers. The units of the input layer are fully connected to 
those of the first hidden layer. They deliver the whole 
input vector to each unit of that layer. The units of the first 
hidden layer are called prototypes. They are RBF-neurons 
with Gaussian type activation function which has the 
advantage over mostly used sigmoid type activation 
functions that the adaptation of the units has only local 
side effects (cf. [5]). The purpose of the prototypes is to 
combine the input vectors of a certain receptive field into a 
local model. For this end a group of prototypes is 
connected to exactly one unit in the second hidden layer. 
The units of this layer are called local models. The 
connections between the first and second hidden layer are 
bidirectional so that each group of prototypes connected 
with a certain local model can influence this unit and vice 
versa. The purpose of a local model is to maintain a model 
of the function to be adapted according to the input values 
of the receptive field that is represented by its attached 
prototypes. Finally the output layer consists of only one 
unit that combines the local models into one global model. 
Figure 1 shows the structure of the ICE-Network 
 ICE-Networks can be considered as hybrid networks. 
On the one hand they have the feature of self organizing 
maps ([2]) with the dynamic construction of the network 
during the training process. Similar approaches are the 
Growing Cell Structures [1] and the Neural Gases [4]. 
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Figure 1: Structure of an ICE-Network 

 The learning process is supervised. At the beginning 
of the training process the two hidden layers are empty. 
With the first input vector a prototype and a local model 
are generated. The position of the prototype is equal to the 
input vector, the receptive field covers the whole domain 
of input vectors, and the local model is a constant whose 
value is equal to the expected target value for the 
respective input. When additional vectors are fed into the 
network it has to be decided if a new prototype must be 
generated and added to one of the groups of prototypes 
attached to a local model or if only one of the existing 
prototypes has to be adapted to the new value. This 
decision depends on the difference between the modeled 
and the target function. If the difference is less than some 
parameter α, only the prototype with the highest activation 
is moved a bit in the direction of the input vector. If it is 
greater than α, a new prototype is generated and added to 
one of the groups. It depends on the position of the vector 
in the input domain and on the receptive fields that have 
been discriminated so far to which local model the new 
prototype is added. In a beginning phase all new 
prototypes are put together in one local model. This local 
model is then no longer a constant value but some function 
of the target values that have been seen so far. The type of 
that function has been chosen before, in [6] it is a linear 
one. 
 In each step of the training process the receptive field 
of the prototypes is adjusted. This is controlled by a 
parameter λ. If two neighboring prototypes p1 and p2 have 
overlapping receptive fields then the activation of p2 at the 
position of p1 must not exceed λ. If it does, the receptive 
field of p2 is reduced. This happens in most cases when a 
new prototype is introduced. Figure 2 illustrates the 
situation. 
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Figure 2: Reduction of receptive fields 

 When a new prototype is introduced it is checked 
whether the activation values of the already existing 
neighboring prototypes at the position of the new one is 
greater than λ. If not, the local model of these prototypes 
is split. This situation is illustrated in figure 2. New 
separated local models are generated and all three models 
are constant values equal to the respective target values, 
cf. figure 3. 
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Figure 3: Generation of new local models 

 When additional prototypes are generated in the next 
steps of the training process, the local models again 
become linear, usually non-constant functions and adapt 
better to the target function. A number of different steps 
can be made that improve the adaptation, cf. [6]. 
 Tagscherer also made some experiments with higher 
order local models. He showed that better results can be 
obtained with such models but he did not make an 
analytical investigation of this point. 

3. QUALITY MEASURES FOR LOCAL 
MODELS 

In order to analyse the quality of different local models we 
need a measure for the difference of two functions, namely 
the function represented by the local models and the target 
function. For this purpose the mean square difference 
(MSD) of two functions f and g is defined as follows: 
 Let f, g: ℜ n → ℜ  be two functions. The mean square 
difference of f and g in the lower and upper bounds (a1, a2, 
…, an) and (e1, e2, …, en) (ei > ai for all i) MSDf,g is 
defined as 
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 As was described in section 2, in the training process 
of an ICE-Network local models are split whenever the 
difference between the network prognosis and the target 
function yy ˆ−  becomes greater than α.. Thus after a 

finite number of steps for time invariant functions it holds 
α≤−∀ )(ˆ)( xxx yy . Therefore in this case we can give 

a simple estimation for the mean square difference: 
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 For the investigation of local models it is sufficient to 
consider the difference function yyfd ˆ: −= , or, more 

generally, the type of the difference function and its free 
parameters. The value of the difference function is always 
less than α and it can be shown that the MSD does not 
depend on the integration bounds. The question is now 
how the free parameters must be chosen such that the 
value of the difference function stays within the interval 
[−α;α] throughout the whole domain, which is defined as 
[−1;1]n. The set of tuples that satisfy this condition forms 
the parameter space Φ. 
 In the following discussion of the quality of linear and 
quadratic local models we do not use the mean square 
difference directly because it compares only two given 
functions. Rather we are interested in types of functions of 
which we do not know the exact parameter values in 
advance, therefore we can only compute the expectation 
value of the mean square difference E(MSD) over all 
possible realizations of the function type. To each function 
type corresponds a point in the parameter space Φ and all 
points are assumed to be equally likely. 

4. LINEAR MODELS 

A linear model is a linear function ℜ→ℜ= nŷ  with 

x'mx ⋅=)(ŷ . For the local models we set 
iiy ρς =)(ˆ  

for all i. Thus we have the following equation system 
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 For a satisfactory computation of a linear model p = n 
+ 1 prototypes are sufficient. The equation system (3) has 
to be solved with p = n + 1 each time when any prototypes 
of the local model are to be modified. 
 For one-dimensional target functions the difference 
function is 0111 )( axaxf d += . The function is of degree 

2 and dimension 1, thus the parameter space is 

ℜ×ℜ⊆Φ1
2  and it holds 

[ ] αα ≤+⋅≤−−∈∀Φ∈∀ 0111
1
201 1;1),( axaxaa  

 The parameter space is illustrated in figure 4. 
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Figure 4: The parameter space 1
2Φ  

 Since with higher order difference functions it 
becomes more and more difficult to determine the 
parameter space, we generally transform the difference 
function in polar form and view it as a parameterized 
function depending on x1 in the space (a0, a1). The borders 
of the parameter space have the equation α=+ 011 axa . 

For the representation with polar coordinates we need for 
each angle δ0 the distance l(δ0) > 0 of the point of 
intersection of a line through the origin with angle δ0 to 
the a0-axis with the border of the parameter space. 
Between a0, a1, and l(δ0) the following relation holds: 
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From this we can compute the distance function as 
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 Now the borders of the parameter space can be easily 
determined by computing the minimum of x1. In order to 
do this the derivation of the distance function is used: 
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This function has nowhere the value zero, therefore only 
the borders x1 = −1 and x1 = 1 have to be considered. Thus 



 

we get the region shown in figure 4. The probability 
density in this space is constant, namely the reciprocal of 
the area 22
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 For two-dimensional target functions the difference 
function is 

0112221 ),( axaxaxxf d ++= . 

The parameterized equation of the border is 

 α=++ 01122 axaxa  (4) 

Therefore for l(δ0,δ1) we have 
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From (4) and (5) we can compute 
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From (6) the partial derivation with respect to x1 and x2 
can be determined: 
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Again, as in the case of one-dimensional functions, both 
functions do nowhere become zero, thus there exist no 
local minima and it is sufficient to consider the border of 
the region. In this case it is even sufficient to consider the 
corners because on the other parts of the border the partial 
derivations disappear. Figure 5 shows the parameter space. 
Its volume is 3

3
4 α , hence the probability density 34

3
α

. 

The expectation value of the mean square difference is 
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Figure 5: The parameter space 2
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 We omit the derivation of the expectation value for 
three-dimensional functions. The result is 
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5. QUADRATIC MODELS 

A quadratic target function ŷ  has the form 
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This results in an equation system that corresponds to (3), 
however with a (2n + 1) × (2n + 1) – matrix. A one-
dimensional difference function now has the form 

0
2
1211: axaxafd ++=  



 

In order to determine the parameter space the function is 
transformed in polar form. The parameterized equation for 
the border is 
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2
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The volume of the parameter space can be determined 
only numerically. The value is approximately 3.73313α3 
and the expectation value is approximately 0.2429α2. 
 For two-dimensional and three-dimensional target 
functions we get by a similar computation for the 
expectation value the values E(MSD) = 0.32691α2 and 
E(MSD) = 0.6603α2 respectively. 

6. RESULTS AND OPEN PROBLEMS 

In the following table the results for the value E(MSD) in 
the different cases are summarized. 
 

E(MSD) one-dimen-
sional 

two-dimen-
sional 

three-dimen-
sional 

linear 0.4444α2 9.6α2 2.9556α2 

quadratic 0.2492α2 0.3269α2 0.6603α2 

 Obviously quadratic models are considerably better 
than linear ones. On the other  hand, they require eight 
times the computation time of linear models. This is an 
important criterion for the investigation of time variant 
functions but not for that of time invariant functions which 
can be done off-line. However, it is not known how often 
the computation has to be performed on the average so this 
value does not tell us too much, it may be the case that in 
practice the reqiured time is less than eight times. 

 The approach we have made is well suited to compute 
the approximation quality of linear and quadratic models. 
However, if we try to compute this property for higher 
order models or even completely other types of models we 
get unbound parameter spaces for which the expectation 
value for the mean square difference can not be computed. 
For this kind of models a more general approach is 
required. 
 In our approach we have assumed that all instances of 
a function type are equally likely. This need not be the 
case. The probability values result from the training 
process, therefore an empirical investigation or a more 
precise analysis could lead to a refined assumption about 
the values. 
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