Navigation

Inhalt Hotkeys

Maschinelles Lernen

Machine learning

Vorlesung: Montag, 17:15 - 18:45, 1/305 (Dr. J. Vitay)
Übung: Mittwoch, 09:15 - 10:45, 1/B202 (R. Larisch)
Übung: Mittwoch, 15:30 - 17:00, 1/B202 (Dr. M. Teichmann)
Übung: Freitag, 11:30 - 13:00, 1/B202 (Dr. M. Teichmann)

General Information

Prerequisites: Modules in Mathematics I to IV, basic knowledge in Python.

Exam: written examination (90 minutes), 5 credit points.

Contact: julien dot vitay at informatik dot tu-chemnitz dot de.

Language: English. The exam can of course be done in German.

Exercises: start in the week of 15.10. You need to ask for a Linux account at FRIZ (B202), different from your URZ account, before the start of the first exercise. Register at this address on OPAL and to retrieve our password in the B202 during the opening hours.

Content

The course will present an introduction to the research field of Machine Learning, including Supervised Learning, Deep Learning and Reinforcement Learning. The different algorithms presented during the lectures will be studied in more details during the exercises, through implementations in Python.

The plan of the course is:

  1. Supervised learning
    1. Linear algorithms (regression, classification, softmax, maximum likelihood)
    2. Learning Theory (cross-validation, VC dimension, feature space)
    3. Neural Networks (MLP, regularization)
    4. Support vector machines (maximum margin classifier, kernel trick)
    5. Deep Learning (CNN, GAN)
    6. Recurrent neural networks (LSTM, GRU)
  2. Reinforcement Learning
    1. Formal definition of the RL-Problem (Markov Decision Processes)
    2. Dynamic Programming, Monte Carlo Methods
    3. Temporal Difference Learning (TD, Q-learning), Eligibility traces
    4. Deep Reinforcement learning (DQN, A3C, DDPG)

Literature

FAQ

  • How do I register for the course?
    You don't. There is no OPAL or anything, just show up to the lectures/exercises and register for the exam in December.
  • How do I register for the exam?
    Registration on SBService happens in December. Only registered students can participate to the exam.
  • I cannot assist to the exercises. Can I take the exam anyway?
    Yes. The exercises are there to help you understand the concepts seen in the lectures and get practical experience with machine learning tools. But they are not obligatory for the exam.
  • Do I have to memorize all these equations?
    No, but to understand them, which is basically the same.

Slides for the lectures

Chapter 01 - Introduction (pdf)
Chapter 02 - Linear learning machines (pdf)
Chapter 03 - Learning theory (pdf)

Exercises

To use Jupyter notebooks in the B202, follow these guidelines (pdf).

Exercise 01 - Introduction to Python and NumPy. (questions )

Presseartikel

  • Neurologisch vernetzt

    Das Smart Start-Programm ermöglicht Masterstudenten ab September einen Einblick in Labore in ganz Deutschland – Auch TU-Student Alex Schwarz profitiert davon …

  • Wissbegierige Schüler weiter auf Erfolgskurs

    Zwei von der TU betreute Gymnasiasten errangen am 29. März 2014 Fachgebietssiege beim sächsischen Landeswettbewerb "Jugend forscht" und lösten damit ihre Fahrkarten zum Bundesfinale …

  • „Natürlich intelligent.“

    Die größte Veranstaltung ihrer Art im deutschsprachigen Raum: Für die Neuauflage der Chemnitzer Linux-Tage am 16. und 17. März 2019 können bis zum 5. Januar Beiträge eingereicht werden …