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Abstract—Intelligent crossroads aim to substitute conventional
traffic lights by coordinating the order in which vehicles cross
an intersection. Since vehicles come and go at arbitrary points
in time, this results in an open-ended setting that is difficult to
analyze with deterministic methods. In particular, deterministic
methods fail to provide meaningful estimates of the maximum
number of vehicles at the intersection, which is paramount
to assess communication reliability and, in the end, guarantee
safety. In contrast, statistical and probabilistic techniques are
more suitable for this purpose and constitute the focus of this
paper. We especially investigate how different driving direc-
tions and vehicle lengths influence the quality of probabilistic
estimates in approximating the maximum number of vehicles
at the intersection. These estimates are then incorporated into
the design and analysis of the crossroad VANET to derive
guarantees on communication reliability. Our results show that
such estimates can greatly reduce pessimism and overdesign
compared to deterministic approaches. These and other benefits
are illustrated by means of a detailed case study and simulations
using OMNeT++.

I. INTRODUCTION

Open-ended cyber-physical systems (CPS) are becoming

increasingly common in various areas such as smart homes

and buildings, intelligent traffic and transportation systems,

smart grids, etc. Their defining feature is a constantly changing

number of autonomous actors who can join and leave the

system at any time. In general, this makes it difficult to

estimate the maximum number of actors in such settings, i.e.,

the maximum actor count. However, on the other hand, this

is a crucial factor for design and analysis, particularly under

safety requirements, since it directly affects computation and

communication overhead.

In this paper, we are concerned with an intelligent crossroad,

which coordinates traffic flow with the aim of improving

throughput and reducing congestion. The idea is to replace

traditional traffic lights by a roadside unit (RSU) that assigns

speed values to approaching vehicles so that these can traverse

the intersection safely without unnecessary braking and accel-

erating. This requires the RSU to periodically calculate new

speed values and communicate them to each vehicle. Clearly,

it is paramount to guarantee a reliable communication between

vehicles and the RSU, which requires a specialized Vehicular

Ad Hoc Network (VANET).

In general, communication reliability strongly depends on

the number of vehicles at the intersection. The more vehicles

there are, the more interference these produce leading to a

higher chance that data packets are lost, consequently, reduc-

ing the VANET’s reliability.1 Note that using mechanisms to

avoid interference, e.g., by synchronizing nodes using TDMA

(Time Division Multiple Access), yields a huge overhead due

to the constantly changing operation conditions and is not

suitable for this application.

In order to guarantee safety, we need to estimate the

maximum number of vehicles at the intersection. Deterministic

approaches assume the worst-case number of vehicles, i.e.,

that the intersection is completely filled with vehicles, which

leads to a considerable amount of pessimism and overdesign.

Probabilistic approaches, on the other hand, generally yield

better results, since they better match the random nature of

such settings. That is, many system properties are stochastic,

e.g., traffic density, packet loss, interference, but also vehicle

length among others. However, these probabilistic approaches

do not provide absolute certainty, i.e., there will be always

a (rather small, but non-zero) probability that the estimated

maximum number of vehicles is exceeded and, hence, that

any safety guarantees based on them will stop being valid at

some point in time.

In order to avoid accidents, probabilistic estimates can

be combined with fail-safe mechanisms. If, for example,

the estimated maximum number of vehicles is exceeded,

the intelligent intersection can switch back to behave as

conventional traffic lights. Although this temporarily reduces

service/usability (i.e., once safety conditions are restored,

the intelligent crossroad will resume its intended operation),

it maintains safety. In addition, the loss of usability can be

reduced to a minimum by selecting the right probabilistic

estimates, which is the ultimate goal of this work.

Contributions: In this paper, we propose an approach to prob-

abilistically estimate the number of vehicles at an intersection.

To this end, we make use of a traffic protocol (controlling the

order in which vehicles cross the intersection) and analyze the

space requirements of different actions such as left/right turns,

driving through, etc., to derive an estimate of the vehicle count.

This estimate is further extended by considering the following:

• Vehicles have different probabilities to turn left/right or

drive through at the intersection.

• Vehicles have different lengths which can be described

statistically.

1We consider only systemic interference caused by simultaneous transmis-
sions. However, adding external interference is straightforward, assuming that
its upper bound is known.



• The intersection is not completely filled with vehicles

during hours of low traffic.

Our probabilistic estimate is then incorporated into the design

and analysis of a specialized VANET, for which we derive

guarantees of reliability. Since these guarantees are also of

a probabilistic nature, there is always a residual risk that

they will not be met, which should be contained by fail-safe

mechanisms as mentioned above.

Lastly, the advantages of the proposed approach are

discussed with a detailed case study and simulations using

OMNeT++ [15].

Structure of this work: Section II discusses the state of

the art, while Section III covers the underlying models and

assumptions introducing a crossroad example used for later

analysis. Section IV deals with the used traffic protocol and

derives probabilistic estimates for the vehicle count. Next,

Section V describes the used VANET and Section VI evaluates

its communication reliability. Finally, Section VII concludes

the paper.

II. RELATED WORK

Intelligent crossroads are a relatively new application. As a

result, only a few works (mentioned in the following) inves-

tigate design and analysis methods for this case. Generally,

existing work can be divided into two types: decentralized

protocols where vehicles communicate directly with each

other, and centralized approaches where vehicles communicate

with a dedicated component, e.g., a roadside unit.

Decentralized approaches are discussed in detail in [2]. Cur-

rent works towards distributed intersection management are

[12] and [7]. In the former, virtual platooning is used to greatly

increase throughput and reduce waiting times. In the latter,

vehicles are grouped into clusters based on their locations and

driving directions. These clusters select a cluster head, which

performs communications with other clusters and its members.

The clusters then pass the intersection one after another.

While this increases throughput compared to traditional, non-

clustered traffic, it does not allow crossing in more than one

direction at the same time. Furthermore, communication safety

is not addressed apart from packets being sent twice to mitigate

packet loss. Lastly, both works [7][12] do not consider the

number of vehicles in the intersection range as a factor for

communication reliability.

Towards centralized approaches, the general idea of schedul-

ing cars via an intersection manager was first proposed in

[3][4]. Here, vehicles are coordinated by a traffic management

system based on reservations, leading to synchronized crossing

patterns. In this case, to obtain the maximum number of

vehicles, the crossroad is assumed to be completely filled

with vehicles according to a reservation logic which fixes the

inter-vehicle spacing. For example, a centralized approach is

presented in [5], which implements a bi-level controller to

coordinate automated vehicles at intersections. However, this

approach does not discuss how to estimate the maximum num-

ber of vehicles in the system so as to account for reliability.
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Fig. 1: An exemplary intelligent crossroad with 4 lanes in

which new vehicles arrive periodically at the west/east lane.

To estimate the maximum number of vehicles at the

crossroad, deterministic approaches have been used in the

past [10][11]. However, these approaches do not consider the

effects of crossroad protocols, vehicle lengths, travel directions

etc. on the number of vehicles. On the contrary, they are based

on restrictive simplifications that aim to guarantee safety at the

cost of high pessimism.

To the best of our knowledge, probabilistic approaches for

estimating the maximum number of vehicles at a crossroad

have been first used in [9]. However, in this approach, no

turning behavior or traffic density is considered and the

crossroad was restricted to a single lane only, which clearly

does not reflect real-world crossroads. In this paper, our goal

is to remove these restrictions and extend the work in [9] to

improve estimates of the vehicle count at the crossroad.

III. BACKGROUND KNOWLEDGE AND DEFINITIONS

As mentioned earlier, the idea behind an intelligent inter-

section is to replace traditional traffic lights with a RSU that

coordinates vehicles to cross the intersection safely and effi-

ciently. Fig. 1 shows such an exemplary intersection consisting

of four lanes (north, east, south and west), which we will use

in the following as a basis for our analysis. Note that, for

the sake of exposition, we assume that vehicles arrive only

in the west/east lane, while the north/south lane is for exiting

only. However, our analysis can easily be extended for more

complex intersection types with multiple lanes as shown later.

Whenever a vehicle comes within a range R of the intersec-

tion, it enters the arrival zone and must first register at the RSU

— in our example, we set R = 150m. To this end, the vehicle

sends an identifier containing its vehicle type, mass, length,

etc. as well as speed and desired direction, i.e., whether it

wants to turn left, right or drive through. Once a vehicle is reg-

istered, the RSU keeps tracking it and controlling its speed by

periodically broadcasting control messages containing speed

values for all vehicles that are currently within range. After

registration, the vehicle then enters the traveling zone where

it drives at the given speed and keeps a certain distance d to

its front vehicle. This way, all approaching vehicles can be

synchronized to pass the intersection efficiently and collision-

free [1][8]. Lastly, at the intersection itself, the crossing zone,

vehicles can either drive through or turn left or right — this is



denoted by T, L and R respectively. Note that once a vehicle

leaves the intersection, it is automatically de-registered by the

RSU and not regarded anymore.

Each vehicle has to keep a minimum distance dmin to

its front vehicle, which depends on the crossroad layout and

protocol used, as explained in the following section in detail.

To this end, we divide the intersection into sectors/cells to

create a grid-like structure, which is a common procedure for

centralized crossroads [2][12][14]. The length S of each sector

is a multiple of dmin and stands for the distance each vehicle

travels within a given unit of time we call cycle. This allows us

to design crossroad protocols independent of speed, provided

that all vehicles have the same speed and keep it constant

— this is enforced in the traveling zone. For simplicity, we

assume that S is equal to a standard vehicle’s length (e.g.,

5m). In addition, we also assume that the longest vehicle —

a truck — is at most 10m long, i.e., it fits into 2S.

Unlike deterministic approaches, probabilistic ones cannot

guarantee full safety, i.e., there is always a residual chance that

estimates are not met. For this reason, a fail-safe mechanism

must be implemented, e.g., the crossroad can switch to a

conventional traffic light’s behavior. Clearly, the system should

be designed properly such that fail-safe mechanisms are not

overused, but remain reserved for rare exceptions. This way,

full safety can be achieved using probabilistic estimates, while

at the same time reducing overdesign.

IV. PROBABILISTIC ESTIMATES FOR VEHICLE COUNT

In this section, we derive probabilistic estimates for the

vehicle count within an intersection. To this end, we first

briefly introduce the traffic protocol from [8] and apply it to

our crossroad example from Fig. 1. Next, we add probabilistic

properties regarding turning behavior, vehicle length and

whether vehicles are present or absent on a lane. Lastly, we

provide an analytical framework to calculate probabilistic

estimates of vehicle counts and discuss how to extend these

to different, more complex intersection types.

A. Traffic protocol

In order to derive probabilistic estimates for the number of

vehicles, we first need a suitable traffic protocol that fixes

traffic throughput, required space, etc. at the intersection.

To this end, we make use of the protocol from [8], which

describes a centralized, RSU-based approach.

According to this protocol, vehicles cross the intersection

in synchronized pairs on opposing lanes, i.e., in our example

from Section III this means that two vehicles cross at a time.

Since vehicles on opposing lanes cross simultaneously, there

are multiple turn combinations that have to be executed in

the crossing zone, each of which requires a specific number

of cycles. Note that this number of cycles, called cycle costs,

define the distance d to the following pairs of vehicles, see also

Fig. 1. This ensures that the current pair of vehicles leaves the

intersection before a new one arrives.

11 22 33

44 55

Fig. 2: Combination LT/TL in detail: left turns and through

driving have a collision point, which requires the left turning

vehicle to be delayed by one cycle.
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Fig. 3: During an LL combination, left turning vehicles cross

simultaneously in front of each other.

The distance d allows us to draw conclusions about the

total number of vehicles that fit in a radius R from the

intersection. However, for an accurate estimate, other factors

must be considered as well, for example, turning behavior as

explained next.

B. Considering driving direction

At the center of the intersection, each vehicle can either turn

left/right or drive through (L,R,T). Considering two lanes, this

results in 32 = 9 different combinations: LL, LT, LR, TL, TT,

TR, RL, RT, RR. However, since vehicles are synchronized

and their speeds and lengths are the same, some of these

turning combinations are identical and actually only mirrored.

That is, LT equals TL, LR equals RL, and RT equals TR,

resulting in 6 distinct combinations in total. In the following,

we will discuss these different combinations in more detail

and analyze their cycle costs.

LT/TL is the only combination with overlapping trajectories

between the opposing vehicles, see Fig. 2. Here, the left turn

vehicle has to be delayed by an entire cycle before entering the

crossroad center such that it does not collide with the vehicle

driving through. Even though the vehicle driving through has

exited the crossroad center after 3 cycles, the whole crossing



procedure ends after 5 cycles when the left turning vehicle

also exits — during that time, no new vehicles can enter the

intersection.

When considering the combination LL, vehicles cross in

front of each other to avoid potential collision points and

therefore further delay. Here, it should be noted that the

vehicles’ widths have to be considered, i.e., depending on

widths and on the sector size S, vehicles might come too

close to each other as shown in Fig. 3. However, as long as

the average width of both vehicles is below a critical distance,

no modifications are necessary [8]. Note that, for simplicity,

we disregard exceptionally wide vehicles.

Lastly, the remaining combinations focus on through driving

and right turns, which do not influence each other and can

therefore be considered independently of each other. A right

turn allows exiting the crossroad after 2 cycles, whereby driv-

ing through requires 3 cycles. Again, each turn combination

can be assigned a cycle cost, i.e., how many cycles have to

pass before the last vehicle leaves the crossroad and a new

pair can enter.

Now we can also assign a probability to the driving direction

of vehicles, i.e., how likely it is on average that a vehicle

follows a given trajectory at the intersection. This probability

can be derived from statistical data, e.g., by observing traffic

flow in the intersection over a sufficiently long period of

time. For example, in [6], the eastbound traffic of the city

of Redmond was observed for a year and probabilities were

determined to be pL = 0.3, pT = 0.6 and pR = 0.1 for

turning left, turning right and driving through respectively. For

example, the probability of combination TT is that vehicle

1 and 2 both drive through, i.e., pTT = pT · pT = 0.36.

For mirrored combinations, both must be considered, e.g.,

pTR = pT · pR + pR · pT = 0.12. Knowing the probability

of all turns allows us to estimate the likeliness that certain

cycle costs are encountered and, therefore, allows drawing

conclusions on the maximum vehicle count.

C. Considering traffic density

So far, we have assumed that the intersection is completely

filled with vehicles and that always a pair of vehicles cross

at the same time. However, in case of low traffic, i.e., when

the arrival rate of vehicles is lower than the exiting rate at the

intersection, it may happen that one vehicle is absent in a pair

and only one vehicle crosses the intersection at a time — we

denote this as a half-pair. In this case, the crossing behavior

is executed as efficiently as the driving direction allows. Note

that we assume that there is at least one vehicle crossing, since,

if both vehicles are absent, nothing happens and cycle cost is

zero.

The probability pE of having half-pairs is lower bounded

by 0, i.e., the intersection is completely filled with cars, and

upper bounded by pE = 1, i.e., there are half-pairs only. Now,

in order to determine pE , we have to consider the arrival rate

rarr in relation to the exiting rate rexit. In particular, if there

are only half-pairs at the intersection, i.e., pE = 1, then parr
must be equal to 1

2pexit. Similarly, if there are no half-pairs
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Fig. 4: Vehicle length distribution

at the intersection, i.e., pE = 0, parr must be equal to pexit in

order that no traffic jam originates. (Otherwise, more vehicles

enter than actually leave the intersection.) Now, modeling pE
as a linear function of rarr results in the following:

pE = 2 ·
(

1−
rarr
rexit

)

(1)

Note that the exiting rate is fixed for a given crossroad, i.e.,

this describes the maximum number of vehicles that can leave

the crossroad per cycle. The arrival rate, on the other hand,

is variable and depends on several factors such as crossroad

layout, time, location, etc. [6]. In our example, we set the

arrival rate to 95% of the exiting rate, which results in pE =
2 · (1 − 0.95) = 0.1. However, later in Section VI, we will

also investigate different values of pE .

D. Considering vehicle lengths

Next, let us discuss the effects of vehicle lengths on our

probabilistic estimates. For this purpose, let us first look at

Fig. 4, which shows the various vehicle lengths and their

market share on the basis of car sales statistics from [9].

As we can see here, there are three main groups of vehicles:

motorcycles, cars, and trucks/buses, with cars making up the

majority of vehicles. As a result, it is very likely to encounter

a car at the intersection, whereas it is relatively unlikely to

encounter long trucks and buses.

In the case of a deterministic approach, all vehicles are

assumed to have the length of the longest vehicle, i.e., that of a

truck or bus, despite of the low probability to encounter these.

Clearly, this leads to a very high pessimism and overdesign.

Probabilistic estimates, on the other hand, can reduce this

pessimism substantially as discussed next.

Now, in order to derive the impact of vehicle lengths on

our probabilistic estimates, let us first discuss the effects on

the traffic protocol from [8]. Here, whenever a vehicle is

longer than the sector length S — which was set to 5 m in

our example — it is considered to be an overlength (OL)

vehicle. Note that, for simplicity, overlength is discrete and

can be expressed in multiples of S. Now, whenever there is

an overlength vehicle present — which has the probability pOL

— the protocol adds extra cycles to its turns to prevent possible



collisions. For every S that the OL vehicle is longer than one

sector, the protocol adds one cycle to its cycle costs, regardless

of the driving direction (e.g., L, T or R). For example, a truck

is 2S long and the protocol adds one cycle to its cycle costs.

Note that if there are two OL vehicles in one pair of vehicles,

extra cycles are added only once based on the longer vehicle.

Now, we can assign each turning combination or combina-

tion of driving directions a cycle cost g. These range from

g = 2 for RR to g = 6 for TL/LT with OL penalty and are

shown in Table I.

No OL West OL West
East R T L E East R T L E

R 2 3 4 2 R 3 4 5 3
T 3 3 5 3 T 4 4 6 4
L 4 5 4 4 L 5 6 5 5
E 2 3 4 - E 3 4 5 -

Table I: Cycle cost g for each combination of driving direc-

tions with and without overlength (OL) penalty. E stands for an

empty slot on one of the lanes, i.e., only one vehicle crossing

at a time. We refer to this situation as a half-pair.

With exemplary values of pE = 0.1, pL = 0.3, pT = 0.6,

pR = 0.1, R = 150m, we can determine the different cases

and their occurrence probabilities as shown in Table II.

Vehicles (n) Probability

Cycle Cost (g) Probability 1 0.1
2S 0.0185 2 0.9
3S 0.4800
4S 0.1733 Weighted Average
5S 0.3200 Cycle Cost 3.8193
6S 0.0082 Vehicles 1.9

Table II: Costs in cycles and probability of occurence for for

a single pair of vehicles

E. Estimating vehicle count

To estimate the vehicle count within an intersection, we

have to consider all different combinations of vehicles within

the intersection’s range R. Each pair has a certain cycle cost

g which defines the number of cycles required for turning,

driving through, etc. and, therefore, defines the distance to the

following pair of vehicles. These distances can then be used to

calculate how many pairs physically fit into the intersection’s

range R. Note that, since lanes are synchronized, the distances

on each lane are the same — see again Fig. 1.

First, let us derive bounds for our probabilistic estimates,

beginning with the the upper bound nmax. This determines the

maximum vehicle count at the intersection and can be derived

using a deterministic approach. To this end, we assume that

all vehicles have standard length S, there are no empty slots

(i.e., half-pairs) and only RR turns are performed, which have

the lowest cycle costs of g = 2. This results in:

nmax = 2 ·









R

min
∀i

(gi) · S









. = 2 ·

⌈

R

2S

⌉

. (2)

To determine the lower bound on the vehicle count nmin,

we consider that all vehicles have the maximum length of 2S
(e.g., trucks), there are only half-pairs, and vehicles follow

trajectories with the greatest cycle costs, i.e., TL/LT with g =
5. This results in:

nmin =









R

max
∀i

(gi) · S









=

⌈

R

5S

⌉

. (3)

When generating different combinations of pairs of vehicles,

we must ensure that these fit into the crossroad’s range R
according to the used traffic protocol. Following [9], a valid

combination of vehicles must meet the following condition:

R− 2S < k2 · 2S + k3 · 3S + k4 · 4S + k5 · 5S + k6 · 6S < R,

where k2, k3, k4, k5 and k6 represent the amount of combina-

tions leading to a total inter-vehicle distance of 2S, 3S, 4S, 5S
and 6S respectively. The above equation can be generalized

to the following:

D =

max
∀i

(gi)
∑

j=min
∀i

(gi)

kj · j · S. (4)

If R−2S < D < R is fulfilled, the given vehicle set is a valid

combination, i.e., it fits into the intersection’s range R and is

greater than R − 2S meaning that no further vehicle fits into

it.

Now, in order to estimate the likeliness for a certain n to

occur, we have to consider the probabilities leading to that

case. More specifically, we have to consider the probability of

a vehicle having overlength pOL, the probability that pairs of

vehicles perform a certain combination of turns/follow certain

driving directions pC , and the probability of having a half-pair

pE . Combining these, we can calculate the probability pn of

having a given n by:

pn = pOL,n · pC,n · pE,n. (5)

The probability pOL can be derived from Fig. 4, i.e., by

applying the distribution from [9]. In the case of the combined

turning/driving probabilities pC , these can be calculated by

multiplying individual such probabilities, e.g., pTT = pT · pT
or pLT = pL·pT+pT ·pL — see again Section IV-B. Lastly, the

probability of having half-pair of vehicles pE can be obtained

by using (1) together with a traffic observation or prediction

leading to an arrival vehicle rate rarr [6].

To illustrate the above formulas and derive values for later

experiments in Section VI, let us now calculate the different

probabilistic estimates for our crossroad example of Fig. 1.

Assuming an intersection range of R = 150m and a sector

size of S = 5m, the maximum number of vehicles ranges

between 6 and 30, with 30 being equivalent to the deterministic

worst case. Analyzing all k2, k3, k4, k5 and k6 that fulfill these

combinations, we can calculate the estimates for n with n ∈

[6, 30] and their corresponding probabilities pn, as shown in

table III. Note that these results clearly show the pessimism



Vehicle Count Probability Vehicle Count Probability

<6 0 18 3.7074E-05
6 4.6859E-14 19 9.9612E-08
7 1.2831E-10 20 1.2186E-07
8 1.0539E-07 21 3.8954E-10
9 3.3684E-05 22 3.9974E-10
10 0.00406149 23 5.4333E-13
11 0.14303233 24 4.6334E-13
12 0.77750801 25 5.6528E-17
13 0.02003493 26 1.9801E-17
14 0.05526484 27 3.3938E-22
15 5.1611E-07 28 7.1491E-23
16 4.9100E-06 29 1.1927E-29
17 2.1892E-05 30 1.7865E-30

Table III: Resulting maximum number of vehicles with their

corresponding probabilities for pE = 0.1, pL = 0.3, pT = 0.6,

pR = 0.1, R = 150m and S = 5m.

of deterministic approaches. That is, the probability of having

n = 30 is 1.78 × 10−30, i.e., it will effectively never occur.

The probabilistic estimate, on the other hand, can be chosen

according to a given safety level, i.e., a probability that the

estimate fails. For example, when selecting n = 19, the chance

that there is a higher n at the crossroad is less than 1× 10−7.

In summary, this section described how to derive probabilis-

tic estimates on the maximum vehicle count at an intersection,

whereby our analysis was performed on a simplified crossroad

layout as shown in Fig. 1. Nevertheless, the proposed methods

can also be applied to other, more complex intersection

types. In this case, as described before in Section IV-A,

the intersection has to be divided into different turn combi-

nations with different cycle costs depending on the chosen

traffic protocol. These combinations are then weighted with

their occurrence probability (Section IV-B), and, if needed,

extended by estimates regarding traffic density and vehicle

lengths (Section IV-C and IV-D).

F. Fail-safe behavior

Using probabilistic estimates brings about residual risk that

these do not hold. For example, when selecting n = 19 as

per Table III, the chance of having a higher vehicle count

is ≈ 1 × 10−7. Even though this value is very small, it does

not guarantee full safety. To overcome this problem, additional

fail-safe mechanisms are required. This could, for example, be

an emergency braking system installed in each vehicle or the

RSU switching to classic operation as traffic lights if the num-

ber of vehicles estimated is exceeded or communication fails.

However, since these mechanisms interrupt normal operation,

the system should be designed such these are not overused.

V. IMPACT ON CROSSROAD COMMUNICATION

The communication scheme used for the intelligent cross-

road is based on the crossroad VANET from [9]. Here, vehicles

and the road-side unit (RSU) periodically exchange data in

cycles which have the following structure as shown in Fig. 5.

Each cycle starts with a sync field in which the RSU

broadcasts a data packet containing information about the

sync replycontention

lsyn tcon lrep

Fig. 5: Structure of a communication cycle

intersection (e.g., type, traffic load, etc.) that is received by

all vehicles within range R. These then reply with a request

message in the contention phase, sending their current speed,

position, etc. The RSU collects these messages, calculates new

speed values for each vehicle according to the traffic protocol

described in Section III and communicates these during the

reply phase. Note that after a cycle is complete, a new cycle

starts immediately. The cycle interval or length is determined

by the physical resolution, i.e., the maximum distance that a

vehicle may travel before it requires an update from the RSU.

For example, if we set the resolution to 1 m and assume a

speed of 50 km/h, the cycle length is set to 1m
50 km/h = 72ms.

During contention phase, vehicles transmit data using

the probabilistic medium access control (MAC) protocol

from [13]. Here, each vehicle transmits its request message

multiple times k, whereby the time between transmissions is

is randomly selected from an interval [tmin, tmax]. Given the

transmission time of a request message lreq and the number of

vehicles n, it is possible to determine the worst-case reliability

of the system, i.e., the probability that at least one out of k
transmissions reaches the RSU:

p = 1−

(

2(n− 1)lreq
tmax − tmin

)k

. (6)

To include our probabilistic estimates of vehicle count n and

their occurrence probabilities pn, Eq. (6) is extended to:

p̄ =

nmax
∑

n=nmin

pn

(

1−

(

2(n− 1)lreq
tmax − tmin

)k
)

. (7)

Here, p̄ is the weighted reliability, i.e., the sum of all re-

liabilities of all different n multiplied by their occurrence

probabilities pn as per Eq. (5). Further, nmin and nmax are the

lower and upper bound of the vehicle estimate as per Eq. (3)

and (2). Note that for the evaluation presented in the next

section, we selected lreq = 78µs and k = 3 as per [9] and

assumed tmin = tmax

2 and tmax =
tcon−lreq

k as per [13].

VI. EVALUATION

In this section, we evaluate the impact of the crossroad’s

characteristics (driving direction, probability of half-pairs and

overlength penalty) on the probabilistic estimates.

A. Driving direction

As discussed before in Section IV-B, different combinations

of driving directions have different cycle costs and, therefore,

affect the estimated maximum number of vehicles within the

intersection. More specifically, right turns lead to a higher

vehicle count, since they have lower cycle costs, while left



5 10 15 20 25 30

Vehicle Count n

10
-30

10
-20

10
-10

10
0

P
ro

b
a

b
ili

ty

Default (0.3/0.1)

No L (0.0/0.4)

Reverse (0.1/0.3)

Even (0.2/0.2)

No R(0.4/0.0)

No T (0.5/0.5)

(a) Impact of driving direction (brackets denote
(pL/pR))

5 10 15 20 25 30

Vehicle Count n

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

P
ro

b
a

b
ili

ty

0.1

0.5

0.9

0.99

(b) Impact of probability of half-pairs pE

5 10 15 20 25 30

Vehicle Count n

10
-30

10
-20

10
-10

10
0

P
ro

b
a

b
ili

ty

Default (S=5m)

S=6m

S=7m

S=8m

(c) Impact of sector size S

Fig. 6: Impact of turning/driving direction probabilities, half-pairs and sector size (i.e., overlength penalty) on our probabilistic

estimate of n

turns and through driving decrease the vehicle count due to

the low efficiency of LL and LT combinations.

Our example from Fig. 1 uses pL = 0.3, pT = 0.6 and

pR = 0.1 from [6]. Now, if we keep pT = 0.6 and shift the

remaining 0.4 between pL and pR, the previously discussed

behavior can be observed in Fig. 6a. That is, the more right

turns there are, the higher the chance of having high vehicle

counts. For pL = 0.0 and pR = 0.4 (no left turns), it can

even be observed that vehicle counts below 12 do not occur.

Similarly, for pL = 0.4 and pR = 0.0 (no right turns), it is

not possible to have more than 12 vehicles at the crossroad.

For all other combinations, n is within [6, 30] as shown in

Table III.

B. Half-pairs

The impact of changing pE , i.e., the probability of having

half-pairs (i.e., only one vehicle) crossing the intersection, is

depicted in Fig. 6b. Again, pE = 0 means that there are no

half-pairs, whereas pE = 1 means that there are only half-

pairs. As expected, the higher pE , the more likely it is to have

a lower vehicle count. On the other hand, very high vehicle

counts, e.g., n = 30 are still possible, however, very unlikely

to occur.

C. Overlength penalty

Changes to the sector size S impact the overlength probabil-

ity pOL, since having larger sector sizes (e.g., S = 7m) means

that only vehicles longer than S are regarded as overlength

ones. Effectively, larger sector sizes decrease pOL, which leads

to less extra cycles due to overlength penalty. However, on

the other hand, all cycle costs are given in multiples of S and

therefore increase for larger S. As a result, larger sector sizes

effectively reduce the number of vehicles that can be processed

at a time and are therefore not meaningful.

To illustrate the effects on our probabilistic estimates of

n, let us now have a look at Fig. 6c. It can be seen that a

larger S reduces the maximum n as expected. This complies

with Eq. (2), which provides a deterministic upper bound of n.

Inversely, a smaller S results in possibly larger n. Considering

that larger S values reduce the throughput at the intersection,

it is meaningful to set S to the length of the vehicle that occurs

the most often at the intersection, i.e., S = 5m.

D. Communication reliability

Next, we will examine the impact of our probabilistic

estimates on the communication reliability of the VANET

introduced in Section V. To this end, we performed extensive

simulations based on the OMNeT++ simulation framework

[15], which allowed us to record statistical data of a very large

number of transmissions — for each of the presented curves, at

least 100, 000 communication cycles were simulated. We use

the channel models and parameters from [16] and assume that

there is no external interference present — however, this can be

easily added as described in [13]. Note that we selected n = 30
for the deterministic approach and n = 19 for our proposed

estimate for the following experiments, which is reasonable

safe value, i.e., the chance of having a higher n is very small

with ≈ 1× 10−7.

Fig. 7a shows the calculated (as per Eq. (7)) and Fig. 7b the

simulated (average) transmission reliability in relation to the

vehicle speed. Recall that the vehicle speed defines the cycle

length and, therefore, the period of time tcon in which vehicles

can send their request message. The higher the speed, the less

time each node has to transmit its request message, resulting

in a higher channel load and, therefore, less reliability. Also

note that the simulated reliabilities in Fig. 7b are always higher

than the calculated worst-case values in Fig. 7a.

Next, in Fig. 7c, we analyze the physical resolution (the

distance a vehicle travels at a given speed) in relation to the

achievable reliability p. The larger the physical resolution,

the more time a vehicle has available to communicate with

the RSU and, hence, reliability increases. It can be observed

from Fig. 7c that the resolution increases very slowly at

first for lower p. This makes it possible to strongly increase

reliability at the cost of a only slightly larger resolution.

For example, by increasing the resolution from 1 m to 2 m,
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Fig. 7: Comparing the proposed probabilistic with deterministic estimates of the number of vehicles taking communication

reliability and physical resolution into account

we can increase reliability from 89% to ≈ 99% with the

proposed technique. This is a meaningful step to take, if the

application tolerates it. Note that the steep increase for very

high p close to 100 % is due to the fact that the used MAC

protocol cannot ensure perfect reliability (e.g., p = 100%) —

it requires increasingly more time (i.e., a higher resolution) as

it approaches 100 % [13].

In summary, it can be seen that our probabilistic estimates

for the maximum number of vehicles can greatly reduce

pessimism compared to deterministic approaches. In particular,

the VANET protocol benefits from it and can achieve a much

higher communication reliability. Note that the safety/confi-

dence for the chosen estimate is very high, i.e., it very unlikely

to encounter a larger n at in the intersection (≈ 1× 10−7 for

n = 19). Our results show that in this example it is more

likely that the communication fails rather than n is exceeded.

VII. CONCLUDING REMARKS

In this paper, we have investigated the quality of proba-

bilistic estimates and their capability to overcome determinis-

tic pessimism in open-ended settings such as an intelligent

crossroad, which we used as a case study. To this end,

we implemented a traffic protocol (controlling the order in

which vehicles cross the intersection) and analyzed the space

requirements of different actions such as turn left/right, driving

through, etc. to derive an estimate of the maximum number

of vehicles. This estimate was then extended to consider

the probabilities of different vehicle lengths, their driving

directions and traffic levels to further reduce pessimism.

To illustrate the benefits of the proposed approach, we sim-

ulated an exemplary VANET using the OMNeT++ framework.

Our results show that probabilistic estimates can greatly reduce

pessimism compared to deterministic approaches, while still

maintaining a high level of safety.
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