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Abstract— WiFi sensing, i.e., using WiFi signals to scan the
environment, is a promising technology with a plurality of
potential applications in the automotive domain. In addition
to being cost-effective, since WiFi sensing does not rely on
images, it addresses privacy concerns and/or regulations in
vehicle interiors. However, there is a notorious lack of publicly
available datasets necessary to train the underlying machine
learning (ML) models and further develop the technology in this
domain. In this paper, we propose one such dataset consisting of
CSI (Channel State Information) recordings in more than 100
different scenarios involving multiple individuals and different
vehicles. We have not only labeled CSI data by participants’
height, weight, gender, and seat position among others, but also
include anonymized video recordings for further labeling in the
future (say, for example, activity, etc.). In addition, CSI data
was collected every time from multiple spots within the vehicle
allowing for later studies concerning sensor positioning in an
application of interest. The proposed dataset is made publicly
available and intended to help establishing WiFi sensing to be
used within automotive vehicles, which we demonstrate by an
exemplary case study.
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I. INTRODUCTION

WiFi has become pervasive nowadays and, hence, it can
be encountered almost everywhere. Besides serving for com-
munication between mobile devices (such as smartphones,
tablets, etc.), WiFi signals can also be used to sense the
environment, which is known as WiFi sensing.

In particular, WiFi signals are reflected and absorbed
by the human body, which affects the CSI (Channel State
Information) data in them. This can be utilized by machine
learning (ML) approaches to draw conclusions from the
environment such as estimating the number of persons in
a room [1], recognizing human activity [2] [3], identifying
specific individuals [4], etc.—see Fig. 1.

In general, since WiFi sensing is a non-imaging technol-
ogy, it is unsensitive to lighting conditions and occlusion,
further preserving people’s right to privacy. These charac-
teristics make WiFi sensing ideal for numerous application
scenarios. In this work, we are particularly interested in its
use within automotive vehicles. Our goal in the future is to
personalize safety and comfort features such as, e.g., airbags,
seat belts, headrests, etc. based on WiFi sensing.

There have already been some works in this area, e.g., to
detect fatigue levels [5] and head position [6]. However, to
the best of our knowledge, there is still no publicly available
CSI dataset for the automotive domain yet, which hinders
further research and development in said context.
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Fig. 1: WiFi Sensing: ML models are trained to infer infor-
mation out of changes in the CSI data form the environment.

To overcome this limitation, we present one such CSI
dataset. In particular, we recorded CSI data from automotive
vehicles on different days over a period of multiple months.
Each time, we annotated data by seat position, height,
weight, gender, etc. of test persons. Our contributions can
be summarized as follows.

Contributions: The work in this paper revolves around
collecting CSI data from vehicle cabins and in different
scenarios, with a varying number of passengers sitting in
different positions. Our overall contributions are stated next:

o We present, to the best of our knowledge, the
first publicly available CSI dataset collected in
standard vehicle cabins and accessible under
https://mobilithek.info/offers/
872135089723445248. As stated above, CSI
data was collected on different days and vehicles, and
labeled by seat position, height, weight, gender, etc. of
currently 48 people participating in the experiments.

e A full description of our experimental setup is pre-
sented. This basically consists of an easy-to-mount,
portable demonstrator composed of multiple CSI sen-
sors, i.e., adapted WiFi receivers, a standard WiFi
router/AP and a temperature/humidity sensor.

« We recorded anonymized videos during every measure-
ment session, which we also added to our dataset. These
videos contain useful information for further labeling,
e.g., for activity or posture recognition.

« Finally, we discuss a case study, where we train an ML
model based on the proposed CSI dataset to identify the
driver’s weight and height respectively. We believe our
results demonstrate the usefulness and potential of the
proposed dataset.

The rest of the paper is organized as follows. Section II

briefly introduces WiFi sensing and associated concepts,
whereas Section III gives an overview of the related work.



Section IV and Section V discuss data collection and the
resulting dataset respectively. Finally, we present our case
study in Section VI and conclude the paper with Section VIIL.

II. FUNDAMENTALS

In general, WiFi sensing consists in extracting the CSI
data from WiFi signals. Even though any WiFi packet/frame
contains CSI data, typically, beacons are used, since these
are sent periodically by the router or access point (AP)
without request. As mentioned before, variations in the CSI
data can be used by an ML approach to infer information
from the environment. Current WiFi standards such as the
IEEE 802.11ac protocol divide the communication channel
into individual subcarriers via orthogonal frequency divi-
sion multiplexing (OFDM). As subcarriers are equidistantly
spaced (every 312.5 kHz), their total number depends on
the bandwidth, ranging from 64 subcarriers for a single
channel of 20M Hz to 512 for 8 such channels (amounting
to 160M H z). Some of these subcarriers are guard and pilot
subcarriers though and contain no CSI data [7].

While our CSI sensors (i.e., modified WiFi receivers)
measure both primary and secondary channels—see Fig. 2,
both of 20M H z, the router/AP sends its beacons on the
primary channel only. Secondary channels are only used as
backup, if communication fails on the primary channel. This
leads to 64 subcarriers that are recorded, 16 of which are
reserved and hence carry no relevant CSI data.!
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Fig. 2: WiFi channels according to the 802.11ac standard [8].

Changes in the CSI data can then be used to train ML
models for different applications so as to draw conclusions
from the environment and objects/persons in it—see again
Fig. 1.

In simple terms, for a single beacon received from the
WiFi router/AP, CSI data is obtained in the form of a vector
(of complex values) denoted by h as follows:

y=hox+n,

where x and y are also vectors representing the sent and
received signal respectively, with an element for each of the
subcarriers considered. Further, n is a vector representing
noise on the communication channel, and we denote the pair-
wise multiplication of two vectors (element by corresponding
element) by o.

The WiFi receiver/CSI sensor basically estimates h from
x and y considering an expected n. From the complex

"More specifically, these subcarriers are 11 guard subcarriers, the DC
subcarrier in the center, and 4 pilot subcarriers.

values/elements in h a CSI amplitude and phase can be
obtained and collected.

Over time, when multiple beacons are received, h becomes
a matrix H, where each of the columns results from process-
ing each of the different beacons.

III. RELATED WORK

Since ML models need to be trained, CSI datasets have
become of paramount importance for the WiFi sensing com-
munity. These datasets are, however, very much dependent on
the application of interest and, hence, they cannot be easily
reused in other contexts.

So far, there exist already a number of publicly available
CSI datasets in different domains and settings, however, to
the best of our knowledge, none covering applications within
vehicle cabins.

A dataset called eHealth CSI was presented in [9]. It
includes more than 100 participants performing various ac-
tions inside a controlled environment, placing clear focus
on healthcare contexts and including heart rate and pre-
existing conditions (such as cardiovascular or respiratory
diseases) of participants. Similar to this paper, eHealth CSI
includes phenotypic information (i.e., gender, height, and
weight) of participants. However, CSI data in eHealth CSI
is collected in a room using a single Raspberry-Pi board
with only one person present at a time. While this dataset
is interesting for training models to estimate an individual’s
medical conditions, its application in multi-person settings,
especially in an automotive context, is very limited.

Another dataset called Wi-MIR was presented in [10] with
focus on recognizing interactions between two individuals.
Wi-MIR presents recorded CSI data from a group of six
persons performing around 20 different interactions, all of
which taking place in a limited space and while standing.
Even though Wi-MIR includes phenotypic data such as
weight, height, and gender of participants, its small size and
its reduced variability limit applicability in other contexts.

In [11], a CSI dataset for identification tasks and esti-
mating people counts is presented, covering seven distinct
activities and including 10 people in seven different (indoor)
environments. Three different configurations of hardware
transmitter and receiver pairs are provided. The dataset
proposes the assessment of obstructions in the direct path
by collecting data using a wooden bookcase and a concrete
block wall as a barrier, and also provides data in a semi-
anechoic chamber. However, since no phenotypic data is
included and due to the singular sensor position, the use
of this data in vehicular contexts is also limited.

Although no public datasets exists for automotive contexts,
there are several applications of WiFi sensing in vehicle
interiors, such as occupant detection [12], fatigue level
detection [5] and head position detection [6]. However, these
publications do not allow access to the data used for training
said models and techniques.

In this paper, we address this problem and present the
first publicly available CSI dataset for applications of WiFi
sending in automotive vehicles, as described next in detail.



IV. DATA COLLECTION

All data contained in the presented dataset was collected
from parked vehicles featuring different settings with the
driver alone and a varying number of passengers. We con-
ducted our experiments on different days along a year to
account for different environmental conditions. The dataset
also includes temperature and humidity data for each mea-
surement, which we recorded at 15 s intervals. Different
vehicle models were considered to introduce background
variability, as mentioned later in Section V, but we have
also consistently used the same reference vehicle throughout
our measurements for comparison purposes.

A. Demonstrator

We designed a portable, easy-to-mount demonstrator for
our experiments following the general concept presented in
[13]. Our demonstrator consists of a standard WiFi router/AP,
i.e., an AVM FB W7590AX, that we place on the vehicle’s
dashboard and seven Raspberry-Pi boards (of type 4B) that
are distributed within the cabin and act as CSI sensors. In
addition, we use a LogiLink UA0377 camera for videos and
an Aosong DHT?22 digital temperature/humidity sensor for
environmental data.

All components are then connected over an Ethernet
switch (of type Netgear GS108PP) to a laptop computer from
which we start/stop and monitor measurements. An overview
of the demonstrator, including the distribution of components
inside the vehicle, can be seen in Fig. 3. Further, Fig. 4
shows a picture of the individual, unconnected components,
whereas Fig. 5 shows how CSI sensors are attached to doors.

The router/AP is configured for the 5 G H z spectrum using
the 802.11ac standard, transmitting approximately 10 bea-
cons per second on the primary channel with a bandwidth of
20 M H z. The CSI sensors then extract CSI data from the 64
subcarriers of each beacon transmission, i.e., approximately
every 100ms.

Now, for collecting and recording CSI data, we have used
the freely available WirelessEye framework [7]. WirelessEye

Fig. 3: Demonstrator overview including the exact position-
ing of CSI sensors (i.e., modified Raspberry-Pi boards). In
particular, sensor 2 is below the driver’s seat, whereas sensor
3 is attached to the driver’s headrest. CSI sensor 7 is located
centrally in the back of the vehicle and attached to the
temperature/humidity sensor.

Fig. 5: CSI sensors 1 and 6 temporarily mounted on the
driver’s side doors by hook-and-loop fasteners.

deploys a CSI server onto the Raspberry-Pi boards, which
have been modified with a Nexmon-based firmware [14] to
retrieve CSI data. This data is then collected and stored
on the laptop computer running the client software, called
WirelessEye Studio, see Fig. 6.

B. Data Measurement

As mentioned before, we collected CSI data on different
days throughout the year. For each measurement appoint-
ment, we consider—with few exceptions—two vehicles, i.e.,
reference vehicle and an additional random vehicle. Further,
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Fig. 6: WirelessEye Studio [7]
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up to eight test persons/participants were invited for each
measurement session—four for each vehicle, who were re-
cruited via local advertisements and mailing lists available
for this purpose.

Each measurement took approximately one hour, including
briefing participants and collecting phenotypic data (i.e.,
height and weight with a standard stadiometer and a scale).
Participants were divided into two groups of four people
and assigned to a particular vehicle. Measurements of 120 s
length were then conducted inside the stationary vehicles,
alternating between scenarios with the driver only and the
driver with passengers, every time rotating the person at
the driver’s seat—clearly, with exception of the participating
minors. Finally, the two groups switch vehicles and repeat
the above measurements.

C. Anonymized Videos

As previously mentioned, video data was recorded during
each measurement by the camera placed centrally on the
rearview mirror—see Fig. 7.

Fig. 7: Camera mounted on the rearview mirror pointing at
vehicle’s interior.

After every measurement, all video data recorded was
anonymized in an irreversible manner by detecting all faces
using Ultralytics [15] and yolo-face [16] and masking them
out entirely. Videos were then manually checked to make
sure that no partial faces are visible, for example, behind
headrests, that are overlooked by the face-detection models
used. Examples for the anonymized videos can be seen in
Figs. 8 and 9.

Since participants were not asked to restrict or restrain
themselves in any way during our measurements as long

Fig. 8: Anonymized video frame with the driver alone.

Fig. 9: Anonymized video frame with the driver and two
passengers.

as they stay in their assigned seats, activities caught in
video can be used for further labeling of the CSI data.
Examples for observed activities are talking (with other
participants), reading from smartphone or inspecting the
dashboard/attached sensors, etc.

V. OUR DATASET

As of now, the proposed dataset contains 110 individual
measurements with a total of 48 participants, consisting of 19
(39.6%) female and 29 (60.4%) male participants. Further,
3 participants (6.25%) were minors. However, we plan to
perform some more measurements in the coming months to
extend this dataset further.

Participants’ height is in the range between 144 c¢m and
204 cm—see Fig. 10. In addition, participants’ weight ranges
from 38 kg to 135 kg as depicted in Fig. 11.
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Fig. 10: Height distribution of participants in our dataset.

Our dataset shows an evenly spread distribution of weight
classes to form cross validation groups as shown in Table I
below.

Group
Below 66 kg 14
66 kg to 80 kg 12
80 kg to 92 kg 12
Above 92 kg 10

TABLE I: Exemplary weight classes for cross validation
groups.
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Fig. 11: Weight distribution of participants in our dataset.

Fig. 12 further shows the combined height/weight distri-
bution of all participants.
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Fig. 12: Combined height/weight distribution with diagonal
line depicting the average value.

As mentioned above, for these measurements, a total of
six different vehicles were used. These are the following:

¢ 2017 Volkswagen Golf 7 Combi,

e 2021 Kia Ceed SW,

o 2024 Seat Ateca,

e 2024 Volkswagen Touran,

e 2024 Suzuki Swift, and

o 2024 Mitsubishi SpaceStar.

Note that the 2017 Volkswagen Golf 7 Combi was used
for the majority of the measurements to serve as a reference
vehicle.

Each of the 110 measurement rounds can be classified
as having 1 to 4 participants inside the vehicle. More
specifically, measurements can be divided as shown next in
Table II.

The majority of our measurements fall into the category
of one-person recordings, as this case is treated with pri-
ority. Next priority was recording full-vehicle settings, i.e.,
four-person recordings. Other settings with were recorded
depending on the availability of participants, i.e., when less
than eight people were available for a measurement session.

Scenario Count
One-person recordings (driver alone) 67
Two- and three-person recordings 19
Four-person recordings 24

TABLE II: Recorded scenarios.

VI. CASE STUDY

In this section, we demonstrate that the proposed CSI
dataset can be used to train ML models to draw conclusions
from a vehicle cabin. To this end, we present an illustrative
case study where a modified Resnet18 [17] is used to identify
individual test persons/participants when sitting alone in one
of the vehicles on the driver’s seat.

We proceeded slicing data into segments of 45 consecutive
beacons (i.e., &~ 4.6s). In addition, for each measurement
performed on a particular day, 75% of the collected data
was used for training, whereas the remaining 25% was used
for test and evaluation.
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Fig. 13: Identification accuracy of individual participants
using CSI data.

The resulting model is able to identify individual partici-
pants from the dataset with an average accuracy of 0.86 —
see Fig. 13. Moreover, we utilized these identification rates
to obtain average weight and height estimates. More specif-
ically, an average weight estimate is obtained as follows:

1 c
Wy = ¢ ST
where c is the number of participants (i.e., 48 at the moment),
W, is the annotated weight of the n-th participant and p,, is
the prediction rate of the n-th participant, i.e., the estimated
likelihood that the corresponding CSI data represents the
n-th participant. Similarly, an average height is estimated
as follows with H,, being the annotated height of the n-th

participant:
c

1
Hapg = - Z(Hn “Pn)-
n=1
A comparison between the average estimated and actual
values of weight and height is displayed in Fig. 14 and
Fig. 15 respectively.
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Fig. 15: Accuracy of height estimation using CSI data.

VII. CONCLUSION

In this paper, we present a public CSI dataset focused on
vehicle interiors. The proposed dataset includes 110 separate
recordings in six different vehicles, each time using seven
CSI sensors at different positions. At the moment, our dataset
presents data recorded from 48 test persons, however, we
plan for more experiments in the coming months.

CSI data is basically annotated with the seat position
and phenotypic data of participants, i.e., weight, height, and
gender. However, we also include anonymized video material
of each recording, which can be useful to further annotate
CSI data, for example, by specific activities or movements.

This provided data can be used for a wide range of WiFi-
sensing applications inside vehicles, which we demonstrated
by an exemplary case study consisting of estimating weight
and height of a driver by identification. In future, we intend
to refine this and work on generalizable, regression-based
height and weight estimations using this CSI dataset.

Overall, the idea is to better configure safety and comfort
features of a vehicle, e.g., airbag inflation, headrest position,
seat belts, etc., based on actual phenotypic information obtain
by WiFi sensing from within the cabin.
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