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ABSTRACT

We consider an intelligent crossroad where conventional tra!c

lights are substituted by a roadside unit (RSU), which synchronizes

vehicles at the intersection, minimizing waiting time and energy

consumption (by avoiding unnecessary braking and accelerating).

Clearly, in this case, a reliable communication needs to be guar-

anteed between vehicles and the RSU, for which we investigate

the design and analysis of specialized Vehicular Ad Hoc Networks

(VANETs). It turns out that reliability strongly depends on the num-

ber of vehicles at the crossroad, i.e., the more vehicles, the more

interference and, hence, the lesser reliability. As a result, to guaran-

tee a desired level of reliability, we "rst need to estimate the worst-

case number of vehicles at the crossroad. However, straightforward,

deterministic approaches — computing the maximum number of

vehicles that physically "t into the crossroad’s area — lead to a

great amount of pessimism and overdesign. In this paper, we pro-

pose using probabilistic estimations for the number of vehicles

instead, which greatly reduces the amount of pessimism while still

guaranteeing safety. Our approach is based on vehicles’ statisti-

cal information and allows computing the probability of having a

certain number of vehicles at the crossroad in the worst case. We

incorporate this probabilistic estimate into the VANET’s design and

analysis to derive guarantees on reliability. Finally, we illustrate

the bene"ts of the proposed approach by means of a detailed case

study and simulations using OMNeT++.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; •Networks→Network protocol design; •Com-

puting methodologies→ Simulation evaluation;

KEYWORDS

VANET; Intelligent Crossroad; OMNeT++; Reliability; Simulation

ACM Reference format:

Daniel Markert, Philip Parsch and Alejandro Masrur. 2017. Using Probabilis-

tic Estimates to Guarantee Reliability in Crossroad VANETs. In Proceedings

of DIVANet’17, Miami, FL, USA, November 21–25, 2017, 8 pages.

https://doi.org/10.1145/3132340.3132343

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci"c permission and/or a
fee. Request permissions from permissions@acm.org.

DIVANet’17, November 21–25, 2017, Miami, FL, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5164-5/17/11. . . $15.00
https://doi.org/10.1145/3132340.3132343

1 INTRODUCTION

There are an increasing number of vehicles on roads and highways,

which makes it necessary to control tra!c #ow in a more e!cient

manner. Current solutions such as conventional road infrastructure

or tra!c lights are unable to (or can only partially) adapt to changes

in the tra!c and, hence, largely fail to achieve this goal. As a

result, there is a need for innovative solutions that help relieving

congestion and preventing tra!c jams in the future.

Motivated by autonomous and semi-autonomous driving, intelli-

gent crossroads appear to be one such solution. Thereby, whenever

vehicles arrive at a given distance from an intersection, a roadside

unit (RSU) assigns them speeds so as to synchronize the points

in time at which they arrive at and cross the intersection. This

requires periodically collecting data from vehicles and computing

new speed values to guarantee a collision-free crossing and, at the

same time, avoid unnecessarily braking and accelerating vehicles

at the intersection with the aim of minimizing waiting time and

energy consumption.

Clearly, these computations need to be performed in real time,

for which it is paramount to guarantee a reliable communication

between vehicles and the RSU. To this end, a specialized Vehicular

Ad Hoc Network (VANET) needs to be designed carefully. In this

case, note that reliability strongly depends on the number of vehi-

cles at the crossroad. In particular, the more vehicles there are at the

crossroad, the more interference1 there will be and, consequently,

the lesser the VANET’s reliability. Note that synchronizing access to

the communication channel to avoid interference between vehicles,

e.g., using TDMA (Time Division Multiple Access), yields a huge

overhead due to the constantly changing operation conditions and

is not suitable in this context.

As a result, to be able to guarantee a desired level of reliability,

we "rst need to compute the worst-case number of vehicles at the

crossroad. Straightforward, deterministic approaches are based on

estimating how many vehicles can physically "t in the surround-

ings of the crossroad. To this end, usually, the minimum possible

length of a vehicle is taken into account, e.g., that of a motorbike.

This leads to a pessimistic estimation and ine!cient design, since

most vehicles are, in fact, longer than motorbikes.

Contributions: In this paper, we propose an approach to proba-

bilistically estimate the worst-case number of vehicles at the cross-

road. Our approach takes vehicles’ statistical data into account. In

particular, we consider the number of units of all di%erent vehicle

models sold in Europe over the last years and derive a probability

1We consider internal/systemic interference due to simultaneous access to the medium.
However, the proposed technique can be easily extended to external interference as
well, assuming that we can "nd an upper bound for it. On the other hand, in this
application, it is meaningful to grant vehicles exclusive use of the communication
channel, thus, reducing external interference to a negligible minimum.



distribution of the length of vehicles. Based on this, we can compute

the probability of having vehicles with a given length at the inter-

section and, therefore, estimate the worst-case number of vehicles

in the crossroad’s surroundings.

We then incorporate these probabilistic estimates into the de-

sign and analysis of a specialized VANET, for which we assess

interference in the network and derive guarantees on reliability.

These guarantees are also of probabilistic nature and, hence, there

is always a residual risk of not meeting them. As a result, fail-safe

behavior needs to be implemented, e.g., the crossroad should switch

back to conventional tra!c lights in case something goes wrong.

As discussed later in more detail, the proposed method has the

advantage of being independent of the crossroad and its operation

conditions, i.e., it does not require collecting statistical data from

individual crossroads such as, for example, the number of vehicles

per hour of the day, etc., which is considerably more cumbersome

to obtain.

Finally, we illustrate the bene"ts of the proposed approach on a

detailed case study and by means of simulations using OMNeT++

[15].

Structure of the paper: Section 2 discusses related work, while

Section 3 presents our case study consisting of an intelligent cross-

road. Apart from the crossroad’s operation, we discuss how to

obtain the worst-case number of vehicles both in a deterministic

and a probabilistic fashion. Section 4 describes the used commu-

nication scheme and Section 5 provides an evaluation comparing

the proposed probabilistic with the deterministic approach on the

basis of OMNeT++. Finally, Section 6 concludes the paper.

2 RELATEDWORK

A considerable number of research papers are concerned with the

design of intelligent crossroads. In the following, we provide a brief

overview of the most relevant works for this paper.

The need for automated road tra!c to relieve congestion and

prevent tra!c jams has been acknowledged before [1]. Since then,

many approaches were presented to solve typical problems or to

improve overall e%ectiveness of roads, intersections, etc. In [12],

for example, route guidance and driver information systems were

proposed to manage and improve tra!c #ow. This also included

several strategies for intersection control. However, the described

method from [12] relies on tra!c lights managing themselves with

no connection to the vehicles and, hence, it cannot adapt to changes

in the tra!c.

In [2], the so called Ballroom Intersection Protocol (BRIP) was

proposed, which achieves deadlock-free tra!c management at a

constant speed. In contrast to this paper, BRIP assumes vehicles to

have identical lengths, which limits its performance when being ap-

plied to real-world crossroads (where vehicles with di%erent lengths

are typically encountered). In addition, this work rather focuses

on the crossroad’s operation and does not analyze communication

requirements.

Another approach in [16] proposed a fuzzy-logic controller for

tra!c lights at intelligent intersections. The phases of red and green

lights are adapted dynamically to the vehicle density on each lane

using fuzzy rules. The concept in [16] can be seen as an intermedi-

ate stage between conventional tra!c lights and the concept by this

paper. However, in contrast to our approach, no considerations con-

cerning communication reliability and the impact of high vehicle

counts are made.

The approach in [4] proposed a VANET-based control for intelli-

gent tra!c lights. Here, again, periods of red and green lights are

adjusted according to the tra!c #ow at the intersection. This is

based on information about vehicle numbers and #ow densities

obtained in real time. In contrast to the approach presented here,

vehicle counts are not available for consideration at design time,

and their impact on communication reliability is not analyzed.

A concept combining clustering of vehicles with VANETs is pro-

posed in [7]. Here, vehicles are grouped/clustered depending on

their turn direction. The used communication scheme is also based

on clustering, which leads to a signi"cant communication overhead

in the case of high numbers of isolated members looking for clus-

ters to join. Unlike the concept we propose, the approach in [7]

does not take vehicle numbers and their impact on communication

performance into account.

In [3], VANETs are used for improving communication between

tra!c lights in an urban environment. Here, multiple tra!c lights

interact to optimally balance vehicles between them. The vehicle

numbers are observed considering in#uential factors like the time of

day, yet this is done through extensive surveying beforehand, which

we intend to avoid in our approach by using existing statistical data.

Furthermore, unlike in the proposed concept, the impact of high

vehicle numbers on communication reliability is not considered.

In [11], a VANET-based intelligent signaling system is proposed,

which focuses on improving e!ciency and safety over multiple

tra!c zones. Here, "xed vehicle lengths and #ow densities are

assumed, which results in decreased performance when applied

to real-world scenarios. In contrast to our approach, the impact

of varying vehicle lengths and of communication reliability is not

analyzed.

3 INTELLIGENT CROSSROAD

As discussed above, at an intelligent crossroad, conventional tra!c

lights are replaced by an RSU, which then synchronizes the order in

which vehicles cross the intersection. In this paper, for simplicity,

we consider a two-lane crossroad where only straight trajectories

are allowed at the intersection. Although the operation logic will

be di%erent, note that our proposed design and analysis of the

crossroad VANET can be easily extended to multi-lane roads where

vehicles are allowed to turn right/left.

The RSU tracks and controls the speeds of vehicles in its sur-

roundings, which we have set to a radius R = 200m from the

intersection’s center. This poses real-time requirements on the re-

sponse time between vehicles and the RSU, which has to be below

a certain boundary so as to guarantee safety.

Operation logic: Since only straight trajectories are allowed, to

minimize congestion at the intersection, it is meaningful to syn-

chronize vehicles on opposite directions such that these cross si-

multaneously. That is, the vehicle going from sector 1 to 2 and the

vehicle going from sector 3 to 4 in Fig. 1 are synchronized to cross



simultaneously with a constant speed V . To cross the intersection,

these require a time equal to:

t1/2 = t3/4 =
2S

V
,

where S is the size of one sector. The vehicle on the 1/2 lane requires

an additional time equal to
L1/2
V being L1/2 the vehicle’s length to

leave the intersection, during which this remains (at least partially)

blocked. Similarly, the vehicle on the 3/4 lane will block the in-

tersection by an additional time given by
L3/4
V with L3/4 being its

length.

Now, considering thatmax(L1/2,L3/4) returns the greatest value

between L1/2 and L3/4, the intersection will be blocked for a total

time equal to:

tright/left =
2S +max(L1/2,L3/4)

V
.

Similarly, the vehicle going from sector 2 to 3 and the vehicle

going from sector 4 to 1 in Fig. 1 are synchronized to cross simulta-

neously with a constant speed V . Proceeding as before, we obtain:

tup/down =
2S +max(L2/3,L4/1)

V
,

where L2/3 and L4/1 are the lengths of the vehicles on the 2/3 and

on the 4/1 lane respectively.

During tright/left, the intersection is blocked by vehicles on lanes

1/2 and 3/4. Hence, vehicles on lanes 2/3 and 4/1 cannot cross.

In the same way, during tup/down, the intersection is blocked by

vehicles on lanes 2/3 and 4/1 impeding that vehicles on 1/2 and

3/4 cross.

Assuming that vehicles on lanes 1/2 and 3/4 reach the intersec-

tion simultaneously at time t0, vehicles on lanes 2/3 and 4/1 must

also reach the intersection simultaneously at earliest at time t0 +

tright/left. As a result, vehicles on lanes 1/2 and 3/4 can cross again

at earliest at time t0 + tright/left + tup/down, i.e., they need to be sepa-

rated by a distance equal to 4S +max(L1/2,L3/4) +max(L2/3,L4/1)

measured from front bumper to front bumper. This turns out to

be the same inter-vehicle separation for vehicles on lanes 2/3 and

4/1. Note that the inter-vehicle separation cannot be less than this

value according to the described operation logic.

3.1 Worst-case number of vehicles

In this section, we obtain the worst-case number of vehicles in the

crossroad’s surroundings, which we later need to design the used

VANET. To this end, for the sake of comparison, we make use of a

deterministic approach and of a probabilistic approach.

Deterministic approach: This is a straightforward approach, as

discussed previously, which consists in computing the maximum

number of vehicles that physically "t into the crossroad’s surround-

ings, i.e., within a radius R = 200m from the intersection’s center.

Clearly, the maximum number of vehicles results when consider-

ing that all vehicles have the minimum possible length denoted by

Lmin , leading to an inter-vehicle separation of 4S + 2Lmin on each

of the four lanes.

On the other hand, vehicles on lanes 2/3 and 4/1 are shifted by

2S + Lmin with respect to vehicles on lanes 1/2 and 3/4. To take

this shifting into account, we observe that these vehicles physically

S
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Figure 1: Two-lane intelligent crossroad allowing for syn-

chronized straight trajectories in all directions. The inter-

section is divided into four sectors, i.e., 1, 2, 3 and 4, which

are blocked by vehicles at di!erent points in time. In the pic-

ture, for simplicity, vehicles’ lengths are assumed to be the

same, i.e., L1/2 = L3/4 = L2/3 = L4/1 = L.

"t into the empty slots between vehicles on lanes 1/2 and 3/4 as

illustrated by red arrows in Fig. 1. In this case, the inter-vehicle

separations on lanes 1/2 and 3/4 reduce to half the original value,

i.e., to 2S + Lmin , whereas lanes 2/3 and 4/1 are empty.

Now considering a sector size S = 4m and a vehicle’s minimum

possible length Lmin = 1.8m, which corresponds to a motorbike,

the worst-case number of vehicles on one such lanes is given by:

nmax =

⌈

R

2S + Lmin

⌉

=

⌈

200m

9.8m

⌉

= 21. (1)

As a result, the deterministic estimation of the worst-case num-

ber of vehicles at the crossroad is given by 2 × nmax , i.e., two lanes

with inter-vehicle separations of 2S + Lmin . This deterministic

vehicle count is safe, but overly pessimistic, which results in an

ine!cient design of the VANET. As a consequence, we propose

using the more realistic, probabilistic estimation as discussed next

in detail.

Probabilistic approach: Although nmax as per (1) is possible, its

occurrence is extremely unlikely. In other words, it is extremely

unlikely that only motorbikes are in the crossroad’s surroundings.

To obtain a more realistic estimation, we propose taking into

account the probability of occurrence of a given number of vehi-

cles. To this end, we need to derive a probability distribution of

the number of vehicles at the crossroad, which can be done by

collecting statistical data from the crossroad either by observation

or simulation. However, this turns out to be time-consuming and

strongly depends on the particular crossroad being observed or

simulated.
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Figure 2: Length of vehicles sold in Europe from 2005 to 2015

(green dots) and the resulting weighted distribution (dashed

line).

To overcome this problem, we propose using publicly available

statistical data of vehicles’ sales on the European market from 2005

to 2015 [6], combined with sales of exceptionally short cars [5],

motorbikes [14] and trucks [6]. This leads to a weighted distribution

of 258 di%erent vehicle lengths in Europe as displayed by green

dots in Fig. 2.

Computing all possible combinations of up to 21 vehicles within

the crossroad — i.e., the worst-case number of vehicles as per (1)

— amounts to 21
258 possibilities. Clearly, it is not feasible to use

exhaustive methods for this. As a result, to make this tractable, we

propose clustering vehicles according to similarities. This way, we

obtained x = 8 weighted categories, whose resulting probability

distribution is displayed by the dashed line in Fig. 2.

As discussed previously, the worst-case number of vehicles at

the crossroad can be e%ectively computed as the number of vehi-

cles on lanes 1/2 and 3/4 with inter-vehicle separations of 2S +

max(L1/2,L3/4). The longest of two vehicles L1/2 or L3/4 determines

the separation to the next vehicle on both these lanes. Therefore,

the probability distribution gets shifted from single vehicles to

paired vehicles representing the probability that either L1/2 or L3/4
is longer, see Fig. 3.

From here onward, it is possible to describe the number of vehi-

cles on a given lane with a multinomial distribution [10], which has

the following probability mass function f (·):

f (k1, ...,kx ,p1, ...,px ) =
n!

k1!...kx !
(pk1
1

× ... × p
kx
x ). (2)

Here, x is the number of di%erent categories of vehicles, n =
∑x
i=1 ki is the number of vehicles on a lane and pi is the correspond-

ing probability that the given vehicle is of type i with 1 ≤ i ≤ x .

Eq. (2) gives the probability of having n vehicles on a lane, whereby

k1 are of type 1, k2 are of type 2, and so on. Note that the order of

vehicles on the lane plays no role.

So far, we found an upper bound for n with nmax = 21 as per (1),

i.e., only motorbikes on the crossroad. The minimum bound nmin ,

on the other hand, can be found by assuming that the crossroad
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Figure 3: Change in probability when considering (paired)

vehicles combinations (red line), compared to the original,

single vehicle distribution from Fig. 2 (blue line). The higher

impact of longer vehicles leads to a probability shift towards

the longer vehicles.

only contains the longest vehicles, i.e., trucks with Lmax = 7.82m:

nmin =

⌈

R

2S + Lmax

⌉

=

⌈

200m

15.82m

⌉

= 13. (3)

Next, we calculate all possible combinations of k1 to kx for all

possible n ∈ [13, 21], with 1 ≤ x ≤ 8. Now, not every combination

of n vehicles is valid. If the combined lengths and inter-vehicle

separations exceed R, the combination is not valid.

Similarly, if the combined length is below R, but there is room

for additional vehicles, the combination is not valid either, since

we are interested in the worst-case number of vehicles, i.e., the

maximum possible number of vehicles that "t into R. As a result, a

valid combination for a vehicle count n is a set (k1, ...,kx ), where

the following condition holds for any 1 ≤ i ≤ x :

R − (2S + Li ) < 2n · S + k1 · L1 + ... + kx · Lx < R.

Computing all these cases for all n ∈ [13, 21] leads to the prob-

abilities of worst-case vehicle counts on a single lane and at the

crossroad shown in Table 1 — nine di%erent worst-case vehicle

counts in total. Here, the worst-case number of vehicles at the

crossroad equals twice the lane’s worst case. This is due to the

previously described mirroring of the opposing lanes. Therefore,

these probabilities correspond to the vehicle counts of 26, 28, ..., 42.

Accumulating these probabilities shows that the maximum number

of vehicles at the crossroad is ≤ 32 in 99.9942% of all cases, or ≤ 34

in (1 − 1.68 × 10
−10)% of all cases.



On one lane (n) At the crossroad (2n) Probability

21 42 ≈0

20 40 1.1880E-33

19 38 5.6016E-22

18 36 1.6768E-12

17 34 5.7923E-05

16 32 0.59656894

15 30 0.40271516

14 28 6.5791E-04

13 26 6.6878E-08

Table 1: Resulting worst-case numbers of vehicles with their

corresponding probabilities.

3.2 Fail-safe behavior

Note that, since we are now using probabilistic estimates of the

worst-case number of vehicles, there exists a residual risk that

these do not hold. As a result, the intelligent crossroad should be

implemented in such a way that it allows for fail-safe behavior.

In particular, the RSU switches to manual operation, i.e., it starts

behaving as a conventional tra!c light, if safety is compromised.

However, in this case, we need to consider that sudden mode

switches might lead to hazardous situations. To ease this transition,

mode switches will be preceded by a warning signal, e.g., a yellow

tra!c light. The conditions leading to a mode switch need to be

de"ned clearly in advance. For example, these conditions can be

(i) a vehicle deviates from the crossroad schedule for more than a

previously speci"ed time or (ii) the maximum number of vehicles —

expected or allowed at the crossroad — is exceeded.

A vehicle may deviate from schedule, if the driver — in case

of a manual vehicle — disregards some signs or the vehicle loses

communication to the RSU. Clearly, this leads to a mode switch

so as to ensure the safety of all other participants. In this paper,

we assume that vehicles are autonomous and only deviate from

the given schedule in case of communication loss. Therefore, we

focus on analyzing packet loss on the network. With respect to

manual vehicles, a deviation can be detected by external sensors

(e.g., radars) at the crossroad. This enables the RSU to detect vehicles

independent of whether communication was successful or not, and

to measure their speeds.

4 CROSSROAD VANET

In this section, we present a communication scheme for an intelli-

gent crossroad, which we later use to evaluate the presented theory.

All vehicles within a certain distance from the intersection periodi-

cally transmit their current coordinates and speed to the RSU. The

RSU then processes this data and replies with updated speed values,

which vehicles have to adopt. The periodicity of the transmission

is determined by the speed of vehicles and the required physical

resolution, i.e., the distance a car can travel before it must receive

an update. For example, if the speed is 50km/h and an update must

be received every 1m traveled, the transmission interval is equal

to 1m
50km/h

= 72ms .

To lower complexity and decrease overhead, we assume that

vehicles and the RSU are within range of each other and, hence, can

communicate directly in a single-hop fashion. This avoids delays

sync replycontention

lsyn tcon lrep

Figure 4: Every transmission cycle consists of three parts:

sync, contention phase and reply. A sync message informs

vehicles about the length of the contention phase, where

these can transmit a request message to the RSU. At the end

of the cycle, the RSU replies to all vehicles with a single re-

ply message.

over multiple hops and can be easily achieved with o%-the-shelf

hardware, as shown in [17], where tests showed possible ranges of ≥

300m using 5.9GHz vehicle-to-vehicle modems. We further assume

that there is no interference with neighboring systems, which is

typically achieved by using multiple (di%erent) radio channels.

Similar to other VANET scenarios, a peculiarity of an intelligent

crossroad is that communication between vehicles and RSU is only

established for a short time. Using classic synchronous communi-

cation methods for data exchange, such as TDMA, hence results in

considerable overhead, since time slots must be re-assigned contin-

uously. To reduce this complexity, we instead use a hybrid approach

as depicted in Fig. 4. Here, the RSU periodically transmits a sync

beacon, which indicates the start of a new communication cycle

and informs newly arrived vehicles about the intersection. This

is followed by a contention phase, in which vehicles transmit a

request packet to the RSU using a random transmission pattern, as

explained later. At the end of the cycle, i.e., after all request mes-

sages have been received, the RSU calculates a new speed value for

each vehicle and transmits these together in one reply messages.

This hybrid, RSU-initiated topology has the advantage that there

are only collisions, where these cannot be prevented, i.e., among

request messages in the contention phase. The RSU messages, i.e.,

sync and reply, on the other hand, are not disrupted, which increases

the overall reliability of the network. In the next section, we will

analyze the collisions within the contention phase in more details.

4.1 Medium access control

As mentioned before, synchronous protocols would incur in high

overhead due to the high mobility within the network. To solve

this, we instead use a hybrid frame structure and implement an

asynchronous protocol in the contention phase to e%ectively con-

vey data. To this end, any asynchronous medium access control

(MAC) protocol could be used, for example CSMA. However, we

decided to use the probabilistic approach presented in [13], where

vehicles transmit requests as a sequence of redundant packets with

random back-o% times in-between transmissions. This scheme has

the advantage that it allows calculating worst-case transmission

reliabilities, which facilitates a connection to the presented theory

of this paper. In addition, it does not rely on sending acknowledg-

ments — these are also not needed, since feedback is obtained from

the reply message — which further reduces overhead and generated

tra!c and, therefore, improves the overall transmission reliability.

Using the MAC protocol from [13], vehicles now transmit their

request message k times within the contention phase of length tcon .



Each of these transmission requires certain amount of time depend-

ing on the number of bits to be transmitted and the transmission

rate. We refer to this time as packet length and denote the length of

the request message by lr eq . The time in-between two consecutive

request messages is randomly selected within a lower boundary

tmin and an upper boundary tmax :

tmax =
tcon − lr eq

k
,

tmin =
tmax

2
.

To evenly spread messages across the whole contention phase

tcon and, therefore, achieve a lower collision rate, tmax is set to the

highest possible value. That is, the k-th packet of a vehicle must

start transmitting at latest at tcon − lr eq time to "nish transmission

before the end of the contention phase. Similarly, tmin is chosen as

small as possible to achieve a greater interval tmax−tmin and, hence,

increase the number of possible choices for back-o% times, which

is again bene"cial for reliability. However, tmin is lower bounded

to tmax

2
, since smaller values would allow more than one request

message within tmax − tmin , for example, if a vehicle randomly

selects tmin as a back-o% multiple times. As shown in [13], this

reduces the possible reliability and is therefore not desirable.

The probability that one packet of a given vehicle is interfered

results from the ratio between 2(2n − 1)lr eq , i.e., the fraction of

the interval [tmin , tmax ] that is potentially being used by other

vehicles, and tmax − tmin , i.e., the total length of this interval. The

term 2(2n− 1)lr eq results from the fact that potentially 2n− 1 other

vehicles are sending packets of length lr eq and that any overlap-

ping between two packets is considered to yield packet loss, which

explains the factor 2. Since this probability is independent of the in-

dividual transmission, a binomial distribution can be used allowing

to calculate the resulting worst-case reliability of the network:

p = 1 −

(

2(2n − 1)lr eq

tmax − tmin

)k

, (4)

where again 2n is the number of vehicles at the crossroad, tmin

and tmax are back-o% interval boundaries, lr eq is the length of a

request message and k is the number of (redundant) transmissions.

Eq. (4) assumes a deterministic value of n. However, we now

have di%erent possible values of n with di%erent probabilities as

per Table 1. As a result, when integrating probabilistic estimates of

the worst-case number of vehicles, (4) must be extended to:

p̄ =

21
∑

n=13

pn

(

1 −

(

2(2n − 1)lr eq

tmax − tmin

)k
)

, (5)

wheren corresponds to the worst case vehicle count listed in Table 1

with 13 ≤ n ≤ 21 and pn is the corresponding probability of n.

4.2 Physical layer

Using the physical layer (PHY) and protocol packet data unit (PPDU)

header of the IEEE 802.11p standard [8], each transmission consists

of a preamble "eld, a signal "eld and variable length data "eld —

see Fig. 5. The preamble consists of a series of pre-de"ned symbols

that allow the demodulator to lock onto the carrier frequency and

preamble payloadsignal

32µs variable length

CRC

8µs

Figure 5: Protocol packet data unit (PPDU) header from IEEE

802.11p.

decode the data. The signal "eld de"nes the data "eld length and the

transmission rate, while the payload of the message is contained in

the data "eld. In order to securely detect any corrupted transmission,

we include a 2 bytes cyclic redundancy check (CRC) into the data

"eld.

The IEEE 802.11p PHY can support data rates between 3 and

27Mbps, when using a channel bandwidth of 10MHz [8]. However,

since the data rate is unknown prior to reception of the signal "eld,

the preamble and signal "eld are transmitted at the lowest rate of

3Mbps for improved robustness. This results in a duration of 32 µs

and 8 µs respectively. For the data "eld, we select 6Mbps, which

is a good compromise of robustness and transmission speed. The

total length of any packet can hence be calculated:

lpacket = 32 µs + 8 µs +
payload + 2bytes

6Mbps
.

Regarding the payload, each request message contains the loca-

tion and speed of a vehicle as well as an identi"er, which is needed

associate the speed values within the reply message to the corre-

sponding vehicles. Assuming 8 bytes for the GPS position, 1 byte

for speed and 17 bytes for the ID2, the length of a request message

is 78 µs . Similarly, the sync message holds 10 bytes of information

about the intersection, e.g., number of lanes, etc., and, hence, has a

length of lsyn = 56 µs . The reply message, on the other hand, is of

variable length, depending on how many request messages were

(successfully) received. For each received message, it replies with

17 bytes ID and 1 byte speed.

5 EVALUATION

In this section, we present the results of a simulation based on the

OMNeT++ network simulation framework [15] and an extension

for mobile and wireless networks named MiXiM [9]. This allows

us to e%ectively simulate our intelligent crossroad with di%erent

physical parameters and to record statistical values for very large

numbers of transmissions.

In particular, each simulation was performed with di%erent pa-

rameters, for which at least 50,000 cycles have been simulated each

time. Channel parameters were taken from [17], i.e., transmission

power, receiver sensitivity, etc. For simplicity, we neglect packet

loss due to channel errors, fading, etc. Note that this assumption

does not invalidate the presented results, since the proposed MAC

is highly robust against such e%ects [13].

In the following, we compare the proposed approach by this paper

and the more straightforward deterministic approach. The proposed

approach incorporates probabilistic estimates of the worst-case

number of vehicles into the VANET’s design, computing reliability

2We use the vehicle identi"cation number (VIN) as this does not only contain a unique
production number, but also useful information about the vehicle itself, such as weight,
length, etc.
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Figure 6: Relation between the speed of a vehicle and the

resulting worst-case transmission reliability.
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Figure 7: Relation between the speed of a vehicle and its

transmission reliability.

as per (5). The deterministic approach considers a "xed worst-case

number of vehicles equal to 42 based on (1) and uses (4) to compute

reliability.

Determining k: The underlying MAC layer is based on transmit-

ting k request messages within the contention phase, for which

formulas are provided to calculate tmin , tmax , and reliability (p or

p̄). On the other hand, k must be determined experimentally due to

its non-linearity and dependency on the other parameters. For this

reason, we conducted an experiment, as depicted in Fig. 6, where

the relation between the speed of a vehicle and its transmission

reliability is shown for di%erent k . As we can see, a faster vehicle

leads to a lower possible reliability. This is due to fact that the con-

tention phase tcon becomes shorter, which we previously de"ned

as the time a vehicle needs for traveling 1m at a given speed. Fur-

ther, a higher k leads to higher possible reliability for lower speeds,

which then quickly decreases for higher speeds. To achieve good

performance over a high range of speeds, we select k = 3 for the

following experiments.

Reliability vs speed: Next, we analyze how a vehicle’s speed af-

fects its transmission reliability as shown in Fig. 7. Here, we can see
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Figure 8: Relation between the payload size of a requestmes-

sage and the transmission reliability.
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Figure 9: Relation between the transmission reliability and

the required physical resolution, i.e, the distance a vehicle

travels at 50km/h to achieve this reliability.

that, with (5), i.e., a more precise estimate for the vehicle number n,

the network can bene"t with a considerable higher reliability. This

e%ect is observable for both simulated and non-simulated proposed

and deterministic approaches. Note that the simulated curves show

the average reliability, which is typically higher than the computed

worst-case reliability as per (4) and (5).

Reliability vs payload: So far, we considered a payload size of

28 bytes containing only the minimum required information, e.g.,

speed, ID, GPS, and CRC. In case additional information needs to

be conveyed, for example, vehicle priority, etc., the request mes-

sage becomes longer, which a%ects the transmission reliability, as

shown in Fig. 8. As expected, an increasing payload size reduces

the possible reliability, since a longer message is more vulnerable to

being interfered by another packet. This e%ect is slightly non-linear

due to channel saturation e%ects. Again, the proposed curves show

a considerable improvement over the deterministic one.

Reliability vs physical resolution:When a vehicle travels faster

through the intersection, it has less time to transmit its data within a

given distance, e.g, 1m. In Fig. 9, we show the dependency between



this distance, also called (physical) resolution, and the achievable

reliability as per (4) and (5) for a speed of 50km/h. As we can see,

the physical resolution increases only very slowly for rising relia-

bility until starting to strongly increase from a reliability of 99%

onwards and getting unbounded. That is, reliabilities close to 100 %

are hard to achieve and, therefore, come at high costs when using

asynchronous protocols.

6 CONCLUDING REMARKS

In this paper, we have incorporated probabilistic estimates into the

design and analysis of a crossroad VANET, based on which we were

able to derive more accurate guarantees on reliability. We showed

that it is possible to reduce pessimism and overdesign inherently

caused by deterministic estimations in this case, while still retaining

a high level of safety.

We illustrated bene"ts by the proposed approach based on a

detailed case study and by simulations using OMNeT++. These

showed that using probabilistic estimates allows us to roughly

achieve 20% higher speed, or 35% larger payloads in the VANET

without a%ecting the amount of reliability.

In future work we plan to extend this approach by modeling the

entire system probabilistically (not only the worst-case number of

vehicles, but communication and computation processes as well).

This way, we intend to achieve an entirely probabilistic design and

analysis approach of a VANET.
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