Inhalt Hotkeys


Computer Vision - Image Understanding - Bildverstehen

Wintersemester 2017

Vorlesung: Montag, 15.30 - 17.00, 1/346, (Dr. J. Vitay)
Übung: Dienstag, 15.30 - 17.00, 1/B202, (A. Al Ali)
Übung: Donnerstag, 11.30 - 13.00, 1/B202, (A. Al Ali)

General Information

Prerequisites: Modules in Mathematics I to IV, basic knowledge in Python.

Exam: written examination (90 minutes), 5 credit points.

Contact: julien dot vitay at informatik dot tu-chemnitz dot de.

Language: English. The written exam can of course be done in German.

Note: there will be no retake exam in the summer semester.

Exam in WS 2017-18

Notes on how to prepare for the exam.

Consultation: Tuesday 27.02 13:45 - 15:15 1/305.

Exam: Friday 02.03 15:00 - 16:30; 1/201 for the Master ASE, 1/305 for the others.


The course is an introduction to computer vision, from basic image processing (filters, Fourier transformation) to more advanced algorithms (object recognition, movement, facial features extraction).

  1. Introduction
  2. Image formation
  3. Image processing
  4. Geometric transformations
  5. Feature detection and matching
  6. Segmentation
  7. Motion, optical flow
  8. Stereovision

The exercises are made on computers using the OpenCV computer vision library with the Python bindings.


The course is based primarily on the textbook by Richard Szeliski:

Richard Szeliski (2010). Computer Vision: Algorithms and Applications. Springer.

A free online draft is available at

The online book by Simon Prince, Computer vision: models, learning and inference (available at might also be helpful.

For German-speaking students, the book "Bildanalyse" by my predecessor Dr. Johannes Steinmüller will be very helpful.


  • How do I register for the course?
    You don't. There is no OPAL or anything, just show up to the lectures/exercises and register for the exam in December.
  • How do I register for the exam?
    Registration on SBService will start in December.
  • I cannot assist to the exercises. Can I take the exam anyway?
    Yes. The exercises are there to help you understand the concepts seen in the lectures and get practical experience with computer vision tools. But they are not important for the exam.
  • Do I have to memorize all these equations?
    No, but to understand them, which is basically the same.
  • I failed the exam in the winter semester. Can I retake it in the summer semester, otherwise I will not be able to finish my Master thesis?
    No, exams are in the winter semester only, no exception. Come prepared to the exam if you are under time pressure.

Slides for the lectures

Chapter 01 - Introduction (pdf)
Chapter 02 - Image Formation (pdf)
Chapter 03 - Image processing (pdf)
Chapter 04 - Geometric transformations (pdf)
Chapter 05 - Feature detection and matching (pdf)
Chapter 06 - Segmentation (pdf)
Chapter 07 - Motion (pdf)
Chapter 08 - Stereovision (pdf)


Exercise 01 - Introduction to Python and NumPy. (pdf , data , solution )
Exercise 02 - Basic image processing. (pdf , data , solution )
Exercise 03 - Linear Filtering. (pdf , solution )
Exercise 04 - Edge detection. (pdf , data , solution )
Exercise 05 - Fourier transforms. (pdf , data , solution )
Exercise 06 - Face Swapping (cancelled). (pdf , data , solution )
Exercise 07 - Feature detection and matching. (pdf , data , solution )


  • Neurologisch vernetzt

    Das Smart Start-Programm ermöglicht Masterstudenten ab September einen Einblick in Labore in ganz Deutschland – Auch TU-Student Alex Schwarz profitiert davon …

  • Wissbegierige Schüler weiter auf Erfolgskurs

    Zwei von der TU betreute Gymnasiasten errangen am 29. März 2014 Fachgebietssiege beim sächsischen Landeswettbewerb "Jugend forscht" und lösten damit ihre Fahrkarten zum Bundesfinale …

  • Leichtbau als Lebenswerk

    Präsident der Republik Polen, Andrzej Duda, verlieh Chemnitzer TU-Professor Lothar Kroll in Anerkennung seiner Leistungen den Titel "Professor der Technischen Wissenschaften" auf Lebenszeit …