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Abstract

Recent advances in deep reinforcement learning methods have attracted a lot of attention, because of

their ability to use raw signals such as video streams as inputs, instead of pre-processed state variables.

However, the most popular methods (value-based methods, e.g. deep Q-networks) focus on discrete

action spaces (e.g. the left/right buttons), while realistic robotic applications usually require a continuous

action space (for example the joint space). Policy gradient methods, such as stochastic policy gradient

or deep deterministic policy gradient, propose to overcome this problem by allowing continuous action

spaces. Despite their promises, they suffer from long training times as they need huge numbers of

interactions to converge. In this paper, we investigate in how far a recent asynchronously parallel actor-

critic approach, initially proposed to speed up discrete RL algorithms, could be used for the continuous

control of robotic arms. We demonstrate the capabilities of this end-to-end learning algorithm on a

simulated 2 DOF robotic arm and discuss its applications to more realistic scenarios.
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Chapter 1

Introduction

Reinforcement learning (RL, Sutton and Barto (1998)) is an important learning method used since

decades in many control problems, including robotics, to map states into actions, in order to maxi-

mize the amount of reward received on the long-term. This state-action mapping can even be performed

through function approximators such as neural networks. However, deep neural networks suffer from

highly temporally correlated training samples and non-stationary objective functions, which are inherent

to RL. This prevented the use of complex multidimensional state spaces such as raw images in deep RL

and limited its applicability to tasks where the sensors could be efficiently pre-processed and reduced

to a limited number of states. Mnih et al. (2015) proposed a solution to this problem by introducing an

experience replay memory, where episodes are stored and randomly fed in mini-batches to the neural

network, as well as the use of target networks to increase the stationarity of the objective function. This

Deep Q Network (DQN) was applied on a series of Atari 2600 games and managed to learn success-

fully efficient strategies with pixels as inputs and discrete actions as policy. However, DQN can only

be applied to problems with discrete action spaces (DAC), such as pressing left or right buttons, or ini-

tiating complex motor primitives. For control problems requiring continuous action spaces (CAS, for

example the joint space of robotic arms), discretizing the action space does not work well, as a fine-

grained discretization of outputs would require an excessive amount of exploration (Zhang et al., 2015).

Alternatively, deep networks can be used as a submodule of the complete system: Levine et al. (2016)

for example used a deep network that predicts the probabilities of success of grasping attempts. This

probability is then used by a separate control algorithm to generate the optimal action.

End-to-end deep RL approaches called policy gradient methods have recently received a lot of at-

tention since they allow to directly learn continuous policies from high dimensional state spaces. One

major issue being ensuring a sufficient level of exploration during learning, these methods either focus

on learning stochastic policies (Heess et al., 2015), which are by definition able to explore different

actions during learning, or on learning deterministic policies, but exploring using a separate behavior

(e.g. deep deterministic policy gradient - DDPG (Silver et al., 2014; Lillicrap et al., 2015)). Although

policy gradient methods have been successfully applied to the control of robotic arms, they require huge

amounts of training data to converge (sample complexity). A simple but expensive solution is to use

multiple robots exploring in parallel and sharing asynchronously their experiences in a common pool,

which is then used to train a single neural network (Levine et al., 2016; Gu et al., 2017). Multiplying

robots reduces the acquisition time, but does not impact the learning properties.

In the discrete domain, Mnih et al. (2016) introduced the idea of using multiple parallel learners
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sharing their acquired knowledge, not just experiences, with each other. Their asynchronous advantage

actor-critic (A3C) algorithm has been shown to be both superior in performance and in training time

to the classical DQN algorithms on a variety of tasks. In this paper, we combine the idea of multiple

parallel learners of Mnih et al. (2016) with the DDPG algorithm of Lillicrap et al. (2015) to form a new

asynchronously parallel continuous control learning algorithm. Additionally, the sample complexity

of the algorithm is further reduced by pre-training an internal model of the effector. We apply it to a

simple reaching task with a simulated 2 DOF robotic arm, using raw pixels as inputs and joint angles as

continuous outputs, and discuss its applicability to more complex problems.
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Chapter 2

Related work

2.1 Background in deep RL

Reinforcement learning problems are modeled as Markov Decision Processes (MDP), with a state space

S, an action space A, a transition dynamics model with density p(st+1|st, at) and a reward function

r(st, at) : S × A → <. The policy is defined as a mapping of the state space into the action space:

a stochastic policy πθ : S → P (A) defines the probability distribution P (A) of performing an action,

while a deterministic policy µθ(st) is a discrete mapping of S → A. θ ∈ <n is a vector of parameters

defining the policy, typically the weights of a neural network when using function approximators.

The policy can be used to explore the environment and generate trajectories of states, rewards and

actions. The performance of a policy is determined by calculating the expected discounted return, i.e.

the sum of all rewards received from time step t onwards: Rt =
∑∞

k=0 γ
k rt+k+1, where 0 < γ < 1

is the discount rate and rt+1 represents the reward obtained during the transition from st to st+1. The

Q-value of an action a is defined as the expected discounted reward if the agent takes a from a state s

and follows the policy distribution πθ thereafter:

Qπθ(s, a) = Eπθ(Rt|st = s, at = a) (2.1)

The goal of the agent is to find the optimal policy maximizing the expected return from every state.

Value-based methods (such as DQN) achieve that goal by estimating the Q-value of each state-action

pair. Discrete algorithms transform these Q-values into a stochastic policy by sampling from a Gibbs

distribution (softmax) to obtain the probability of choosing an action. The Q-values can be approximated

by a deep neural network, by minimizing the quadratic error between the predicted Q-value Qπθ(s, a)

and an estimation of the real expected return Rt after that action:

L(θ) = Eπθ [rt + γQπθ(st+1, at+1)−Qπθ(st, at)]2 (2.2)

Policy gradient methods directly learn to produce the policy (stochastic or not). The goal of the

neural network is to maximize an objective function J(θ) = Eπθ(Rt). The stochastic policy gradient

theorem (Sutton et al., 1999) provides a useful estimate of the gradient that should be given to the neural

network:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Q
πθ(s, a)] (2.3)
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2.2 Continuous action spaces

Eq. 2.3 depends on the unknown Q-value Qπθ(s, a), as policy gradient methods only output the policy

πθ. Qπθ(s, a) could be approximated by the actual return Rt after that action, leading to the REIN-

FORCE learning rule (Williams, 1992), widely used in deep RL. Another option is to use a second

neural network to learn to approximate the Q-value, similarly to Eq. 2.2. Such algorithms are called

actor-critic architectures, as the actor learns to produce a policy πθ based on the state alone, while the

critic learns to evaluate the Q-value of an action and sends this value to the actor to improve the policy.

The deterministic policy gradient (DPG) method proposed by Silver et al. (2014) is an example

of such an actor-critic architecture. The main novelty is that the actor produces a deterministic policy

µθ(st), what reduces the sample complexity and improves the training time. Exploration is ensured by

using an off-policy strategy, i.e. the actions actually taken are chosen by a behavioral stochastic policy,

different from the learned policy. Silver et al. (2014) derived the deterministic policy gradient theorem

allowing the deterministic actor to learn in this framework:

∇θJ(θ) ≈ Eπθ [∇θQ(s, a|θ)|s=st,a=µθ(st)]

= Eπθ [∇aQ
πθ(s, a)|s=st,a=µθ(st) ×∇θµθ(s)|s=st ] (2.4)

Lillicrap et al. (2015) were able to use deep networks with the DPG architecture. The resulting deep

deterministic policy gradient (DDPG) algorithm is model-free, as it simply follows the gradient of the Q-

values, and thus can be applied independently from the systems dynamics. DDPG has been successfully

applied to a huge variety of continuous control problems, including learning from raw pixels, and beats

state-of-the-art performance on many of them.

2.3 Asynchronous methods

A rather practical problem originates from how the sample data is presented during the learning phase.

The straightforward way would be to immediately process the sample data as it arrives from the simu-

lated environment. However, robotics environments induce strong correlations between samples that are

temporally close to each other, since a robot might behave very similarly in close situations. This means

that the variance of the trained estimator will be very high, negatively affecting the training performance

of the deep network. A standard method to reduce sample correlation is experience replay, where one

basically stores each sample in a buffer for a while and then randomly samples from the buffer to in-

crease the variability of the training data, at the cost of slowing down the learning process. This is the

approach chosen by Lillicrap et al. (2015) for the DDPG algorithm.

Another way to effectively overcome the problem of data correlation is to execute multiple instances

of the environment in parallel, by simultaneously running several simulations or even using many sim-

ilar real robots (Levine et al., 2016; Gu et al., 2017). Mnih et al. (2016) has shown that this idea is not

only able to replace classical experience replay, but even outperforms its benefits. The diversity of the

sample data produced by the threads executed in parallel can be further increased by chosing different

exploration rates and starting conditions for the threads. Each thread independently uses an online learn-

ing method to compute updates of the network weights, which have to be synchronized during training.
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By weighting the updates with a relatively small learning rate and accumulating some updates before

synchronization, one can reduce the risk to override changes from other threads and thus use a lock-free

algorithm such as Hogwild! (Niu et al., 2011). The resulting algorithm, asynchronous advantage actor-

critic (A3C), can replicate or even improve state-of-the-art performance on many different experiments

while learning much faster.
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Chapter 3

Methods

3.1 Simulated robotic arm

As a proof of concept, we chose to control a simulated arm with multiple degrees of freedom, where the

gripper of the robotic arm, which is basically the end point of the last arm segment, should be guided to

reach a target. The original idea stems from the OpenAI Reacher problem 1 and has been reproduced in

essence using matplotlib for licensing reasons. Our experiments for this paper restrict to the 2D space

and only use two arm segments with two degrees of freedom. The input to the network is a 84x84

grayscale image (an example can be seen on Fig. 4.1-A) and its outputs control changes of the two joint

angles with continuous values. The generated images include a white dotted background to make the

vision task more difficult. Important parts in the image such as the segments of the arm and the target

are displayed as bright spots in the images and correspond to a high activation of the networks input

neurons.

3.2 Architecture

The actor-critic architecture of our algorithm is partially based on the A3C algorithm (Mnih et al.,

2016). As the algorithm should work on raw pixels, the first layers of both the actor and the critic

are convolutional, but without pooling as the spatial information is critical for the task here. It proved

difficult to directly train the complete network as convolutional layers need many samples to converge.

We settled for a hybrid approach, where the convolutional layers were first trained to reproduce the

physical states in a supervised manner, which consist of the arm segments angles and the target position

(4 variables in our simulated task). After training, the internal model can predict the physical state for

a given image, which is then used as an input for the actor and the critic. The complete architecture is

depicted in Fig. 3.1.

The internal model uses two convolutional layers: the first convolutional layer has 8 filters and a

kernel size of 4x4, whereas the second one has 32 filters with a kernel size of 6x6. The two following

fully connected layers extract information about the physical states of the arm and the target position:

they are composed of rectified linear units with 90 and 50 neurons respectively. The output layer consists

of 4 neurons with hyperbolic activation functions to model the physical states.
1https://gym.openai.com/envs/Reacher-v1
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Figure 3.1: Architecture of the complete network model. The internal model transforms the visual
information into a physical state representation. The actor outputs an action sampled from the continuous
action space for a given state. The critic receives state and generated action as input and outputs the
action value.
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The actor network is used to predict an action, which is a two-dimensional vector in our setup,

defining the two components of the desired angular motion for the first and the second segment of

the arm respectively. Per iteration each arm segment can be maximally moved by 2 degrees in either

direction, whereby the actions are scaled to the interval [−1, 1]. The output layer has only two neurons

with a hyperbolic activation function. Both hidden layers of the actor model consist of 200 rectified

linear units. The critic has only one linear output neuron, which represents the Q-value for the combined

two-dimensional movement vector passed into the network. An action chosen from the continuous

action space is seen as a transition from one position of the gripper to another. All hidden layers of the

critic consist of 200 rectified linear units.

3.3 Learning procedure

The learning procedure is organized into episodes, where the initial arm position and the target position

are randomly selected at the beginning. At each time step, the input image is fed into the internal

model, which outputs a prediction of the state variables st. It is then fed into the actor, which outputs

a continuous action µ(st). The selected action is the sum of this action and of a random variable taken

from an Ornstein Uhlenbeck process (µ = 0, θ = 0.3 and σ = 0.4). This additive noise encourages

exploration, as the learned policy is deterministic.

The critic Q with weights θQ can be trained with classical Q-learning (as in Eq. 2.2). After each

action, the expected return is approximated with Rt = rt + γQ′(st+1, µ
′(st+1)). This target value for

the critic is then saved in a buffer together with the state st and the action at, as the neural network is

trained in minibatches of 5 steps. The critic network is used to directly approximate the action value

function Q(s, a). We will however need its gradient w.r.t the action when training the actor (see Eq.

2.4), but it can be easily obtained as the critic is implemented with tensorflow.

L(θQ) =
5∑
t=1

[rt + γQ′(st+1, µ
′(st+1))−Q(st, at)]

2 (3.1)

Equation 2.2 uses a Q-value prediction for the next state-action pair Qπθ(st+1, at+1) which depends

on the output of both the actor (for the next action) and the critic (for its Q-value). Since Mnih et al.

(2015), it is known that training stability can be improved by not using the current weights of the net-

works to perform this prediction, but those from an older version: the target network. Target networks

for both the actor µ′ and the critic Q′ are introduced and used to estimate the expected return Rt (Eq.

3.1). Contrary to the classical approach (Mnih et al., 2015), the target networks will not be updated after

a certain amount of training steps, but gradually replicate the changes made to the actor and critic, as in

Lillicrap et al. (2015):

θ′ ← τ θ + (1− τ) θ′ (3.2)

The update rate for the target networks is set to a relatively low value of τ = 0.001. Early experi-

ments showed that a higher update rate in combination with the continuous reward function would lead

to fast rising Q-values, which means very high output values from the critic and unstable learning. The

deterministic policy gradient algorithm of Lillicrap et al. (2015) is finally used to train the actor µ with

minibatches of 5 steps:
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∇θµJ(θµ) =
5∑
t=1

∇aQ(st, µ(st))×∇θµµ(st) (3.3)

Figure 3.2: Summary of the parallel learning process. A single thread pre-trains the internal model,
whereas 16 threads run the reinforcement learning based training for the actor and critic in parallel.
Actor and critic networks slowly update their respective target networks at each time step.

There are 16 parallel learners exploring the environment with different initial configurations, all

updating simultaneously the same actor and critic networks as in Mnih et al. (2016). Instead of having

an episode split into minibatches of 5 steps, what would generate highly correlated inputs, the networks

therefore receive small minibatches coming randomly from 16 uncorrelated environments. This could be

seen as a distributed experience replay memory and greatly improves the convergence of the networks.

Ideally, the parallel learners should update the networks after each step, but the risk of collision between

the threads would become too important. Fig. 3.2 summarizes the parallel execution of the algorithm.

3.4 Overview of the algorithm

The algorithm executed by each parallel learner during a single episode is described in Listing 3.1.

while t < 1000 do

Execute action at according to policy µ(st) + εN
Receive reward rt+1 and observe new state st+1

Compute Rt =

rt+1 + γ ·Q′(st+1, µ
′(st+1))if not terminal

rt+1 otherwise.

Store (st, at, Rt) in buffer

if t % 5 == 0 then

Update critic: L(θQ) =
5∑
i=1

(Ri −Q(si, ai)]
2

Update actor: ∇θµJ(θµ) =
5∑
i=1

∇µ(si)Q(si, µ(si)))×∇θµµ(si)

Update target critic: θQ′ ← τθQ + (1− τ)θQ′

Update target actor: θµ′ ← τθµ + (1− τ)θµ′
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Empty buffer

end if

end while

Listing 3.1: Algorithm for each actor learner per episode. The outer loop is broken when the target is

reached.

The algorithm has been implemented using the tensorflow library and has been simulated on a

shared-memory system with 16 cores and 8 Tesla K20m GPUs. The training of the internal model

works faster on the GPU, because larger batch sizes can be used and thus training can be more effec-

tively parallelized by tensorflow. The Adam learning rule is used (Kingma and Ba, 2014) to train all

networks, with a learning rate of 10−4 for the actor and critic networks, and 8 · 10−4 for the internal

model. As the network structure is very similar to Lillicrap et al. (2015), most of the weight initializa-

tion parameters and learning rates were preserved. To limit the increase of the Q-values during training,

an L2 regularization penalty (coefficient 0.02) is introduced for the weights to the output neuron of the

critic. A discount factor of 0.97 is used, as episodes last maximally 1000 steps.

3.5 Reward function

The environment returns a reward for each executed action, consisting of two parts: a distance-related

part and a control part. To effectively control the gripper, one would like to reward actions getting the

gripper closer to the target as fast as possible. The distance-related part provides reward based on the

distance between the gripper and the target: rdist = e−|xgripper−xtarget|. If we only use this reward, a

possible strategy for the algorithm is to circle around the target until the end of the episode, without

reaching it: this way it gathers as much reward as possible, as experimentally observed. So we added

a control term rctrl = |xgripper−old − xtarget| − |xgripper − xtarget| which rewards the algorithm if the

arm endpoint is closer from the target after the action than before, and punishes it otherwise. The total

reward is the product of these two terms r = rctrl · rdist and is normalized to the interval [−1, 1]. When

rdist falls below 0.1, which is sufficiently small as both axes of the simulated environment reach from

-1 to 1, the episode is considered as terminated.
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Chapter 4

Results

For each experiment, we used 2,500,000 samples to train the internal model and 1,200,000 iterations for

the asynchronous reinforcement learning algorithm. Evaluation was then conducted over 500 episodes

with random starting conditions and the percentage of successful episodes was monitored. An episode is

considered successful, when the gripper reaches the target within 1000 iterations. One important point

besides proving that the network architecture in general is able to solve the designed robotic problem

was to investigate the influence of the convolutional layers on the performance of the model. There-

fore, we performed the whole learning and evaluation process for two different environments, with or

without background noise in the image. Furthermore, we tested one internal model with the last convo-

lutional layer replaced by a fully connected layer with 200 rectified linear units and another with both

convolutional layers replaced by feed-forward layers consisting of 200 rectified linear units each.

Figure 4.1: A: Physical states of the robot arm in the two-dimensional space with two degrees of free-
dom. B: Output of one neuron of the first convolutional layer. C: Output of one neuron of the second
convolutional layer selective for the target position.

Experiments showed, that the usage of convolutional layers effectively eliminates background noise

such as the white spots spread in the image. The performance during evaluation only slightly decreased

by 2 % from 57% to 55%, when adding the background noise. Figure 4.1-C illustrates this, as the

background noise disappears in the second convolutional layer. The figure also shows the ability of

convolutional layers to extract only relevant information from the image like the target position and thus

adapt to the specific task. In contrast, the performance substantially decreases, when no convolutional

layers (by 30%) or only one (by 19%) is used. This confirms the importance of convolutions to process

12



visual input.

Figure 4.2: Movement of the gripper for two successful episodes (top row) and two failed attempts
(bottom row). The brighter the color of a point, the later the gripper was at that position during the
episode.

The best performance of 77.3% was reached when the actions generated from the actor during eval-

uation were not directly executed, but additional noise sampled from an Ornstein Uhlenbeck process

was added as during training, see Tab. 4. Analysis of the videos showed that most of the unsuccess-

ful episodes failed because of the inaccurate identification of the physical states by the internal model,

which means that the arm reaches for a target with a relatively small offset from the real target. Fig-

ure 4.2 illustrates the problem. The reinforcement learning process on the real physical states however

reaches a high success rate over 90%.

Table 4.1: Experimental results
Experiment Amount of successful episodes
without background 57 %
without background, noise added 77.3 %
with background 55 %
only one convolutional layer 38 %
no convolutional layers 27 %

Videos showing a random selection of 50 successful episodes and 5 failed episodes can be found on

Youtube1. The unsuccessful episodes last much longer, because they exploit all possible 1000 iterations

and thus less are recorded. The simulated arm with its two segments is shown in its random starting

position together with the position of the target. All movements of the arm are shown, which either

lead to the successful end of an episode as the gripper reaches the target or a failed episode, when the

gripper does not reach the target after 1000 iterations. The videos consist of screenshots taken from
1https://youtu.be/PTdfxGde69s and https://youtu.be/u8aMe6M9jMI
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the environment at regular intervals. Both are generated from an actor trained on environments without

background and with two convolutional layers. There is no random noise added during evaluation.
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Chapter 5

Discussion

We proposed to extend the deep deterministic policy gradient algorithm (Lillicrap et al., 2015) with

asynchronous parallel learners (Mnih et al., 2016) to allow end-to-end learning in continuous action

spaces from raw pixels. We applied this novel algorithm to a simplified continuous control task, with a

simulated 2-DOF robotic arm and showed that it is able to achieve a satisfying performance. We also

further reduced the sample complexity of the algorithm by pretraining an internal model whose role is

to transform images into abstract representations. The algorithm therefore combines a model-free actor-

critic architecture with a model-based internal model, what could prove beneficial for problems where

such models can be learned. However, analysis of failed trials shows that wrong state estimations by

the internal model are the main source of failure in our setup. Future work will address improving the

state representation needed by the actor-critic: the four variables used here may represent a too strong

bottleneck for the architecture and intermediate representations could improve the performance of the

algorithm.
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