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Introduction

Reinforcement learning (RL, Sutton and Barto (1998)) is an
important learning method used since decades in many control
problems, including robotics, to map states into actions, in order to
maximize the amount of reward received on the long-term.
Non-linear approximators such as deep neural networks suffer
from highly temporally correlated training samples and
non-stationary objective functions, which are inherent to RL.
Mnih et al. (2015) proposed a solution to this problem by
introducing:

1 an experience replay memory, where episodes are stored and
randomly fed in mini-batches to the neural network

2 target networks to increase the stationarity of the objective function.
This forms a Deep Q-network which is able to learn multiple Atari
games.
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Deep Q-network (Mnih et al., 2015)
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Continuous control

End-to-end deep RL approaches
called policy gradient methods allow
to directly learn continuous policies
from high dimensional state spaces.
Deep Deterministic Policy Gradient
methods (DDPG, Silver et al., 2014;
Lillicrap et al., 2015) are actor-critic
architectures, where:

the actor generates a deterministic
policy µθ(s).
the critic evaluates an action by
estimating its Q-value.

However, the sample complexity of
DDPG is high.
→ need for parallel asynchronous
learning.

Figure taken from Sutton and Barto (1998), http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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The agent-environment interface

The agent and the environment interact at discrete time steps: t=0,
1, ...
The agent observes its state at time t: st ∈ S
It produces an action at time t, depending on the available actions
in the current state: at ∈ A(st)

It receives a reward according to this action at time t+1: rt+1 ∈ <
It updates its state: st+1 ∈ S
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Policies

The policy is defined as a mapping of the state space into the
action space:

a stochastic policy πθ : S → P(A) defines the probability distribution
P(A) of performing an action.
a deterministic policy µθ(st) is a discrete mapping of S → A.

θ ∈ <n is a vector of parameters defining the policy, typically the
weights of a neural network when using function approximators.
The policy can be used to explore the environment and generate
trajectories of states, rewards and actions.
The performance of a policy is determined by calculating the
expected discounted return, i.e. the sum of all rewards received
from time step t onwards:

Rt =
∞∑
k=0

γk rt+k+1

where 0 < γ < 1 is the discount rate and rt+1 represents the reward
obtained during the transition from st to st+1.
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Q-value of an action

The Q-value of an action a is defined as the expected discounted
reward if the agent takes a from a state s and follows the policy
distribution πθ thereafter:

Qπθ (s, a) = Eπθ (Rt|st = s, at = a)
The goal of the agent is to find the optimal policy maximizing the
expected return from every state.
Value-based methods (such as DQN) achieve that goal by
estimating the Q-value of each state-action pair.
The Q-values can be approximated by a deep neural network, by
minimizing the quadratic error between the predicted Q-value
Qπθ (s, a) and an estimation of the real expected return Rt after that
action:

L(θ) = Eπθ [rt + γQπθ (st+1, at+1)− Qπθ (st, at)]
2
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Policy gradient methods

Policy gradient methods directly learn to produce the policy
(stochastic or not).
The goal of the neural network is to maximize an objective function

J(θ) = Eπθ (Rt)

The stochastic policy gradient theorem (Sutton et al., 1999)
provides a useful estimate of the gradient that should be given to
the neural network:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Q
πθ (s, a)]

A second neural network can be used to learn to approximate the
Q-value. Such algorithms are called actor-critic architectures, as
the actor learns to produce a policy πθ based on the state alone,
while the critic learns to evaluate the Q-value of an action and
sends this value to the actor to improve the policy.
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Deep deterministic policy gradient - DDPG

The actor learns a deterministic policy
at = µθ(st).
The critic learns the Q-value Qµθ (st, at).
The critic is trained using Q-learning:

L(θQ) = E[rt + γQ′(st+1, µ
′(st+1))− Q(st, at)]

2

The actor is trained using the deterministic
policy gradient theorem:

∇θJ(θ) ≈ Eπθ [∇θQ(s, a|θ)|s=st,a=µθ(st)]

= Eπθ [∇aQπθ (s, a)|s=st,a=µθ(st) ×∇θµθ(s)|s=st ]

Lillicrap, T., Hunt, J., Pritzel, A., et al. (2015). Continuous control with deep reinforcement learning. CoRR.
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Deep deterministic policy gradient - DDPG

DDPG requires a lot of samples to converge.
Mnih et al. (2016) introduced asynchronously parallel actor-critic
algorithms (A3C) to speed up training.
Different threads explore the environment in parallel while writing
weight updates asynchronously to a single master network.
They showed that if the threads have different exploration rates,
one can use HogWild! weight updates.

Mnih, V., Badia, A., Mirza, M., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. In Proc. ICML.
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Simulated robotic arm

We designed a simple robotic arm with 2
DOF.
It is control by two continuous variables θ1
and θ2 for the two joints.
The goal of the agent is to bring the endpoint
to a randomly positioned target.
Some background noise has been added to
the image.
The input to the system is the raw image.
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Architecture of the network
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Learning procedure
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Algorithm for one thread

while t < 1000 do
Execute action at according to policy µ(st) + εN
Receive reward rt+1 and observe new state st+1

Compute Rt =

{
rt+1 + γ · Q′(st+1, µ

′(st+1)) if not terminal
rt+1 otherwise.

Store (st, at,Rt) in buffer
if t mod 5 == 0 then

Update critic: L(θQ) =
5∑

i=1
(Ri − Q(si, ai)]

2

Update actor: ∇θµJ(θµ) =
5∑

i=1
∇µ(si)Q(si, µ(si)))×∇θµµ(si)

Update target critic: θQ′ ← τθQ + (1− τ)θQ′

Update target actor: θµ′ ← τθµ + (1− τ)θµ′

Empty buffer
end if

end while
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Activation in the convolutional layers

The background noise is progressively eliminated in the second
convolutional layer.
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Examples of successful and unsuccessful trajectories

Unsuccessful trajectories are mainly due to a wrong estimation of
the internal state by the internal model.
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Experimental results

Table: Experimental results

Experiment Amount of successful episodes
without background 57 %
without background, noise added 77.3 %
with background 55 %
only one convolutional layer 38 %
no convolutional layers 27 %
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Discussion

We proposed to extend the deep deterministic policy gradient
algorithm (Lillicrap et al., 2015) with asynchronous parallel learners
(Mnih et al., 2016) to allow end-to-end learning in continuous action
spaces from raw pixels.
We applied this novel algorithm to a simplified continuous control
task, with a simulated 2-DOF robotic arm and showed that it is able
to achieve a satisfying performance.
We also further reduced the sample complexity of the algorithm by
pretraining an internal model whose role is to transform images
into abstract representations.
The algorithm therefore combines a model-free actor-critic
architecture with a model-based internal model.
However, analysis of failed trials shows that wrong state
estimations by the internal model are the main source of failure in
our setup.
Future work will address improving the state representation
needed by the actor-critic: intermediate representations could
improve the performance of the algorithm.
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