Navigation

Inhalt Hotkeys

Professur Künstliche Intelligenz

Computer Vision - Image Understanding

Wintersemester 2016

Vorlesung: Freitag, 11.30 - 13.00, 1/346, (Dr. J. Vitay)
Übung: Dienstag, 17.15 - 18.45, 1/B202, (Dr. J. Vitay)
Übung: Donnerstag, 17.15 - 18.45, 1/B202, (Dr. J. Vitay)

General Information

Prerequisites: Modules in Mathematics I to IV, basic knowledge in Python.

Exam: written examination (90 minutes), 5 credit points.

Contact: julien dot vitay at informatik dot tu-chemnitz dot de.

Office hours: Wednesdays between 13:00 and 14:00

Content

The course will be an introduction to computer vision, from basic image processing (filters, Fourier transformation) to more advanced algorithms (object recognition, movement, facial features extraction).

  1. Introduction
  2. Image formation
  3. Image processing
  4. Geometric transformations
  5. Feature detection and matching
  6. Contours / Segmentation
  7. Motion, optical flow
  8. Machine learning
  9. Feature-based alignment

The exercises will be made on computers using the OpenCV computer vision library with the Python bindings.

References

The course is based primarily on the textbook by Richard Szeliski:

Richard Szeliski (2010). Computer Vision: Algorithms and Applications. Springer.

A free online draft is available at szeliski.org/Book/

The online book by Simon Prince, Computer vision: models, learning and inference (available at computervisionmodels.com) might also be helpful.

For German-speaking students, the book "Bildanalyse" by my predecessor Dr. Johannes Steinmüller will be very helpful.



Slides for the lectures

Chapter 01 - Introduction (pdf)
Chapter 02 - Image Formation (pdf)
Chapter 03 - Image processing (pdf)
Chapter 04 - Geometric transformations (pdf)

Exercises

Exercise 01 - Introduction to Python and NumPy. Text - Data - Solution.
Exercise 02 - Basic image processing. Text - Data - Solution.
Exercise 03 - Linear Filtering. Text - Intermediate solution.
Exercise 04 - Edge detection. Text - Data -

Presseartikel

  • Neurologisch vernetzt

    Das Smart Start-Programm ermöglicht Masterstudenten ab September einen Einblick in Labore in ganz Deutschland – Auch TU-Student Alex Schwarz profitiert davon …

  • Wissbegierige Schüler weiter auf Erfolgskurs

    Zwei von der TU betreute Gymnasiasten errangen am 29. März 2014 Fachgebietssiege beim sächsischen Landeswettbewerb "Jugend forscht" und lösten damit ihre Fahrkarten zum Bundesfinale …

  • Kluge Köpfe in Chemnitz

    TV-Tipp: In der MDR-Sendung „LexiTV“ wird am 12. Dezember 2016 um 15 Uhr erläutert, was den Leichtbau in Chemnitz so exzellent macht …