
Advanced Scheduling Techniques for
Mixed-Criticality Systems

Dissertation
zur Erlangung des akademischen Grades

Dr.-Ing.

Frau M.Sc. Mitra Mahdiani
geboren am 30.April 1983 in Kordkoy (Iran)

Fakultät für Informatik
an der Technischen Universität Chemnitz

Acknowledgments

First and foremost, I would like to express my special appreciation and sincere gratitude
to my advisor Professor Alejandro Masrur for the continuous support of my Ph.D study
and research, for all his unfailing patience, motivation, enthusiasm, and immense knowledge.
Conducting the academic study regarding such a difficult topic couldn’t be as simple as he
made this for me. His guidance helped me in all the time of research and writing of this thesis.
I am very fortunate to have him as my supervisor, you have been a tremendous mentor for
me. I would like to thank you for encouraging my research and for allowing me to grow as a
research scientist. Your advice on both research as well as on my career have been priceless.
Also, I would like to express my deepest gratitude to Professor Matthias Werner for accepting
to be my second supervisor, thank you for your valuable time, co-operation, and generosity
which set this work possible as it is till the end. Your support has been the most profitable
experience for me.

To all my colleagues, I am deeply and forever grateful for the stimulating discussions, for their
friendship and support, and their unconditional help whenever I needed it and, of course, for
creating a cordial, pleasant and friendly working atmosphere, for all the good times, laughter
and fun we have had in the last four years. I would also like to thank all of my friends who
supported me in writing, and incented me to strive towards my goal.

On a more personal level, there are several people that deserve acknowledgment. Last but not
least, I would like to thank my family for their continuous and unparalleled love, unconditional
and endless support, both financially and emotionally throughout my doctorate, and my life
in general. In particular, the patience and understanding shown by my mother and father
during all these years is greatly appreciated. I am forever indebted to my dear parents for
giving me the opportunities and experiences that have made me who I am. They selflessly
encouraged me to explore new directions in life and seek my own destiny. This journey would
not have been possible if weren’t for them, and I dedicate this milestone to them.

Finally, I gratefully acknowledge the support by the DAAD for helping and providing the
funding for the work at the beginning and during four and a half years of my Ph.D.

All of you have been there to support me for my Ph.D. Thanks for your encouragement!

Chemnitz, November 2019

i

ii

To my parents.

iii

iv

“It Always Seems Impossible Until It Is Done.”
— Nelson Mandela

v

vi

Abstract

Typically, a real-time system consists of a controlling system (i.e., a computer) and a con-
trolled system (i.e., the environment). Real-time systems are those systems where correctness
depends on two aspects: i) the logical result of computation and, ii) the time in which results
are produced. It is essential to guarantee meeting timing constraints for this kind of systems
to operate correctly. Missing deadlines in many cases — in so-called hard real-time systems
— is associated with economic loss or loss of human lives and must be avoided under all
circumstances.

On the other hand, there is a trend towards consolidating software functions onto fewer pro-
cessors in different domains such as automotive systems and avionics with the aim of reducing
costs and complexity. Hence, applications with different levels of criticality that used to run
in isolation now start sharing processors. As a result, there is a need for techniques that allow
designing such mixed-criticality (MC) systems — i.e., real-time systems combining different
levels of criticality — and, at the same time, complying with certification requirements in
the different domains.

In this research, we study the problem of scheduling MC tasks under EDF (Earliest Deadline
First) and propose new approaches to improve scheduling techniques. In particular, we
consider that a mix of low-criticality (LO) and high-criticality (HI) tasks are scheduled on
one processor. While LO tasks can be modeled by minimum inter-arrival time, deadline, and
worst-case execution time (WCET), HI tasks are characterized by two WCET parameters:
an optimistic and a conservative one.

Basically, the system operates in two modes: LO and HI mode. In LO mode, HI tasks run
for no longer than their optimistic execution budgets and are scheduled together with the
LO tasks. The system switches to HI mode when one or more HI tasks run for more than
their conservative execution budgets. In this case, LO tasks are immediately discarded so as
to be able of accommodating the increase in HI execution demand. We propose an exact test
for mixed-criticality EDF, which increases efficiency and reliability when compared with the
existing approaches from the literature. On this basis, we further derive approximated tests
with less complexity and, hence, a reduced running time that makes them more suitable for
online checks.

vii

viii

List of Acronyms

ABS Anti-lock Braking System

AMC Adaptive Mixed Criticality

BF Best Fit

CBEDF Criticality-Based Earliest Deadline First

CO Carry-Over execution demand

dbf Demand Bound Function

DM Deadline Monotonic

ECDF Earliest Carry-over Deadline First

ECU Electronic Control Unit

EDF Earliest Deadline First

EDF-VD Earliest Deadline First with Virtual Deadline

FCFS First Come First Served

FF First Fit

FFD First Fit Decreasing

FIFO First In First Out

FP Fixed Priority

fpEDF fixed-priority EDF

GA Genetic Algorithm

HI High criticality

HPA Heuristic Priority Assignment

LO Low criticality

LSF Least Laxity First

LSTF Least Slack Time First

MC Mixed Criticality

MCS Mixed-Criticality System

NP Nondeterministic Polynomial

OCBP Own Criticality-Based Priorities

OPA Optimal Priority Assignment

PC Personal Computer

ix

LIST OF ACRONYMS

QPA Quick convergence Processor-demand Analysis

RM Rate Monotonic

RR Round Robin

RTA Response-Time Analysis

SJF Shortest Job First

SJN Shortest Job Next

SRTF Shortest Remaining Time First

TT Time Triggered

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time

WF Worst Fit

x

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. Contributions . 3
1.3. Structure of this Thesis . 4

2. Concepts, Models and Assumptions 7
2.1. Real-Time Systems . 7

2.1.1. Tasks Models . 8
2.2. Scheduling Policies . 8

2.2.1. Feasibility versus Schedulability . 9
2.2.2. Schedulability Test . 10

2.3. Mixed-Criticality Systems . 10
2.4. Basic Nomenclature . 11
2.5. The Earliest Deadline First Algorithm . 13

2.5.1. EDF-VD . 14
2.5.2. Mixed-Criticality EDF . 15
2.5.3. Demand Bound Function . 16

3. Related Work 17
3.1. Uniprocessor Scheduling . 17

3.1.1. Uniprocessor Scheduling Based on EDF 18
3.2. Multiprocessor Scheduling . 19

3.2.1. Multiprocessor Scheduling Based on EDF 20

4. Introducing Utilization Caps 23
4.1. Introducing Utilization Caps . 23

4.1.1. Fixed utilization caps . 24
4.1.2. Optimized utilization caps . 25

4.2. Findings of this Chapter . 27

5. Bounding Execution Demand under Mixed-Criticality EDF 29
5.1. Bounding Execution Demand . 30
5.2. Analytical Comparison . 35

5.2.1. The GREEDY Algorithm . 35
5.2.2. The ECDF Algorithm . 36

5.3. Finding Valid xi . 37
5.4. Findings of this Chapter . 40

6. Approximating Execution Demand Bounds 41
6.1. Applying Approximation Techniques . 41
6.2. Devi’s Test . 41

6.2.1. Per-task deadline scaling . 42
6.2.2. Uniform deadline scaling . 44
6.2.3. Complexity . 46

xi

Contents

6.3. Findings of this Chapter . 47

7. Evaluation and Results 49
7.1. Mixed-Criticality EDF . 49
7.2. Obtaining Test Data . 49

7.2.1. The Case Di = Ti . 49
7.2.2. The Case Di ≤ Ti . 50

7.3. Weighted schedulability . 50
7.4. Algorithms in this Comparison . 51

7.4.1. The EDF-VD and DEDF-VD Algorithms 51
7.4.2. The GREEDY algorithm . 52
7.4.3. The ECDF algorithm . 52

7.5. Evaluation of Utilization Caps . 53
7.5.1. 10 tasks per task set . 53
7.5.2. 20 tasks per task set . 55
7.5.3. 50 tasks per task set . 57
7.5.4. Comparison of runtime . 59

7.6. Evaluation of Execution Demand Bounds . 61
7.6.1. Comparison for sets of 10 tasks . 61
7.6.2. Comparison for sets of 20 tasks . 64

7.7. Evaluation of Approximation Techniques . 67
7.7.1. Schedulability curves . 68
7.7.2. Weighted schedulability . 69
7.7.3. Comparison of runtime . 72

7.8. Summary . 73

8. Conclusion and Future Work 77
8.1. Outlook/Future Perspectives . 82

Bibliography 83

A. Introduction 91
A.1. Multiple Levels of Criticality . 91

A.1.1. Ordered mode switches . 91
A.1.2. Unordered mode switches . 93

B. Evaluation and Results 95
B.1. Uniform Distribution for Task Periods . 95

xii

Chapter 1.

Introduction

A computer-based system that is embedded within the larger system is called an embedded
system. An embedded system periodically executes or controls a specific function and, in
contrast to a personal computer (PC), is not designed to be programmed by the user [53] [95].
Nowadays, our surroundings are full of embedded systems such as mobile phones, pacemakers,
hearing aids, refrigerators, toothbrushes, cars etc.

The importance of embedded systems is such that 98% of all manufactured microprocessors
are used in embedded systems and only 2% of them are applied to general-purpose comput-
ers and devices [41] [93]. In 2008, the number of available embedded microprocessors was
estimated about 30 microprocessors per person in developed countries [41]. It is interest-
ing to notice that, based on further research, this number of processors will be increased
to 100 processors per each person by early 2020, with more than 50 billions connected de-
vices [1] [78].

According to the Embedded Systems Institute in the Netherlands (ESI) [2], there are six
groups of embedded systems that are categorized as automotive systems, consumer elec-
tronics (such as domestic appliances or mobile devices), infrastructure systems (i.e., public
or industrial systems with a priority on efficient resource management and control of safety-
critical actions), avionics, professional systems (i.e., systems applied for work-related purposes
such as medical equipment) and defense systems.

Regardless of their category, since embedded systems interact with their environment, they
usually need to comply with real-time requirements or deadlines and are, hence, often re-
garded as real-time systems. A real-time system is one in which the correctness of the
computations not only depends on their logic, but also on the time at which the result is pro-
duced. In other words, a system is real-time if its computations/tasks need to be completed
on time. This makes scheduling an important aspect, for which there are already solutions
in the literature.

On the other hand, most existing solutions for scheduling disregard the fact that not all dead-
lines are equally critical. Moreover, in many domains such as automotive systems, avionics
and medical devices, embedded software has to pass a strict certification process according
to different criticality levels [73] [85]. Clearly, the certification of high-criticality (HI) tasks
is more rigorous and well-regulated than that of low-criticality (LO) tasks and, hence, LO
tasks are usually more error-prone than HI tasks. Although aerospace and automotive safety
regulations define around five levels of criticality, only two levels are considered in this disser-
tation for the ease of exposition. However, the proposed techniques remain valid for multiple
levels of criticality.

The above is of particular concern when consolidating software functions onto fewer processing
units, since functions or tasks with different levels of criticality start being executed on
common hardware platforms. This allows for a reduction of costs and complexity, however,
it leads to mixed-criticality (MC) systems that require careful design and analysis. It may

1

Chapter 1. Introduction

happen that failures of any kind in a low-criticality (LO) tasks affect one or more high-
criticality (HI) functions/tasks.

As a result, there is a need for methods and techniques that allow designing such mixed-
criticality (MC) systems and, at the same time, complying with safety and certification
requirements. For instanse, modern cars consist of 50 to 100 ECUs (Electronic Control Units)
[68] with even more ECUs needed to perform more advanced and complex functionalities [35],
further increasing costs and weight in the car. Moreover, due to complex network between
those ECUs, guaranteeing deadlines becomes more difficult. In order to reduce the complexity
and difficulty of scheduling, there is a trend towards replacing most ECUs with fewer but
powerful processing units, i.e., towards consolidating software on fewer ECUs. However, this
also implies that different tasks of different criticalities are integrated to share one processer
[35], leading to mixed-criticality (MC) system.

The focus of this research is on scheduling techniques for mixed-criticality, real-time systems
as described above. In particular, this thesis is concerned with a set of low-criticality (LO)
and high-criticality (HI) tasks that share one processor and are scheduled under the Earliest
Deadline First (EDF) algorithm. While LO tasks can be modeled by minimum inter-arrival
time, deadline, and worst-case execution time (WCET), HI tasks are characterized by two
WCET parameters: an optimistic and a conservative one. Conservative WCET parameters
normally result from deterministic analysis and largely overestimate the actual WCET [98].
On the other hand, optimistic WCET parameters can be obtained by probabilistic or statis-
tical methods [59] [89] and are often sufficient to guarantee a correct operation in the most
cases.

Basically, the system implements two operation modes: LO and HI mode. In LO mode, HI
tasks run for their optimistic WCETs and are scheduled within virtual deadlines together with
all LO tasks. Virtual deadlines are given by xi ·Di and are usually shorter than real deadlines
Di with xi ∈ (0, 1) being referred to as deadline scaling factor. A switch to HI mode occurs
when one or more HI tasks require running for longer than its optimistic WCETs (but still
less than its conservative one). HI tasks are then scheduled within their real deadlines and LO
tasks are stopped from running in HI mode, i.e., LO tasks are immediately degraded or even
discarded, which then allows accommodating this increase in HI execution demand.

In this setting, referred to as mixed-criticality EDF, it is necessary to guarantee schedulability
of transitions between modes and not of only individual modes in isolation. This then reduces
to finding valid xi for each of the HI tasks in the system. So far, there have been different
approaches to this, which are usually based on approximating the execution demand by MC
task sets [8] [42] [40]. In particular, since a switch from LO to HI mode may occur at an
arbitrary point in time, it remains difficult to accurately bound the execution demand by
so-called carry-over jobs, i.e., HI jobs that have been released before but have not finished
executing at the point in time of switching. As a result, the known demand bounds for
mixed-criticality EDF tend to be pessimistic.

1.1. Motivation

As already mentioned, in safety-critical domains such as automotive systems, avionics, and
medical engineering, there is increasingly important trend towards integrating functions with
different levels of criticality onto a common hardware platform with the aim of reducing
costs and complexity. This leads to mixed-criticality (MC) systems where applications with
different levels of criticality start sharing processors. However, these require careful design
and analysis, since it may happen that failures of any kind in a low-criticality (LO) task

2

1.2. Contributions

affect one or more high-criticality (HI) task. As a result, there is a need for techniques
that allow designing such MC systems — i.e., real-time systems combining different levels of
criticality — and, at the same time, complying with certification requirements in the different
domains.

MC scheduling is challenging in terms of the ratio between accuracy and complexity. That is,
existing approaches are either too pessimistic or they incur to much complexity [8] [40] [42]. As
a consequence, the purpose of this thesis is to contribute to improving accuracy while keeping
a low complexity in testing schedulability of MC systems based on the EDF algorithm. The
contributions achieved by this work are stated in the following section.

1.2. Contributions

In this research, we study the problem of scheduling MC tasks under the EDF scheduling
algorithm and propose new approaches to improve scheduling techniques. We present dif-
ferent approximated and exact tests for mixed-criticality EDF, which increase efficiency and
reliability, and compare them with the existing approaches from the literature.

In particular, as mentioned above, we consider that a mix of low-criticality (LO) and high-
criticality (HI) tasks are scheduled on one processor— however, a discussion for more levels
of criticality is presented in the Appendix A.1. While LO tasks can be modeled by minimum
inter-arrival time, deadline, and worst-case execution time (WCET), HI tasks are character-
ized by two WCET parameters: an optimistic and a conservative one.

The system implements two operation modes, LO and HI mode. In LO mode, HI tasks
execute for no longer than their optimistic execution budgets and are scheduled together
with the LO tasks. The system switches to HI mode, where all LO tasks are prevented from
running, when one or more HI tasks run for longer than expected (run for their conservative
execution budgets). In this setting, the contributions by this work can be summarized as
follows:

• Introducing utilization caps: We introduce utilization caps to the original EDF-VD
(Earliest Deadline First with Virtual Deadlines) algorithm [10], which is typically used
for scheduling MC tasks. To this end, the task set is partitioned into disjoint subsets,
each of which is assigned a portion of the total processor utilization. This approach
is similar to using servers, i.e., virtual machines, however, in contrast to them, it has
advantage of not incurring starvation periods or additional context switches which can
easily jeopardize performance.

EDF-VD is then applied to each such subset or partition independently. As a result,
LO tasks within one partition are not affected by HI tasks from other partitions in
case that the latter switch to HI mode. On the contrary, HI tasks can only cause the
abortion of LO task within their own partition. This allows LO tasks in partitions not
affected by HI mode to continue running without being degraded.

• Better exact schedulability test: The approach based on utilization caps is very
simple and easy-to-use. However, it results in a sufficient but not necessary test, i.e.,
it leads to a suboptimal use of processor resources. To counteract this, we propose a
better, exact test for mixed-criticality EDF. Clearly, the proposed exact test comes at
the cost of an increased complexity.

The idea is to better bound execution demand under mixed-criticality EDF. To this end,
we derive a separate demand bound function for transitions from LO to HI mode and

3

Chapter 1. Introduction

prove its validity. This technique allows us to work around the computation of carry-
over execution demand and, hence, to reduce the amount of pessimism in characterizing
mixed-criticality EDF. We further proved that the proposed technique leads to a tighter
bound on the execution demand under mixed criticality EDF in most relevant cases.

It is interesting to notice that the proposed technique reduces the problem of testing
schedulability under mixed criticality EDF to testing schedulability of three almost
unrelated task sets: the one in LO mode, the one in HI mode and the equivalent task
set for transitions between LO and HI mode. This leads to a considerably simpler
schedulability test and improves our understanding of this problem.

• Better approximated schedulability tests: Since testing schedulability for mixed-
criticality EDF boils down to testing three separate task sets under standard EDF,
we are able to extend and apply known approximation techniques from the literature
(originally conceived for standard EDF).

In particular, we extend the so-called Devi’s test to be used in the context of MC
systems. This extension of Devi’s test is also sufficient but not necessary, however, it
is more accurate than using utilization caps (our first approach) and is considerably
faster than any exact test (including the one proposed in this thesis). This represents
a good trade-off between accuracy and running time relevant in online settings, e.g.,
admission control.

1.3. Structure of this Thesis
This thesis is basically structured into three main chapters dealing with the most important
contributions apart from some accessory chapters as detailed next.

Chapter 2 briefly introduces concepts, models and assumptions required for the rest of this
dissertation. In turn, Chapter 3 is concerned with related work and provides a detailed
literature review regarding the scheduling of mixed-criticality systems. It especially covers
existing approaches that form the background of presented methods including a discussion
about their advantages, disadvantages, and differences.

In Chapter 4, we incorporate utilization caps into the original EDF-VD algorithm. The idea
is to partition tasks on the processor, for example, according to functional dependencies,
and assign them a portion of the total utilization. EDF-VD then applies to each of these
partitions individually and up to their corresponding utilization caps. As briefly explained
above, if one HI task exceeds its execution budget in LO mode, this only affects the LO tasks
in the same partition and LO tasks in other partitions can continue running. We present a
technique to optimally choose utilization caps for each partition.

Chapter 5 presents a technique that works around the computation of carry-over execution
demand and results in a more accurate bound on execution demand under mixed-criticality
EDF. In principle, the proposed technique consists in separating the schedulability analysis
of stable HI mode from that of the transition between modes and deriving a separate demand
bound function for the latter case. The proposed technique results not only in a consider-
ably simpler, but also tighter bound on execution demand under mixed-criticality EDF, in
particular, as the number of HI tasks increases.

A transition from LO to HI mode is feasible, if an equivalent task set derived from the
original is schedulable under plain EDF. On this basis, as illustrated in Chapter 6, we can
apply approximation techniques such as, e.g., the well-known Devi’s test to derive further
tests that trade off accuracy versus complexity/runtime.

4

1.3. Structure of this Thesis

In Chapter 7, we evaluate the benefits and drawbacks of the proposed approaches and per-
form a large set of experiments based on synthetic data illustrating the performance by the
proposed techniques and comparing them to the most prominent approaches from the litera-
ture. The intention is to show how the different algorithms behave with respect to each other
and not to provide any absolute performance metrics as detailed later.

Chapter 8 finally concludes this thesis by discussing and summarizing the main contributions,
putting them into perspective, and presenting concluding remarks as well as potential future
work.

5

6

Chapter 2.

Concepts, Models and Assumptions

In this chapter, we first introduce important concepts that are necessary to understand the
remainder of this thesis. Based on this concepts, we then discuss models used and assumptions
made in this work.

2.1. Real-Time Systems

Generally, real-time systems are those whose correctness depends on two aspects: i) the
logical result of computations and, ii) the time in which results are produced. A real-time
system consists of a controlling system (i.e., a computer or processor) and a controlled system
(i.e., environment). Real-time systems play a crucial role in our everyday lives and in indus-
try, since many complex systems depend on computer control (partly or entirely). Some of
the application domains that require real-time computing are automotive systems, avionics,
multimedia systems, virtual/augmented reality, etc.

A real-time systems requires a correct scheduling policy to provide a schedule that guarantees
the execution of all tasks (or jobs) within their timing constraints where the worst-case
execution times (WCETs) and timing constraints of tasks are the important concepts of
scheduling. The WCET of a task (or job) is the maximum length of time (or an upper bound
on the execution time) the task or job needs to execute on a specific hardware platform
[31].

A timing constraint on a task is known as its deadline. A deadline with respect to the task
arrival time is called a relative deadline. An absolute deadline is a deadline which is specified
with respect to time zero. Typically, based on the consequences of a missed deadline, real-
time systems are divided into two types: hard and soft real-time systems. This classification
depends, particularly, on the functional criticality of tasks (jobs), usefulness of late results,
and deterministic or probabilistic nature of the constraints [31].

A hard real-time computer system or a safety-critical computer system must meet its timing
constraint or deadline, otherwise, disastrous consequences may occur, i.e., any missed deadline
may cause a harmful system failure. A few systems have this requirement such as avionics,
nuclear systems, medical applications like pacemakers and defense applications among others
[58] [67].

A real-time computer system is called soft real-time, if no hard deadline exists (i.e., it can
miss some deadlines). In other words, a missed deadline in a soft real-time system does not
result in the system failure or serious harm, but rather causes a performance degradation.
Examples of soft real-time systerms are video games, audio/video streaming, web browsers,
etc. [31] [58] [67].

7

Chapter 2. Concepts, Models and Assumptions

2.1.1. Tasks Models
Real-time systems consist of a set of tasks to be scheduled that can be classified basically
into sporadic, periodic and aperiodic tasks, based on the type of the tasks.

Sporadic Task Model

A piece of code that executes repeatedly is a sporadic task. A sporadic task generates an
infinite sequence of jobs with a minimum inter-arrival time Ti (informally also refered to as
period), has a worst-case execution time Ci and, relative deadline Di. In a sporadic task,
each job arrives at an unpredictable time, but at least Ti time units from the last job of the
same task [25].

A sporadic task system τ contains a set of such sporadic tasks which can generate many
distinct job sequences due to the various inter-arrival times. In this thesis, our systems are
modeled as a set of sporadic tasks.

Periodic Task Model

In periodic task systems, jobs are always released at exact points in time such that the inter-
arrival time Ti (i.e., the period) between any two consecutive jobs is constant. In contrast
to sporadic tasks, a set of periodic tasks generates a much reduced number of distinct job
sequences.

Aperiodic Task Model

Aperiodic tasks are those that have no period of repetition, i.e., they generate only one job
and that at an arbitrary point in time. Whereas periodic tasks are an idealization of sporadic
tasks and these latter are related to control applications (which need to periodically sample
data and compute outputs), aperiodic tasks are related to exceptional or isolated events that
are not intended to repeat over time.

2.2. Scheduling Policies
Scheduling for real-time systems has been a very active research area over the last several
decades. As a result, there exist already multiple approaches that we try to survey in this
section.

Each unit of work that is scheduled and executed by the system is called a job and a set of
related jobs which provide some system function is called a task [67]. When a set of tasks
has to be executed simultaneously on a processor — i.e., tasks that can overlap in time —
the processor has to be assigned to various tasks according to a predefined criterion which is
called a scheduling policy [31].

A scheduling algorithm is the set of rules that determines the order in which tasks are ex-
ecuted. Scheduling algorithms of real time tasks can be divided into two categories: i)
preemptive scheduling and ii) non-preemptive scheduling. In preemptive scheduling the low
priority running task can be interrupted at any time for a short period of time (even though
the running task has not yet completed) to assign the processor to another task with higher
priority. Algorithms based on preemptive scheduling are: Round Robin (RR), Shortest Re-
maining Time First (SRTF) and priority-based algorithms such as Rate Monotonic (RM),
etc. [31].

8

2.2. Scheduling Policies

In a non-preemptive scheduling algorithm, the running task is executed until completion. It
cannot be suspended by a new task, in other words, we cannot preempt a running task, i.e.,
take control of the CPU or processor to run some other processes. Non-preemptive scheduling
algorithms include: First In First Out (FIFO), First Come First Served (FCFS), Shortest
Job Next (SJN), which is also known as Shortest Job First (SJF), but also priority-based
algorithms can be non-preemptive [31] [74].

A feasible schedule is one in which all tasks can be accomplished according to a set of timing
constraints. A set of tasks system is said to be schedulable, if at least one scheduling algorithm
exists that can produce a feasible schedule [31] [74] [90].

In turn, priority-based scheduling algorithms can be categorized into static and dynamic
algorithms. A scheduling algorithm is called static, if a feasible schedule is computed off-line.
In other words, in static algorithms, the scheduling decisions based on fixed parameters (e.g.,
deadlines, precedence constraints and maximum execution time) are assigned to tasks before
their activation, where the tasks priorities are fixed and known a priori, and never change at
run-time. Such algorithms are also known as fixed-priority (FP) algorithms [67] [58].

A well-known fixed-priority algorithm is the Rate Monotonic (RM) [66], in which priorities
are assigned to tasks based on their periods: the shorter the period, the higher the priority
of a task. Another well-known fixed-priority algorithm is the Deadline Monotonic (DM). In
this latter, priorities are allocated to tasks according their relative deadlines: the shorter the
relative deadline, the higher the priority [67] [58].

In contrast, a scheduling algorithm is called dynamic (or on-line), if a feasible schedule is (or
scheduling decisions are) determined at run time, that is, systems with dynamic priorities
can change at run-time based on varying properties. In other words, in a dynamic scheduling
algorithm, the priorities are determined during the execution of the system. Dynamic priority
scheduling algorithms are flexible and allow adapting to evolving task scenarios. On the other
hand, it is much difficult to verify the correctness of a schedule based on such algorithms [56]
[67].

Examples of dynamic priority scheduling algorithms include the Earliest Deadline First (EDF)
algorithm and the Least Slack Time First (LSTF) algorithm, which is also known as Least
Laxity First (LSF). Under EDF, the task with the next upcoming absolute deadline has the
highest priority, in other words, the earlier the deadline of a task, the higher the priority
assigned to that task. The absolute deadline of a job is the release time of the job plus its
relative deadline [58] [74].

Similarly, under LSTF, priorities are assigned based on the slack time of a process. The
task’s slack time is the difference between the current time value to the deadline of a task,
i.e., this is the remaining time a task has to complete execution. In this scheduling algorithm,
processes with the smallest slack time will be executed first, i.e., the smaller the slack time
of a task, the higher the priority value assigned to a task [58] [74].

2.2.1. Feasibility versus Schedulability
Scheduling is concerned with allocating resources to tasks in a timely manner in such a
way that specific constraints like communication, synchronization, timing, etc., are met. A
successful scheduling algorithm or policy selects which task executes at each time instant
resulting in a schedulable or valid schedule.

The difference between feasibility and schedulability is very subtle such that, most of the
time, these two terms are used interchangeably. To understand this, let us first introduce the
notion of optimal scheduling algorithm on a single-processor preemptive system. That is a

9

Chapter 2. Concepts, Models and Assumptions

scheduling algorithm that always finds a valid (i.e., a scheulable) schedule, if the task set is
feasible on one processor. This implies also that there are algorithms that are non-optimal
and may not find a valid schedule for some set of preemptive tasks, although this is feasible on
one processor. The most prominent example of an optimal scheduling algorithm is EDF [37].
Similarly, an example of a non-optimal scheduling algorithm is RM [66].

Now, a schedule is feasible when jobs (generated by tasks) execute for their specified worst-
case execution times and within their timing constraints. Further a task set is called feasible
when there exists a feasible schedule, i.e., there exists a scheduling algorithm that generates
a feasible schedule for the task set. Similarly, we say that a task set is schedulable by a given
scheduling algorithm, if that particular scheduling algorithms is able to generate a feasible
schedule for the task set in question.

As a consequence, it may happen that a task set is feasible and, hence, schedulable on one
processor by an optimal scheduling algorithms like EDF, but not schedulable by an non-
optimal scheduling algorithms like RM.

2.2.2. Schedulability Test

A schedulabililty test is concerned with verifying that no task (for hard real-time systems)
or a minimum number of tasks (for soft real-time systems) misses their deadlines under a
specified scheduling algorithm [88]. In other words, if the schedulability test is successful,
tasks and, hence, their jobs are always able to meet their deadlines.

In real-time systems, various schedulability tests (i.e., exact or necessary-and-sufficient tests
as well as approximate or sufficient tests) are used to verify meeting time constraints. Thereby,
the complexity is generally high in exact schedulability tests making them inappropriate for
on-line admission control with a large number of tasks (or dynamic workload). On the
contrary, a sufficient schedulability test with low complexity can be used with this context,
clearly, at the cost of a less accuracy [88].

Even if there is only one common resource, the complexity of an exact schedulability test is
of NP-complete [46], therefore, it is not computationally tractable in almost all cases, but
particularly when tasks exhibit dependencies among them.

Clearly, this makes exact schedulability test unsuitable for online testing. In this case, how-
ever, sufficient tests can be used instead. In real-time systems, the simplest sufficient tests
are utilization-based which have polynomial complexity [101]. The schedulability of a given
task set cannot be conclusively determined by a sufficient schedulability test, if the task
set does not pass the test, however, passing the test means that the task set is definitely
schedulable.

2.3. Mixed-Criticality Systems
As discussed above, many embedded systems are real-time systems consisting of a controlling
system (i.e., a computer) and a controlled system (i.e., the environment) where correctness
depends on logical results and the time in which results are produced. Systems such as digital
audio players, a vehicle’s cruise control and anti-lock braking system (ABS) are examples of
real-time systems [7].

Further, if the failure in a system jeopardizes the environment or human life, the system
is called safety-critical (e.g pacemakers or aircraft control systems) [58]. A determination
of the level of assurance against failure which is required for a system component is called

10

2.4. Basic Nomenclature

criticality [28]. In the later years, with the trend towards consolidating software onto fewer
processors or ECUs, functionalities with different levels of criticality start coexisting on the
same hardware resources. This has led to a mix of safety-critical and non-safety-critical, i.e.,
to mixed-criticality (MC) systems. Since different levels of criticality need to comply with
different certification regulations as per existing standards [28] [29] [52], it is necessary to
guarantee that more error-prone tasks/functions with low criticality do not affect those with
higher criticality. The challenge lies in finding scheduling techniques that allow guaranteeing
safety in MC systems, but also make an efficient use of resources.

Mixed-criticality systems consist of two or more different criticality levels. If the tasks are
critical, they are classified as high-criticality (HI) tasks, and less critical tasks are called
low-criticality (LO) tasks. This is a classic model for mixed-criticality systems is known as
dual-criticality. This model is typically adopted in the majority of the research works in this
area, since it reduces the problem to its essentials and can then be easily extended to more
general cases [32].

Another model that has established over the last few years is based on criticality modes [96].
That is, as depicted in Fig. 2.1, the system switsches between LO and HI mode assuming a
dual-criticality setting — in more general settings with more than two levels of criticaltiy,
there will be a mode for each criticality level. In LO mode, HI and LO tasks are scheduled
successfully, since HI tasks have a lesser execution demand. In HI mode, HI tasks have
higher execution demand and, hence, LO tasks need to either be degraded or discarded to
accommodate such additional workload.

𝜏1(𝐿𝑂)

𝜏2(𝐻𝐼)

0 5 10 15 20

Criticality Switch

LO Mode HI Mode

𝐶𝑖
𝐿𝑂

𝐶𝑖
𝐿𝑂𝐶𝑖

𝐿𝑂 𝐶𝑖
𝐻𝐼 𝐶𝑖

𝐻𝐼 − 𝐶𝑖
𝐿𝑂

Figure 2.1.: Mode switch in mixed-criticality systems

2.4. Basic Nomenclature
In this section, we discuss most of our notation. Note that further nomenclature will be
introduced as it gets necessary along this dissertation. Similar to [40] and [42], we basically
adopt the task model originally proposed in [10] [96] and consider a one-processor system
where a set of MC tasks are scheduled.

11

Chapter 2. Concepts, Models and Assumptions

As depicted in Fig. 2.2, we denote by τ the set of n independent — with respect to timing —
preemptable and sporadic tasks that run on one processor under preemptive EDF scheduling.
Each individual task τi in τ is characterized by its minimum inter-release time Ti, i.e., the
minimum distance between two consecutive jobs or instances of a task, and by its relative
deadline Di where a task with deadline lower or equal to its period is called a constrained
deadline task system, i.e., ∀i : Di ≤ Ti and the deadlines equal to the period are assumed as
implicit deadlines, i.e., ∀i : Di = Ti. Further, we assume that tasks do not self-suspend and
that overhead by context switches is either already included in Ci or can be neglected on the
different processors.

𝑗𝑜𝑏1 𝑗𝑜𝑏2 𝑗𝑜𝑏3 𝑗𝑜𝑏4 𝑗𝑜𝑏5

Inter-Arrival-Time (Period) = T

Worst Case Execution Time
(WCET) = C

Task = {T, C, D}

Jobs (j1, j2, j3, j4, j5, …)

Time

Relative
Deadline = D

Release Time

Figure 2.2.: Parameters and timing requirements in scheduling real-time systems

Similar to most approaches in the literature, we are concerned with dual-criticality systems
with two levels of criticality, namely LO and HI.1 The criticality of a task i is denoted by χi

with:
χi ∈ {LO,HI}.

A LO task is associated with only one WCET value/estimate denoted by CLO
i . Opposed to

this, a HI task is characterized by its optimistic WCET estimate CLO
i and its conservative

WCET estimate CHI
i with:2

CLO
i < CHI

i ≤ Di ≤ Ti.

Tasks in τ are independent in the sense that they do not affect each other’s execution apart
from competing for resources. However, we consider that some functional dependency may
exist for some tasks in the system. In particular, if a HI task switches to HI mode, some LO
tasks may not need to run anymore, i.e., they become superfluous. On the other hand, it may
be meaningful that some other LO tasks continue to run, if provided sufficient resources.

As a result, we assume that τ can be divided into a number of disjoint subsets τA, τB, . . . τZ ,
each of which comprises tasks that are functionally related in the described form. More
specifically, each τi with i ∈ {A,B, . . . Z} contains a mix of HI and LO tasks: If a HI task

1See the appendix for an extension to more than two levels of criticality.
2Note that either real or integer numbers can be used for CLO

i , CHI
i , Di and Ti.

12

2.5. The Earliest Deadline First Algorithm

within this τi switches to HI mode, all LO tasks in τi will be discarded; however, LO tasks
in the remaining subsets τA, τB, . . . τZ may be allowed to continue running, since they do not
functionally depend on any τi’s tasks.

Basically, the system distinguishes two operation modes denoted by m for each subset τi ⊂ τ :
LO and HI mode. In LO mode, HI tasks execute for no longer than CLO

i , whereas these
might require executing for up to CHI

i in HI mode. Initially, τi is in LO mode where all LO
and HI tasks therein need to meet their deadlines. As soon as one job of a HI task executes
for longer than its CLO

i , the system switches to HI mode where only the HI tasks are allowed
to run – LO tasks are immediately discarded. Similar to context switches, we assume that
the overhead by mode switches has been accounted for in CHI

i .

We denote the utilization by LO and HI tasks in the LO and HI mode respectively as fol-
lows:

Um
χ :=

∑
χi=χ

Cm
i

Ti
,

where again χ and m can assume values in {LO,HI}. Um
χ indicates the processor utilization

produced by tasks with criticality χ in mode m. Among the four potential criticality-to-
mode combinations, note that only ULO

LO , ULO
HI and UHI

HI are defined. UHI
LO does not exist/is

effectively zero for a particular τi ⊂ τ , since LO tasks are dropped when a HI task in τi
changes to HI mode and, hence, do not run in τi’s HI mode.

Finally, in contrast to [42] and [40], we are not constrained to integer numbers, but rather
use real numbers for all above parameters which gives us more flexibility in modeling MC
workloads.

2.5. The Earliest Deadline First Algorithm
The already mentioned Earliest Deadline First (EDF) is a well-known dynamic-priority
scheduling algorithm that schedules jobs of tasks according to their absolute deadlines and
constitutes the basis of the proposed approaches in this thesis.

Whenever a scheduling event occurs (task finishes, new task released, etc.), the job or process
closest to its deadline will be the next job to be scheduled. As discussed above, EDF is an
optimal scheduling algorithm on one processor.

That is, the utilization bound of EDF is 100% when scheduling periodic tasks with deadlines
equal to periods. Thus, the schedulability test for EDF boils down to a simple upper bound
on the total utilization U and is obtained as follows:

U =
n∑

i=1

Ci

Ti
≤ 1,

where Ci is the WCET of a task and Ti represents its period of repetition. Again, tasks’
deadlines Di must be equal to their corresponding peroids.

Note that, if a task set is feasible, it will be schedulable by EDF due to its optimality. In
addition, EDF does not specifically make any assumption on periodicity of tasks, so it is
independent of periodicity of the tasks and therefore it can be used to schedule periodic as
well as aperiodic tasks [31].

13

Chapter 2. Concepts, Models and Assumptions

In the following, an example of timing data of task set scheduled by EDF is illustrated in
Table 2.1. The utilization of this task set is:

U =

(
1

8
+

2

5
+

4

10

)
=

(
37

40

)
= 0.925 = 92.5%

Now, since this is less than 100%, the task set is surely feasible and, hence, schedulable by
EDF.

Task (τi) Execution Time (Ci) Deadline (Di) Period (Ti)

τ1 1 8 8

τ2 2 5 5

τ3 4 10 10

Table 2.1.: Timing data of task set

2.5.1. EDF-VD

Earliest Deadline First with Virtual Deadlines (EDF-VD) is an adaption of EDF to MC
systems [10]. Its basic idea is also to promote HI jobs in LO mode by shortening their
deadlines so as to reserve processor capacity for the HI mode. That is, D′

i = xTi with
x ∈ (0, 1) for all i where χi = HI. D′

i is referred to as virtual deadline and is used instead
of Di — the real deadline — to schedule HI tasks in LO mode. The parameter x is the
so-called deadline scaling factor. There is no deadline scaling for LO tasks such that they are
scheduled using their Di. In HI mode, HI tasks start being scheduled according to their real
deadlines Di whereas LO tasks are discarded. In both LO and HI mode, tasks are scheduled
under the EDF algorithm.

From the above description, in order that EDF-VD be schedulable, the LO and HI tasks need
to be schedulable with their corresponding CLO

i under EDF in LO mode. Similarly, in HI
mode, the HI tasks also need to be schedulable with their corresponding CHI

i under EDF.
As a result, the following two schedulability conditions are necessary:3

ULO
LO + ULO

HI ≤ 1, (2.5.1)

3For the equations in Section 2.5.1, note that τ is not divided into any partitions/subsets and that the
utilization parameters are hence those obtained for all tasks in τ . In the following sections, utilization
parameters are again defined for each subset τA, τB , . . . τZ ⊂ τ , however, for the sake of simplicity, we omit
identifying the different such subsets in the notation.

14

2.5. The Earliest Deadline First Algorithm

UHI
HI ≤ 1. (2.5.2)

In [8], Baruah et al. also obtained a sufficient schedulability condition for EDF-VD in the
form of a utilization bound: max

(
ULO
LO + ULO

HI , U
HI
HI

)
≤ 3/4. They also proposed a more

accurate schedulability test based on whether a scaling factor x can be obtained or not [8].
To this end, a lower and an upper bound on x are computed:

ULO
HI

1− ULO
LO

≤ x, (2.5.3)

x ≤
1− UHI

HI

ULO
LO

. (2.5.4)

If the value of x obtained with (2.5.3) is less than or equal to the value obtained with (2.5.4),
then it is possible to find a valid x for the considered system and the task system is schedulable
by EDF-VD.

Finally, note that we denote by EDF-VD the original, utilization-based algorithm from [10],
which we described in this section. Later, for comparison purposes, we denote by DEDF-VD
(i.e., Density EDF-VD) a density-based variant of the original algorithm. In DEDF-VD, the
period Ti is replaced by the deadline Di in the above equations, i.e., instead of computing
utilization, we compute density. This extension is necessary to deal with task sets where
Di ≤ Ti holds as the ones intended in this thesis, which the original EDF-VD algorithm does
not consider.

2.5.2. Mixed-Criticality EDF

In contrast to EDF-VD, where deadlines are assumed to be equal to periods, we now allow a
deadline Di with Di ≤ Ti. In addition, we now assign a virtual deadline equal to xi ·Di with
xi ∈ (0, 1) to all τi with χi = HI.

Similar to EDF-VD, this virtual deadline is used instead of Di — the real deadline — to
schedule HI tasks in LO mode. The parameter xi is now a per-task deadline scaling factor.
There is no deadline scaling for LO tasks such that they are scheduled (only in LO mode)
using their Di.

When the system switches to HI mode, HI tasks start being scheduled according to their real
deadlines Di whereas LO tasks are discarded immediately. Clearly, whereas schedulability
of separated modes can be easily tested, i.e., when the system is stable in either LO or HI
mode, it is difficult to test schedulability of transitions between modes. In particular, careful
analysis is required when the system switches from LO to HI mode.

In this work, similar to other approaches from the literature, transitions from HI back to LO
mode are disregarded. The reason is that, in contrast to changes from LO to HI, a change
from HI to LO mode can be programmed or postponed to a suitable point in time, e.g., at
which the processor idles after all HI tasks have run again for their optimistic WCETs, and
does not require further analysis.

15

Chapter 2. Concepts, Models and Assumptions

2.5.3. Demand Bound Function
The concept of demand bound function proposed by Baruah et al. is a successful approach
to analyze the schedulability of real-time task systems [17], where demand bound function
dbfi(τi, t) is defined as the maximum possible execution demand of a task τi in any time
interval of a given size t [43].

For many task models in the normal systems (or non-mixed-criticality systems), there are
approaches to accurately compute the demand bound functions. As an example, for a stan-
dard sporadic tasks, the demand bound function for a given t can be computed in pseudo-
polynomial time [17].

Demand Bounds for MC Tasks

The extension of the demand bound function to mixed-criticality systems was demonstrated
by Ekberg and Yi in [43]. The idea is to introduce two demand bound functions for each
mode, dbfLO and dbfHI , i.e., for the low and high-criticality modes respectively.

In low mode, tasks τi behave similar to the normal sporadic tasks, and all of their jobs are
guaranteed to execute for up to their CLO

i , otherwise the system switches to high mode.
To this end, the typical approach can be used for computing demand bound functions for
sporadic tasks [17]. In contrast to this, with dbfHI , it is required to consider high-criticality
carry-over jobs that are active at the time of switching to high-criticality mode, where low-
criticality jobs are discarded [43]. The detailed description of demand bound function are
provided in Chapter 5.

16

Chapter 3.

Related Work

In recent years, mixed-criticality (MC) scheduling has been attracting a lot of attention from
both the research community [96] and the industry [7]. Up to date, the real-time community
was mainly concerned with providing enough timing guarantees for a task set with different
criticality levels. Scheduling MC tasks depends on different factors as depicted in Fig. 2.1.
In this chapter, we briefly revise the rich literature concerning scheduling MC tasks on one
processor and, in particular, under EDF — a complete overview can be found in [29].

3.1. Uniprocessor Scheduling

Scheduling mixed-criticality (MC) tasks is proven to be NP-hard even under the uniprocessor
platforms [21]. Different scheduling techniques such as fixed-priority scheduling [10] [12] [50]
[63] and dynamic-priority scheduling in particular, based on EDF [9] [49] [100] have been
studied over the last few decades to provide efficient, approximate algorithms for scheduling
MC tasks on uniprocessor platforms.

The problem around MC systems was first addressed by Vestal in [96] who proposed modeling
HI tasks with multiple WCET parameters to account for potential increases in execution
demand. In particular, Vestal showed that the well-known Deadline Monotonic (DM) policy
is not optimal for MC systems, where HI tasks may temporarily increase their execution
demands. Since then, different approaches have been proposed for MC systems under both
fixed and dynamic priorities.

For single processors, Baruah et al. later analyzed different priority assignments and the
resulting response times under fixed priorities [12]. In [13], Baruah et al. presented a further
priority assignment with a partially better performance than those in [12]. Burns and Davis
proposed another fixed-priority scheme where non-preemptive regions are added to tasks and
showed that this leads to an even better performance than previously published schemes
[27].

As already stated, a mixed-criticality task model and the algorithm to schedule MC tasks was
proposed by Vestal in [96], where, priorities are assigned according to DM, i.e., the shorter
relative deadlines, the higher priority.

Fixed-priority (FP) scheduling algorithms have been studied in different works in order to
schedule MC systems. Baruah et al. presented one such scheduling approach on uniprocessors
with two levels of criticality, low criticality (LO) and high criticality (HI) [13]. Based on their
approach, if the system is in LO mode, priorities are determined using the LO-mode WCETs.
When the system mode changes to HI mode, the LO tasks are discarded and HI tasks use
another priority assignment. They also showed a method for a fixed an FP assignment of
periodic tasks with more than two criticality levels [12].

17

Chapter 3. Related Work

Schedulable/Not Schedulable

Scheduling

Uni-/Multi-
Processor

Tasksets

LO

Task

Mixed

Criticality

Deadline

Schedulability

Test

EDF

WCET

HI
Task

jobs

Non-

Preemptive

Real

Time

Systems Algorithms

PeriodPeriodic
Dynamic

Sporadic
Analysis PreemptivePriority

Criticality

StaticExecution

Time

Figure 3.1.: Important Factors for Mixed-Criticality Scheduling

FP scheduling of MC systems on a uniprocessor platform was studied by Chen et al. in a
more general way [33]. In that work, different priority sequences are used in various levels of
execution. Based on that, in [12], a novel priority assignment scheme by so-called heuristic
priority assignment (HPA) was presented based on Audsley’s optimal priority assignment
(OPA) [3] [4].

3.1.1. Uniprocessor Scheduling Based on EDF

A more complete analysis for EDF-based scheduled systems was presented by Ekberg and Yi,
and Guan et al. in [42] and [50] to bound and shape the demand in a dual-criticality setting
with sporadic tasks. The idea of their approach is to assign two relative deadlines to each HI
task. One deadline is defined as real deadline of the task, and the other is a shorter artificial
deadline meant to guarantee schedulability when switching between LO and HI mode. They
showed an improvement over previous approaches [51] and presented a generalization of the
model to more than two criticality levels [43].

In [40], Easwaran proposed tighter analysis for two criticality levels, however it is not clear
whether the method will work for more than two levels or not. Yao et al. provided further im-
provements [100] by using genetic algorithm (GA) and Quick convergence Processor-demand
Analysis (QPA) [101] (an improved schedulability test for EDF), to make better artificial
(shorter) deadlines.

Alternative analyses for scheduling MC systems under EDF are addressed respectively in [65]
and [86]. In [65], Lipari and Buttazzo presented a reservation-based approach, in which,
sufficient budget is reserved for the HI tasks. Based on that, a set of LO tasks can be
guaranteed when HI tasks use only of their LO-mode requirements. Again, in the latter
work, only two levels of criticality are considered. Further, in [86], Santinelli et al. used of
multiple demand-bound curves. Their proposed technique derives sensitivity analysis which
can use to trade off between resource usage and schedulability.

18

3.2. Multiprocessor Scheduling

A speed-up factor for EDF-VD was first obtained in [10] as (
√
5 + 1)/2. Later this speed-up

factor was improved to 4/3 [8]. A more flexible approach referred to as GREEDY with per-
task deadline scaling was presented by Ekberg and Yi for the case of two criticality levels [42].
Ekberg and Yi characterized the execution demand of MC systems under EDF by deriving
demand bound functions for the LO and the HI mode. Later, they extended this work to the
case of more than two criticality levels [43]. In [40], Easwaran presented a similar technique
called ECDF also for the case of two criticality levels and showed that it strictly dominates
the GREEDY approach that of Ekberg and Yi.

Recently, Huang et al. proposed speeding up processors to account for increases in HI exe-
cution demand when switching to HI mode [55]. Huang et al. made use of Ekberg and Yi’s
demand bound functions to compute the necessary speed-up factors that guarantee meeting
all deadlines. It should be noted that the proposed techniques of this paper can also be
combined with that of [55] to compute more accurate speed-up factors.

Baruah et al. further proposed extensions to EDF-VD, where, in particular, a per-task
deadline scaling is used [9]. However, they also concluded that the speed-up factor of 4/3
cannot be improved [9]. Similarly, Müller presented a more general per-task deadline scaling
technique that allows improving schedulability [71]. He proposed a new and explicit per-task
deadline scaling schedulability test for MC task sets on a uniprocessor which his approach
relies on the runtime dispatching scheme as given for EDF-VD, only the virtual deadlines
of the HI tasks are no longer a result of a uniform scaling by a per-task-set scaling factor
[71].

Improvements to the original EDF-VD have also been proposed by other authors. In [91] [92],
Su and Zhu used an elastic task model [30] [60] to improve resource utilization in MC systems,
in which the task period can change. In their work, a minimum level of service which is defined
maximum period Tmax

i was proposed for each LO task τi. When all LO and HI tasks use
their Tmax, CLO and CHI values, the system must be schedulable. Therefore, for certain
parameter sets, they illustrated that their approach outperform the EDF-VD algorithm.
In [102], Zhao et al. applied preemption thresholds [97] to MC scheduling in order to better
utilize the processing unit. In [69], a technique consisting of two scaling factors is proposed
for a admission control in MC systems.

3.2. Multiprocessor Scheduling
On multiprocessors, partitioned fixed-priority MC task sets based on Vestal’s RTA [96] were
studied comparatively with different task allocation and priority assignment algorithms by
Kelly et al. [57]. In their work, different partitioning approaches such as first-fit (FF), best-fit
(BF) and worst-fit (WF) for the task allocation algorithms were considered with respect to
decreasing utilization and decreasing criticality Later, in [76], Pathan showed that Audsley’s
priority assignment algorithm is also applicable to multiprocessors and can use for arbitrary
criticality levels.

Baruah et al. extended Audsley’s OPA [3] [4] considering non-recurrent jobs of MC system
resulting in an algorithm called Own Criticality-Based Priorities (OCBP) for an arbitrary
number of criticality levels [16]. A generalization of the OCBP algorithm to sporadic task
systems, i.e., with recurrent jobs, was presented by Li and Baruah [63].

Dorin et al. formalized Vestal’s approach and proved that the use of Audsley’s OPA [3] [4]
is optimal for traditional fixed-priority MC systems [39]. They also extended the model,
included release jitter and showed how sensitivity analysis could be applied [39]. Based on
Vestal’s approach, the priorities of LO and HI tasks are allowed to be interleaved [11] [28].

19

Chapter 3. Related Work

The idea is to monitor execution time of HI tasks and to allocate more processing time (which
is taken away from LO tasks), if necessary. For this, again, LO tasks need to be degraded or
discarded [11] [28]. Further, this approach was extended to make better use of the processor
and, hence, be able to provide better scheduling guarantees [12] and [26].

As already mentioned, to be able to allocate more processing time for HI tasks, the system
implements different operation modes. In principle, there is a mode per criticality level
to which the system switches depending on whether tasks of the corresponding criticality
increase their execution demand. In the above works, since they are based on a dual criticality,
there are only two modes: LO and HI mode [11] [12].

On the other hand, there are other settings which have problems similar to mixed-criticality
scheduling. For example, mode-change protocols focus on response-time analysis and re-
source allocation techniques for the case where a task set is changed at run-time and the
pending/partially-processed jobs are required to be completed, transferred or discarded [62]
[82] [79] [80]. The literature on mode-change protocols already considers the important prob-
lem that a system can be schedulable in each mode in isolation, but not schedulable during
a mode change, which is also true for systems that change criticality levels [6] [44] [77] [82]
[87] [94].

3.2.1. Multiprocessor Scheduling Based on EDF

Mixed-criticality systems with EDF scheduling was first considered by Baruah and Vestal [18].
Later, a slack-based mixed criticality was presented by Park and Kim [75] for EDF scheduled
dual-criticality jobs, which is called Criticality-Based Earliest Deadline First (CBEDF). The
schedule is divided into intervals according to the deadlines of the jobs. In each interval, two
slack values are determined by the algorithm: the empty slack and the remaining slack. To
this end, a combination of off-line and on-line analysis is used to run LO jobs in the generated
slack and HI jobs as late as possible. Moreover, an older protocol developed by Chetto and
Chetto [34] to run soft real-time tasks in the gaps left by hard real-time tasks is used in [75],
where LO tasks are treated as soft real-time and HI tasks as hard real-time.

Furthermore, Mollison et al. presented a two-level hierarchical scheduler for multi-processor
systems [70] in which they consider periodic tasks with five criticality levels from A to E.
When tasks are in criticality level A, they are scheduled and statically assigned to a processor
using a table-driven scheduling. Tasks with criticality level B (the next lower criticality level)
are partitioned on a specific processor and scheduled by EDF, i.e., tasks are scheduled using
partitioned EDF. In criticality levels C and respectively D, tasks are scheduled by applying
a global EDF scheduler, when there are no activated schedulers with higher criticality level.
Finally, in the criticality level E, tasks will be scheduled by best effort. As a consequence,
temporal isolation between different criticality levels is provided by the proposed structure
[70].

Under EDF schedule, in [10], Baruah et al. proposed the Earliest Deadline First with Virtual
Deadlines (EDF-VD) algorithm to schedule a mix of HI and LO tasks. As already discussed,
EDF-VD introduces two operation modes and uses a priority-promotion scheme by uniformly
scaling deadlines of HI tasks.

The idea of EDF-VD is to meet the dynamic guarantees on mixed-criticality task sets by
shortening the deadline of high-criticality tasks in normal mode such that they can meet
their real deadlines in critical mode [10]. Baruah et al. further provided a more strict bound
on the schedulability test of EDF-VD [8].

20

3.2. Multiprocessor Scheduling

Many works have been conducted on EDF-VD scheduling and algorithms based on it. The
scheduling of implicit-deadline sporadic tasks on uniform multiprocessor platforms have been
considered in [14] by Baruah et al. Apart from investigating EDF-VD in this context, Baruah
et al. proposed the EDF-based global scheduling algorithm which is called fpEDF [8] for
multiprocessors.

In a later work, Baruah proposed an extension to the MC task model including criticality-
specific values for period and deadline as well as WCET [20], i.e., scheduling tasks in MC
systems based on a three-parameter model for which he extended the EDF-VD scheduling
algorithm.

Furthermore, the issue of MC scheduling on partitioned multiprocessor using three different
scheduling approaches ECDF, EDF-VD and Adaptive MC (AMC) is considered in [81] by
Ramanathan and Easwaran to decrease the maximum difference between the overall LO and
HI utilization devoted to each processor.

The importance and increasing demand for multiprocessor platforms has brought attention
to MC scheduling algorithms for such platforms as well [19] [47] [48] [64]. Various tech-
niques of MC scheduling are introduced in different studies by extending existing standard
multiprocessor scheduling algorithms [5] [72] [84] [99] such as fluid-based MC model [61],
global fixed-priority scheduling algorithms [19] [76], hierarchical servers [47] [48], and a semi-
partitioned scheme [5].

For multiprocessors, a partitioned and a global scheduling approach both based on EDF-VD
were proposed in [14]. According to this work, partitioned behaves better than global schedul-
ing in the context of MC systems. Further, in [76], Pathan studies global MC scheduling with
task-level fixed priorities and gives a schedulability test based on response time analysis for
more than two criticality levels. Another approach is proposed by Lee et al. with their MC-
Fluid model [61], which has been improved later in [15]. The MC-Fluid model executes each
task at a rate proportional to its utilization improving efficiency.

Whereas, in the above approaches, LO tasks are discarded to accommodate an increase in
HI execution demand, Huang et al. rather proposed degrading LO tasks [54], for which they
derive degraded timing guarantees. Recently, Ren and Phan proposed task grouping and a
server-based approach to provide guarantees to both HI and LO tasks on multiprocessors
[83].

Similar to [54] and [83], with our proposed utilization caps, we follow the idea of not discarding
LO tasks in case HI execution demand increases. Our technique allows LO tasks to continue
running without degradation in contrast to [54], and is less pessimistic than a server-based
approach as the one in [83], since it does not incur any starvation period. Moreover, with
the aim of improving the known demand bound functions for mixed-criticality EDF, we also
propose separating the analysis of transitions from stable HI mode, which we show to be more
accurate than the ones by Ekberg and Yi and of Easwaran for the most relevant cases. We
further demonstrate that the proposed demand bound functions can be easily approximated
with known techniques from the literature, in particular, Devi’s test. This way, we derive
schedulability tests for MC systems under EDF that trade off accuracy versus performance
as discussed later in detail.

21

22

Chapter 4.

Introducing Utilization Caps

In this chapter, as already mentioned, we are concerned with mixed-criticality (MC) systems
where a set of low-criticality (LO) and high-criticality (HI) tasks share one processor and are
scheduled under the EDF-VD algorithm. EDF-VD implements two operation modes: LO
and HI. In LO mode, one or more HI tasks may exceed their execution budgets, which then
causes a change to HI mode in the system. In HI mode, HI tasks are assigned larger execution
budgets at the cost of the LO tasks, which often need to be discarded.

In some cases, however, we would like to allow some LO tasks to continue running on the
processor in spite of switching to HI mode. To this end, we incorporate utilization caps into
the original EDF-VD algorithm. The idea is to partition tasks on the processor, for example,
according to functional dependencies, and assign them a portion of the total utilization.
EDF-VD then applies to each of these partitions individually and up to their corresponding
utilization caps. If one HI task exceeds its execution budget in LO mode, this only affects
the LO tasks in the same partition, but not LO tasks in other partitions which can continue
running.

The main advantage over the server-based approach is that there is no starvation period, i.e.,
the time interval between two runs/repetitions where no service is provided to tasks within
the server. In contrast to this, tasks in a partition run as long as they have not used up their
assigned utilization, i.e., as long as they are below their utilization cap. This is a decisive
property that allows reducing pessimism with respect to server-based approaches.

The proposed technique does not require modifying the EDF-VD algorithm, which remains
unchanged within a partition/subset of tasks. It hence facilitates a compositional design of
MC systems. In a later chapter, we also show experimental evaluation based on synthetic
data that evidences the benefits of the proposed technique.

4.1. Introducing Utilization Caps

In this section, we introduce utilization caps to EDF-VD as discussed in Section 2.5.1. That
is, instead of finding a value of x for the whole task set τ as originally, we find a scaling factor
x for each τX ⊂ τ , i.e., for each disjoint subset within τ , and limit the amount of utilization it
can use. To this end, let us first reshape the original EDF-VD’s equations (2.5.3) and (2.5.4)
as follows:

ULO
LO +

ULO
HI

x
≤ 1,

x · ULO
LO + UHI

HI ≤ 1.

23

Chapter 4. Introducing Utilization Caps

Note that the left-hand sides of the above inequalities represent measures of how much uti-
lization is used by the MC tasks on the processor. Since originally EDF-VD assumes that the
full processor capacity is available, the task set is feasible or schedulable if those utilization
measures are below 1.

We can limit the amount of utilization for any τX ⊂ τ by reducing the right-hand side of the
above expressions from 1 to UL in (0, 1] as shown below:

ULO
LO +

ULO
HI

x
≤ UL,

x · ULO
LO + UHI

HI ≤ UL,

where we refer to UL as utilization cap. Now, we can reshape these latter expressions to
compute lower and upper bounds on the value of x for any τX ⊂ τ :

ULO
HI

UL − ULO
LO

≤ x, (4.1.1)

x ≤
UL − UHI

HI

ULO
LO

. (4.1.2)

In order that τX ⊂ τ is schedulable, we need to find a value of x in (0, 1), for which (4.1.1)
and (4.1.2) hold. However, this defines a range of possible values, from which one can choose
x to be, for example, in the middle of this range:

x =
ULO
HI

UL − ULO
LO

+
UL − UHI

HI

2 · ULO
LO

−
ULO
HI

2
(
UL − ULO

LO

) . (4.1.3)

4.1.1. Fixed utilization caps

Clearly, whether (4.1.1) and (4.1.2) hold depends on the value of UL. Let us first assume
this to be arbitrarily fixed by the designer as shown in Alg. 1. For example, the designer
can decide to equally distribute the processor capacity among individual τX ⊂ τ . That is,
if there are three such subsets in the systems, each of them would be using 1/3 of the total
utilization.

Schedulability test. Alg. 1 shows the schedulability test for EDF-VD with fixed utilization
caps. This requires to know all disjoint subsets τA, τB, . . . τZ included in τ , for which values
of UL are assumed to be specified by the designer.

For each such subset τX , the algorithm first computes the values of ULO
LO , ULO

HI and UHI
HI and

checks whether ULO
LO + ULO

HI > 1 or UHI
HI > 1 hold or not — see lines 2 and 6. If these hold,

24

4.1. Introducing Utilization Caps

Algorithm 1 Schedulability test for fixed utilization caps
Require: τ = τA ∪ τB ∪ . . . τZ

Require: UL

1: for each τX ⊂ τ do

2: Compute ULO
LO , ULO

HI and UHI
HI

3: if ULO
LO + ULO

HI > 1 then

4: Return (“not schedulable”)

5: else if UHI
HI > 1 then

6: Return (“not schedulable”)

7: else if ULO
HI

UL−ULO
LO

≤ UL−UHI
HI

ULO
LO

then

8: U = U + UL

9: Compute x

10: else

11: Return (“not schedulable”)

12: end if

13: end for

14: if U > 1 then

15: Return (“not schedulable”)

16: else

17: Return (“schedulable”)

18: end if

it means that the current subset τX is not schedulable and the algorithm returns with an
error.

If the above conditions are passed, the algorithm checks whether there exists a valid range
of values for x in line 7. If this is the case, UL of the current τX is sum to U — the total
processor utilization — in line 8 and x is computed as per (4.1.3) in line 9.

If no valid range can be found for x, again an error is returned. Finally, τ is schedulable on
one processor if U <= 1 holds in line 14, i.e., if the sum of all UL — i.e., for each τX ⊂ τ —
is less than 1.

Note that ULO
LO , ULO

HI , and UHI
HI need to be computed for each subset τX ⊂ τ . This can be

done in linear time, i.e., O(n), since each τX is a disjoint subset of τ and the total number
of tasks in τ is given by n. All other computations and checks in Alg. 1 can be performed in
constant time, i.e., O(1). As a result, the overall complexity is O(n).

4.1.2. Optimized utilization caps

Although using fixed UL is more straightforward, in some cases, we would like to find an
optimum value of UL for a given τX ⊂ τ such that schedulability is guaranteed. To this end,
since the left-hand side of (4.1.1) needs to be less than or equal to the right-hand side of
(4.1.2), we have:

25

Chapter 4. Introducing Utilization Caps

ULO
HI

UL − ULO
LO

≤
UL − UHI

HI

ULO
LO

,

and, reshaping to solve for UL, we finally obtain:

0 ≤ U2
L −

(
ULO
LO + UHI

HI

)
· UL +

(
UHI
HI − ULO

HI

)
· ULO

LO . (4.1.4)

Now, for the system to be schedulable, either ÛL or ǓL — i.e., any of the roots of (4.1.4)
when equalized to zero — needs to be a real number in the interval (0, 1]:

ǓL =

(
ULO
LO + UHI

HI

)
2

−

√(
ULO
LO + UHI

HI

)2 − 4
(
UHI
HI − ULO

HI

)
· ULO

LO

2
, (4.1.5)

ÛL =

(
ULO
LO + UHI

HI

)
2

+

√(
ULO
LO + UHI

HI

)2 − 4
(
UHI
HI − ULO

HI

)
· ULO

LO

2
. (4.1.6)

Note that the value of UL given by one of these roots is a lower bound and that any other
greater value that is less than 1 will also guarantee schedulability. On the other hand, if this
is not the case, i.e., if neither of ÛL or ǓL is a real number in the interval (0, 1], the system
is rendered unschedulable.

Note that finding a valid UL implies that a valid x can be obtained as well, for which we
again can use (4.1.3) as before.

Schedulability test. Alg. 2 shows the schedulability test for EDF-VD with utilization caps,
where the values of UL are optimized as per the above analysis. This algorithm also requires
knowing all disjoint subsets τA, τB, . . . τZ which τ consists of.

For each such subset τX , the algorithm first computes the values of ULO
LO , ULO

HI and UHI
HI and

checks whether ULO
LO +ULO

HI > 1 or UHI
HI > 1 hold or not — see lines 3 and 5. If these hold, it

means that the current subset τX is not schedulable and the algorithm returns an error.

If τX passes the above checks, ǓL and ÛL, i.e., the roots of (4.1.4), are computed in as per
(4.1.5) and (4.1.6) in line 8. Clearly, if ǓL is a real number in (0, 1], it is meaningful to use
this value for UL since ǓL < ÛL holds — see lines 9 and 10. That is, this is going to be the
lowest possible value of UL that renders the system schedulable.

On the other hand, if ǓL is not a valid value of UL (in particular, if it is less than zero), ÛL

may still be a real number in (0, 1] and, hence, this is checked next in lines 11 and 12. Note
that, if ǓL is not a real number, ǓL is neither going to be real. As a result, it is not necessary
to compute ÛL. The same happens if ǓL is greater than 1, i.e., ÛL is also going to be greater
than 1 and, hence, does not need to be computed.

If neither ǓL nor ÛL are real numbers in (0, 1], the subset τX and, hence, also τ are not
schedulable — see lines 13 and 14. If a valid UL was found for τX , this is summed to U , i.e.,
the total utilization on the processor, in line 16.

26

4.2. Findings of this Chapter

Algorithm 2 Schedulability test for optimum utilization caps
Require: τ = τA ∪ τB ∪ . . . τZ

1: for each τX ⊂ τ do

2: Compute ULO
LO , ULO

HI and UHI
HI

3: if ULO
LO + ULO

HI > 1 then

4: Return (“not schedulable”)

5: else if UHI
HI > 1 then

6: Return (“not schedulable”)

7: else

8: Compute ǓL and ÛL

9: if ǓL > 0 and ǓL <= 1 then

10: UL = ǓL

11: else if ÛL > 0 and ÛL <= 1 then

12: UL = ÛL

13: else

14: Return (“not schedulable”)

15: end if

16: U = U + UL

17: Compute x

18: end if

19: end for

20: if U > 1 then

21: Return (“not schedulable”)

22: else

23: Return (“schedulable”)

24: end if

As mentioned above, if there exists a valid value of UL, a valid x also exists for τX . However,
this needs to be computed, e.g., as per (4.1.3) in line 17. Finally, if a UL could be obtained
for every disjoint subset τX in τ , τ is only feasible on one processor if U <= 1 holds, i.e., if
the sum of all UL is less than 1.

Finally, note that ǓL and ÛL can be computed for each τX ⊂ τ in constant time, i.e., O(1).
As a consequence, similar to Alg. 1, the overall complexity of Alg. 2 is also linear in the form
O(n).

4.2. Findings of this Chapter

In this chapter, we proposed introducing utilization caps to the original EDF-VD algorithm.
To this end, an MC task set is partitioned into disjoint subsets, each of which is assigned

27

Chapter 4. Introducing Utilization Caps

a portion of the total processor utilization. This approach is similar to using servers, i.e.,
virtual machines, however, in contrast to them, it has advantage of not incurring starvation
periods or additional context switches — which can easily jeopardize performance.

EDF-VD is then applied to each such subset or partition independently. As a result, LO
tasks within one partition are not affected by HI tasks from other partitions in case that the
latter switch to HI mode. On the contrary, HI tasks can only cause the abortion of LO task
within their own partition. This allows LO tasks in partitions not affected by HI mode to
continue running without being degraded.

Clearly, partitions need to follow some functional criteria. For example, LO tasks that are
not necessary anymore when a given HI task switches to HI mode should logically belong to
the same partition as the corresponding HI task. Similarly, LO tasks which should not be
affected by a given HI task should be put in a different partition.

On the other hand, a performance decay with respect to EDF-VD can be expected. The
smaller the utilization cap of one partition, the less performance in terms of schedulable
task sets can be achieved. However, our experiments indicate later that, on average, divid-
ing the processor into two halves has almost no performance degradation with respect to
EDF-VD (with the processor fully dedicated). This already allows for some LO tasks to be
protected from at least some HI tasks switching to HI mode, which enables for more design
flexibility.

28

Chapter 5.

Bounding Execution Demand under
Mixed-Criticality EDF

In this chapter, we are also concerned with MC systems with a mix of LO and HI tasks that
are scheduled under EDF on one processor. Again, the system operates in two modes: LO
and HI mode. In LO mode, one HI task may exceed its execution budget, which then causes
a change to HI mode in the system. HI tasks are assigned larger execution budgets in HI
mode at the cost of the LO tasks — which are assumed to be discarded.

Since these mode changes may happen at arbitrary points in time, it is difficult to find an
accurate bound on the amount of carry-over execution demand. That is the execution demand
by HI jobs that were released before, but did not finish executing at the point of changing to
HI mode. As a consequence, the resulting characterization of the overall execution demand
becomes pessimistic.

To overcome this problem, a technique is proposed that works around the computation of
carry-over execution demand and results in a more accurate bound on execution demand
under mixed-criticality EDF. In principle, the proposed technique consists in separating the
schedulability analysis of stable HI mode from that of the transition between modes and
deriving a separate demand bound function for the latter case. The proposed technique
results not only in a considerably simpler, but also tighter bound on execution demand under
mixed-criticality EDF, in particular, as the number of HI tasks increases.

Mixed-Criticality EDF. A common approach when scheduling MC systems is to shorten
the deadlines of HI jobs in LO mode. This way, processor capacity can be reserved for a
potential switch to HI mode — where HI tasks require more execution demand. In other
words, we assign a virtual deadline equal to xi · Di with xi ∈ (0, 1] to all τi where χi =
HI.

This virtual deadline is used instead of Di — the real deadline — to schedule HI tasks in LO
mode. The parameter xi is the so-called deadline scaling factor. There is no deadline scaling
for LO tasks such that they are scheduled (only in LO mode) using their Di.

When the system switches to HI mode, HI tasks start being scheduled according to their real
deadlines Di whereas LO tasks are discarded immediately. In this chapter, we consider that
tasks are scheduled under EDF in both modes and refer to this scheme as mixed-criticality
EDF.

Clearly, whereas schedulability of separated modes can be easily tested, i.e., when the system
is stable in either LO or HI mode, it is difficult to test schedulability of transitions between
modes. In particular, careful analysis is required when the system switches from LO to HI
mode.

In this work, similar to other approaches from the literature, transitions from HI back to LO
mode are disregarded. The reason is that, in contrast to changes from LO to HI, a change

29

Chapter 5. Bounding Execution Demand under Mixed-Criticality EDF

from HI to LO mode can be programmed or postponed to a suitable point in time, e.g., at
which the processor idles after all HI tasks have run again for their optimistic WCETs, and
does not require further analysis.

5.1. Bounding Execution Demand
In this section, we introduce the proposed technique. Basically, similar to [42] and [40], we
characterize the execution demand of τ by applying the concept of demand bound function
[17]. In [42] and [40], a demand bound function was derived for each mode in the system,
i.e., one for the LO mode and one for the HI mode.

In contrast to this, as mentioned above, we derive a third demand bound function for the tran-
sition between modes. This allows working around the computation of carry-over execution
demand, reducing the amount of pessimism and, hence, relaxing schedulability conditions in
HI mode as we illustrate later.

Schedulability in LO mode. In LO mode, LO tasks need to be scheduled together with HI
tasks, while the latter are assigned virtual deadlines xi ·Di. As a consequence, the demand
bound function dbfLO(t) in LO mode is given by:

dbfLO(t) =
∑

χi=LO

(⌊
t−Di

Ti

⌋
+ 1

)
CLO
i

+
∑

χi=HI

(⌊
t− xi ·Di

Ti

⌋
+ 1

)
CLO
i . (5.1.1)

Here t ≥ 0 is a real number representing time, i.e., dbfLO(t) returns a τ ’s maximum execution
demand in LO mode in an interval of length t. Note that dbfLO(t) is always greater than or
equal to zero, since Di ≤ Ti holds for all τi and xi has values in (0, 1].

The system is schedulable in LO mode, if dbfLO(t) ≤ t holds for all possible t until the
processor first idles [17], i.e., until a point in time t̂LO by which dbfLO(t̂LO) = t̂LO holds:

t̂LO =
∑

χi=LO

(⌊
t̂LO −Di

Ti

⌋
+ 1

)
CLO
i +

∑
χi=HI

(⌊
t̂LO − xi ·Di

Ti

⌋
+ 1

)
CLO
i ,

Following the technique in [17], we can remove the floor function:

t̂LO ≤
∑

χi=LO

(
t̂LO −Di

Ti
+ 1

)
CLO
i +

∑
χi=HI

(
t̂LO − xi ·Di

Ti
+ 1

)
CLO
i ,

and reshape to:

t̂LO ≤ t̂LO

 ∑
χi=LO

CLO
i

Ti
+
∑

χi=HI

CLO
i

Ti

+
∑

χi=LO

(Ti −Di)
CLO
i

Ti
+
∑

χi=HI

(Ti − xi ·Di)
CLO
i

Ti
.

30

5.1. Bounding Execution Demand

Finally, considering that ULO
LO =

∑
χi=LO

CLO
i
Ti

and ULO
HI =

∑
χi=HI

CLO
i
Ti

, we obtain an upper
bound on t̂LO:

t̂LO ≤

∑
χi=LO

(Ti −Di)
CLO

i
Ti

1− ULO
LO − ULO

HI

+

∑
χi=HI

(Ti − xi ·Di)
CLO

i
Ti

1− ULO
LO − ULO

HI

. (5.1.2)

The bound in (5.1.2) depends on the values of xi, which need to be computed and are
not known a priori. On the other hand, to resolve this dependency, note that this bound
maximizes for all xi = 0 which then leads to the following:

t̂LO ≤

∑
χi=LO

(Ti −Di)
CLO

i
Ti

1− ULO
LO − ULO

HI

+

∑
χi=HI

CLO
i

1− ULO
LO − ULO

HI

, (5.1.3)

Clearly, ULO
LO +ULO

HI — the utilization in LO mode — must be strictly less than one in order
that (5.1.2) and (5.1.3) return valid and finite values.

Schedulability in HI mode. In HI mode, again, LO tasks do not run and HI tasks run for
their corresponding CHI

i leading to the following demand bound function:

dbfHI(t) =
∑

χi=HI

(⌊
t−Di

Ti

⌋
+ 1

)
CHI
i , (5.1.4)

where again t ≥ 0 is a real number representing time, i.e., dbfHI(t) returns the maximum
execution demand in a time interval of length t.

The system is schedulable in stable HI mode, if dbfHI(t) ≤ t for all possible t until the
processor first idles, i.e., until a point in time t̂HI is reached where dbfHI(t̂HI) = t̂HI . We
again can remove the floor function in (5.1.4) to obtain an upper bound on t̂HI :

t̂HI ≤

∑
χi=HI

(Ti −Di)
CHI

i
Ti

1− UHI
HI

. (5.1.5)

UHI
HI — the utilization in HI mode — must be strictly less than one in order that (5.1.5)

returns a valid and finite upper bound on t̂HI .

Schedulability in the transition from LO to HI mode. The transition from LO to HI
mode may happen at an arbitrary point in time when one HI job exceeds its LO execution
budget CLO

i . Unfinished LO jobs are discarded at that time; however, the problem arises
with HI jobs that are released but have not finished executing their CLO

i , i.e., carry-over
jobs. Since it is difficult to accurately bound the execution demand by carry-over jobs,
usually, pessimistic assumptions need to be taken.

The following theorem is a generalization of a theorem in [69] and allows us to work around
carry-over jobs constituting the main contribution by this work. In other words, this theorem

31

Chapter 5. Bounding Execution Demand under Mixed-Criticality EDF

allows us to guarantee schedulability without computing carry-over execution demand at
the point of switching from LO to HI mode, which considerably reduces the amount of
pessimism.

Theorem 1. Given a set τ of MC tasks, let us assume that the following two conditions hold:
(i) dbfLO(t) ≤ t and (ii) dbfHI(t) ≤ t hold for 0 < t ≤ t̂LO and 0 < t ≤ t̂HI respectively, i.e.,
τ is schedulable in LO and stable HI mode. The transition from LO to HI mode is schedulable
under mixed-criticality EDF, if dbfSW (t) ≤ t also holds for 0 < t ≤ t̂SW , where dbfSW (t) is
given by:

dbfSW (t) =
∑

χi=HI

(⌊
t−∆Di

Ti

⌋
+ 1

)
∆Ci, (5.1.6)

with ∆Di = Di − xi · Di, ∆Ci = CHI
i − CLO

i , and t̂SW is upper bounded by the following
expression:

t̂SW ≤

∑
χi=HI

∆Ci

1− USW
HI

, (5.1.7)

where USW
HI is given by

∑
χi=HI

∆Ci
Ti

.

Proof. Let us consider that the system switches to HI mode at time t′ and that the processor
idles for the first time thereafter at t′′ with t′ < t′′, i.e., all jobs released prior to t′′ finish
executing at latest by t′′. Clearly, jobs that are released after t′′ are guaranteed schedulable
by assumption (ii).

Let us now assume that a deadline is missed for the first time at tmiss by a job of any τi that
we denote τmiss. Clearly, tmiss must be in the interval [t′, t′′] and the following must hold for
δmiss = tmiss − t′:

δmiss < CO +
∑

χi=HI

(⌊
δmiss − ϕi −Di

Ti

⌋
+ 1

)
CHI
i ,

where ϕi = r′i− t′ is the phase of a τi at t′, i.e., the release time r′i of its first job after t′ minus
t′. Note that ϕi is in the interval [0, Ti). In addition, CO denotes the carry-over execution
demand at t′. This is the amount of execution in [t′, tmiss] by HI jobs that are released prior
to t′, but have not finished executing at t′.

As already discussed, it is difficult to determine CO in an accurate manner. Hence, to work
around CO, let us first divide each τi, whose jobs have both release times and deadlines in
[t′, tmiss], into two subtasks. The first subtask — denoted by τLOi — is released for the first
time at ϕi and requires executing CLO

i within xi ·Di every Ti time, i.e., this represents τi’s
execution demand in LO mode. The second subtask — denoted by τSWi — is released for the
first time at ϕ′

i = ϕi+xi·Di and requires executing ∆Ci = CHI
i −CLO

i within ∆Di = Di−xi·Di

every Ti time, i.e., this presents τi’s increase in execution demand incurred in HI mode. Note
that, in spite of this modification, the total amount of execution demand in [t′, tmiss] does

32

5.1. Bounding Execution Demand

not change, i.e., a deadline is still missed at tmiss as per assumption, and we can reshape the
above inequality to:

δmiss < CO +
∑

χi=HI

(⌊
δmiss − ϕi − xi ·Di

Ti

⌋
+ 1

)
CLO
i

+
∑

χi=HI

(⌊
δmiss − ϕ′

i −∆Di

Ti

⌋
+ 1

)
∆Ci. (5.1.8)

Note that tmiss coincides with the deadline of the corresponding job of τSWmiss, which misses
its deadline. (Recall that τmiss is now divided into the subtasks τLOmiss and τSWmiss.) Now, there
are two possible cases to consider in order to prove this theorem: The set of only subtasks
τSWi is either (1) unschedulable or (2) schedulable in isolation.

Case (1): This is a rather trivial case. If the set of only τSWi is unschedulable in isolation,
i.e., when scheduled alone on a single processor, dbfSW (t) > t must hold for some t in [0, t̂SW]
with dbfSW (t) given as per (5.1.6). As a result, we will be able to detect a deadline miss in
the transition between LO and HI mode by only testing the set of all τSWi .

To this end, we need to find an upper bound on t̂SW making dbfSW (t̂SW) = t̂SW and removing
the floor function as before:

t̂SW ≤

∑
χi=HI

(Ti −∆Di)
∆Ci
Ti

1− USW
HI

.

Here, USW
HI =

∑
χi=HI

∆Ci
Ti

is the utilization of the set of only τSWi . Since USW
HI < 1 holds

by assumption (ii), the above inequality returns a valid bound on t̂SW . This depends on
∆Di = Di − xi · Di and, therefore, on the values of xi, which we do not know in advance.
However, we can make xi = 1 for all i leading to the upper bound in (5.1.7). The theorem
follows.

Case (2): If dbfSW (t) ≤ t holds for all t in [0, t̂SW], we show that assuming that a deadline
is missed at tmiss leads to a contradiction.

We have assumed that a deadline is missed for the first time at tmiss, hence, all previous
jobs in [t′, tmiss) can actually finish executing in time. Since now τmiss is divided into the
subtasks τLOmiss and τSWmiss, the τLOmiss’s job with a deadline equal to tmiss −∆Dmiss must push
carry-over τSWi ’s jobs (i.e., those that are released prior to and have not finished executing
at tmiss −∆Dmiss and that have deadlines prior to tmiss) by at least ∆miss (being ∆miss the
amount of the deadline miss at tmiss). Otherwise, no deadline can be missed at tmiss, since
again dbfSW (t) ≤ t is assumed to hold for all t. In addition, note that the processor does not
idle in [tmiss −∆Dmiss, tmiss].

Case (2.a): Let us assume that there is only one carry-over job of an arbitrary τSWi and
that ∆Di ≤ ∆Dmiss holds. Note that, after moving this job forward to force its release
time to coincide at tmiss − ∆Dmiss, τSWmiss’s job continues to miss its deadline by at least
∆miss at tmiss, since the deadline of this carry-over τSWi ’s job remains within the interval

33

Chapter 5. Bounding Execution Demand under Mixed-Criticality EDF

[tmiss−∆Dmiss, tmiss]. As a result, the amount of execution demand in [tmiss−∆Dmiss, tmiss]
remains the same or even increases after this displacement — see Fig. 5.1.

The above analysis leads to a contradiction, since τSWmiss’s job and its carry-over τSWi ’s job are
now released in synchrony at tmiss−∆Dmiss. Consequently, τLOmiss cannot push any additional
execution demand into [tmiss − ∆Dmiss, tmiss] and, hence, if a deadline is missed at tmiss,
dbfSW (t) ≤ t cannot hold for all t.

tmiss-ΔDmiss

tmiss
Δmiss

tmiss-ΔDmiss

tmiss
≥ Δmiss

synchronous

Before displacing

After displacing

Figure 5.1.: Illustration of Case (2.a) with ∆Di ≤ ∆Dmiss: The carry-over τSWi ’s job is illus-
trated in green and τSWmiss is illustrated in red. The light green and red shading
represent τLOi and τLOmiss respectively, whereas a light gray shading represents any
previous higher-priority execution (i.e., of jobs with shorter deadlines). Solid up-
ward arrows stand for the release times of τLOi and τLOmiss, while dashed upward
arrows represent the release times of τSWi and τSWmiss (which are also the (vir-
tual) deadlines of τLOi and τLOmiss). Solid downward arrows stand for the (real)
deadlines of τSWi and τSWmiss.

Case (2.b): Let us now assume that there is again only one carry-over job of an arbitrary
τSWi , however, ∆Di > ∆Dmiss holds this time. Note that we can displace this carry-over
τSWi ’s job forward until its deadline occurs at tmiss + ε, where ε is an infinitesimally small
number greater than zero. As a result, this τSWi ’s job starts missing its deadline by an
amount equal to at least ∆miss − ε, since at least the original execution demand in [tmiss −
∆Dmiss, tmiss] starts being executed in [tmiss −∆Dmiss, tmiss + ε] — see Fig. 5.2.

It is easy to see that we can now apply the analysis of Case (2.a) where the carry-over τSWi ’s
job of this case misses its deadline at tmiss + ε (by an amount equal to ∆miss − ε) and the
τSWmiss’s job of this case becomes the carry-over job in Case (2.a).

As a result, Case (2.b) also leads to a contradiction, i.e., if a deadline is missed at tmiss,
dbfSW (t) ≤ t cannot hold for all t.

Clearly, there can be several carry-over jobs whose execution demands are pushed (at least
partially) by τLOmiss into [tmiss−∆Dmiss, tmiss], however, the total amount of execution demand
pushed by τLOmiss remains ∆miss. In this latter case, again, it is easy to see that we can apply

34

5.2. Analytical Comparison

the analysis of Case (2.a) and Case (2.b) to each individual carry-over job. Consequently, if
a deadline is missed at tmiss, dbfSW (t) > t must hold for some t and the theorem follows.

tmiss-ΔDmiss

tmiss
Δmiss

Before displacing

≥ Δmiss-ϵ

tmiss-ΔDmiss

tmiss

ϵ

After displacing

Figure 5.2.: Illustration of Case (2.b) with ∆Di > ∆Dmiss: The carry-over τSWi ’s job is il-
lustrated in green and τSWmiss is illustrated in red. The light green and red shading
represent τLOi and τLOmiss respectively, whereas a light gray shading represents any
previous higher-priority execution (i.e., of jobs with shorter deadlines). Solid up-
ward arrows stand for the release times of τLOi and τLOmiss, while dashed upward
arrows represent the release times of τSWi and τSWmiss (which are also the (vir-
tual) deadlines of τLOi and τLOmiss). Solid downward arrows stand for the (real)
deadlines of τSWi and τSWmiss.

Theorem 1 allows characterizing the additional execution demand in the transitions from LO
to HI mode in a more accurate manner. Based on it, we test whether deadlines are met
or not in [t′, t′′], i.e., from the time t′ of switching to HI mode to the time t′′ at which the
processor first idles after switching. Next we perform an analytical comparison with the
known approaches from the literature.

5.2. Analytical Comparison
In this section, we compare the proposed demand bound functions for mixed-criticality EDF
with those used by Ekberg and Yi in the GREEDY algorithm [42] and by Easwaran in the
ECDF algorithm [40]. We show, for most cases, that the proposed ones result in tighter
bounds on the execution demand than the other mentioned approaches.

5.2.1. The GREEDY Algorithm
In LO mode, note that dbfLO(t) in (5.1.1) is identical to that of Ekberg and Yi — denoted
by gdbfLO(t) in this work. That is, dbfLO(t) = gdbfLO(t) for all 0 < t ≤ t̂LO.

35

Chapter 5. Bounding Execution Demand under Mixed-Criticality EDF

In HI mode, Ekberg and Yi proposed a demand bound function — denoted gdbfHI(t) in this
work — which is given by the following expression [42]:

gdbfHI(t) =
∑

χi=HI

(⌊
t−∆Di

Ti

⌋
+ 1

)
CHI
i −

∑
χi=HI

donei(t), (5.2.1)

with ∆Di = Di − xi ·Di and donei(t) is given by:

donei(t) =


max

(
0, CLO

i − mod
(

t
Ti

)
+∆Di

)
,

if Di > mod
(

t
Ti

)
≥ ∆Di,

0, otherwise.

Note that gdbfHI(t) bounds the execution demand in HI mode taking transitions into account.
In our case, as discussed above, we derive different bounds on the execution demand at
transitions and in stable HI mode, viz., dbfSW (t) and dbfHI(t) respectively.

Now, since donei(t) ≤ CLO
i holds for all valid values of t and xi, dbfSW (t) ≤ gdbfHI(t) also

holds for all t. In other words, if the transition to HI mode is safe by gdbfHI(t), it will also
be safe by the proposed dbfSW (t). However, this does not hold the other way around, i.e.,
dbfSW (t) results in a tighter bound on the execution demand at transitions from LO to HI
mode than gdbfHI(t).

On the other hand, if transitions are safe, it is guaranteed that no deadlines are missed after
switching to HI mode at a t′ and until the processor first idles at a t′′. From t′′ onwards, it
is easy to see that our proposed dbfHI(t) is sufficient and necessary. That is, if dbfHI(t) ≤ t
does not hold for some t with 0 ≤ t ≤ t̂HI , then the system is not feasible, i.e., it will be
neither be feasible by gdbfHI(t).

5.2.2. The ECDF Algorithm

Similar to the case of the GREEDY algorithm, note that dbfLO(t) in (5.1.1) is identical to
that used in the ECDF algorithm in LO mode. We denote this latter by edbfLO(t) in this
study. That is, dbfLO(t) = edbfLO(t) for all 0 < t ≤ t̂LO.

In HI mode, the ECDF algorithm uses a demand bound function — denoted edbfHI(t) in
this work — which is given by the following expression [40]:

edbfHI(t1, t2) = min

t1,
3∑

j=1

dbfLj (t1, t2)


+

∑
χi=HI

and case 2 or 3

dbfHI
i (t1, t2)

+
∑

χi=HI
and case 2

(CO(t2 − t1) + ∆Ci) , (5.2.2)

36

5.3. Finding Valid xi

where ∆Ci is defined as CHI
i −CLO

i . In addition, 0 ≤ t2 ≤ t̂HI and 0 ≤ t1 ≤ t2− min
χi=HI

(∆Di)

hold with again ∆Di = Di − xi ·Di.

Here t1 represents the point in time at which the system switches to HI mode (i.e., t1 = t′ in
this Chapter’s notation) and t2 is the point in time at which a deadline is potentially missed
(i.e., t2 = tmiss ≤ t′′ in this work). Note that dbfHI

i (·) is a τi’s contribution to dbfHI(·) shown
in (5.1.4). HI tasks in (5.2.2) are classified into three cases: case 1 which plays a role in
computing dbfLj (·), case 2, and case 3. For details on how to compute dbfLj (·) for 1 ≤ j ≤ 3
and how to compute CO(·) we refer to [40].

The system is schedulable in HI mode, if edbfHI(t1, t2) ≤ t2 holds. (Here again no distinc-
tion is made between transition and stable HI mode.) Let us now consider that t1 is less
than or equal to

∑3
j=1 dbfLj (t1, t2), such that the schedulability condition by ECDF now

becomes:

∑
χi=HI

and case 2 or 3

dbfHI
i (t1, t2) +

∑
χi=HI

and case 2

(CO(t2 − t1) + ∆Ci) ≤ t2 − t1. (5.2.3)

Easwaran proved that the left-hand side of the above condition is equal to gdbfHI(t2 − t1)
[40]. As a consequence, the proposed dbfSW (t) results in a tighter bound than (5.2.3), since
dbfSW (t) ≤ gdbfHI(t) holds for all t — see again the above Section 5.2.1.

In the case where t1 is greater than
∑3

j=1 dbfLj (t1, t2), the analytical comparison between
edbfHI(·) and dbfSW (·) becomes difficult. This is the case where some amount of the execution
demand given by edbfHI(·) starts being executed before t1, at t1 −

∑3
j=1 dbfLj (t1, t2) to

be more precise. Whether a proof of dominance exists (in either way) remains an open
problem.

At least, from the above discussion, we can assert that the proposed dbfSW (·) is tighter for the
more stringent case, i.e., when none of the execution demand by edbfHI(·) can be executed
before t1. Our experiments, based on a large number of synthetic task sets, present evidence
that this also holds on average, i.e., dbfSW (·) usually results in tighter bounds, particularly,
when the number of HI task increases.

5.3. Finding Valid xi

In this section, we propose an algorithm to find valid values of xi for each HI task in τ .
Clearly, this is closely related to the technique used to tighten deadlines in LO mode. In
this study, we do not aim to improve deadline tightening. The contribution is rather a new
technique for bounding demand execution, which can be combined with existing deadline
tightening techniques, e.g., from [42] or [40].

The proposed algorithm shown in Alg. 3 essentially tests τ ’s schedulability in the LO mode
(line 1), and in HI mode (line 2). If τ is schedulable in LO mode, the function testLO()
returns a vector XLW with the minimum values of xi that could be found to be valid. If this
vector is not empty, i.e., valid xi values could be found, and τ is schedulable in HI mode,
Alg. 3 tests schedulability at the transitions from LO to HI mode (line 3).

37

Chapter 5. Bounding Execution Demand under Mixed-Criticality EDF

Algorithm 3 Schedulability test for mixed-criticality EDF
Require: τ

Require: τHI /* subset of HI tasks */

1: XLW=testLO(τ)

2: if testHI(τHI)=’Passed’ and XLW ̸=∅ then

3: XUP=testSW(τHI)

4: if XUP ̸=∅ and XLW ≤ 1− XUP then

5: Return (’Passed’)

6: else

7: Return (’Not passed’)

8: end if

9: end if

Further, if the set of HI tasks in τ — denoted by τHI — is schedulable at transitions from
LO to HI, the function testSW() returns a vector XUP with the minimum values of 1 − xi
that are also valid. That is, if XUP is neither empty, the whole τ will be schedulable under
mixed-criticality EDF provided that XLW ≤ 1− XUP holds (line 4). Here, 1 denotes a unity
vector (where all elements are equal to one). That is, for each element in the vectors XLW

and XUP , the following condition has to hold:

XLW (i) ≤ xi,

XUP (i) ≤ 1− xi,

=⇒ xi ≤ 1− XUP (i).

As already mentioned, the functions testLO() and testSW() — shown in Alg. 4 and Alg. 5
— test schedulability in LO mode and at the transitions from LO to HI mode. These two
functions are very similar — apart from testLO() dealing with the whole τ and testSW()
with the subset τHI — and return lower bounds on xi and on 1− xi respectively. Thus, the
following discussion of testLO() also applies to testSW().

Basically, testLO() computes dbfLO(t) for all 0 ≤ t ≤ t̂LO starting from xi = 1 for all HI
tasks. However, at least the first deadline of each task should be checked, since we need to
compute each xi. That is, we need to compute dbfLO(t) at least until Dmax = max

∀i
(Di) —

see line 3 in Alg. 4. If the current t corresponds to a deadline of a HI task (lines 10 to 14),
its (relative) virtual deadline xi ·Di is adjusted such that its absolute deadline ri + xi ·Di is
equal to dbfLO(t) (i.e., the total execution demand at t).

Note that the execution demand of jobs with prior deadlines to t is contained in dbfLO(t).
As a result, the computed xi in line 12 can never compromise schedulability of these previous
jobs. In addition, the currently computed xi can only replace a previously computed xi, if it
is greater than this latter (lines 11 to 13). This deadline tightening reduces the number of
possibilities for xi, but it also reduces the complexity of the algorithm.

38

5.3. Finding Valid xi

Algorithm 4 Function testLO()
Require: τ

1: Compute t̂LO by (5.1.3)

2: XLW = 1

3: while t ≤ max(Dmax, t̂LO) do

4: if dbfLO(t) > t then

5: if χi=LO or dbfLO(t)− ri>Di then

6: XLW = ∅

7: Return

8: end if

9: end if

10: if χi=HI then

11: if Computed(i)=’false’ or XLW (i)<dbfLO(t)−ri
Di

then

12: XLW (i) = dbfLO(t)−ri
Di

/* ri = job’s release time */

13: end if

14: end if

15: (t, i)=getNextDeadline()

16: end while

17: Return

Computed(i) in line 11 returns ’false’, if no xi has been computed yet for the current i. The
function getNextDeadline() in line 15 returns the point in time t at which the next deadline
occurs and the index i of the task corresponding to that deadline. Clearly, this function has
to take the computed values of xi into account.

The function testLO() succeeds if it finishes testing dbfLO(t) for 0 ≤ t ≤ max(Dmax, t̂LO)
1

and it could find a value of xi in (0, 1] for each HI task in τ . On the other hand, testLO()
fails, if dbfLO(t) > t holds for some t and either t corresponds to a deadline of a LO task —
whose deadline cannot be adjusted by the used tightening technique — or the resulting xi
becomes greater than 1 (lines 4 to 8).

Analogous to testLO(), testSW() computes dbfSW (t) for all deadlines in the interval 0 ≤ t ≤
max(Dmax, t̂SW) starting from 1− xi = 1 for all HI tasks – recall that deadlines in dbfSW (t)
are equal to (1 − xi) ·Di. Otherwise, as mentioned above, testLO() and testSW() are very
similar and, hence, the above explanation for testLO() also applies to testSW(). Finally, the
function testHI() in Alg. 3 is the known schedulability test for EDF from the literature [17]
and, hence, does not require further discussion.

1As values of xi start being known, we can update this bound in order to reduce runtime by testLO().
However, we did not implement this behavior in the current version.

39

Chapter 5. Bounding Execution Demand under Mixed-Criticality EDF

Algorithm 5 Function testSW()
Require: τHI

1: Compute t̂SW by (5.1.7)

2: XUP = 1

3: while t ≤ max(Dmax, t̂SW) do

4: if dbfSW (t) > t and dbfSW (t)− ri>Di then

5: XUP = ∅

6: Return

7: end if

8: if Computed(i)=’false’ or XUP (i)<
dbfSW (t)−ri

Di
then

9: XUP (i) =
dbfSW (t)−ri

Di
/* ri = job’s release time */

10: end if

11: (t, i)=getNextDeadline()

12: end while

13: Return

5.4. Findings of this Chapter
In this chapter, we studied the problem of mixed-criticality scheduling under EDF, where a
mix of low-criticality (LO) and high-criticality (HI) tasks share the processor. Similar to the
literature, we characterize the execution demand of a mixed-criticality task set by deriving
demand bound functions in the different operation modes, viz., HI and LO mode.

However, it was shown that treating the transitions from LO to HI mode separately from the
stable HI mode allows working around carry-over jobs and, therefore, reducing pessimism in
estimating the execution demand under mixed-criticality EDF. Carry-over jobs are those HI
jobs that start prior to, but have not yet finished executing at the moment of switching from
LO mode to HI mode.

It is interesting to notice that the proposed technique reduces the problem of testing schedu-
lability under mixed-criticality EDF to testing schedulability of three almost unrelated task
sets: the one in LO mode, the one in HI mode and the equivalent task set for transitions be-
tween LO and HI mode. This leads to a considerably simpler schedulability test and improves
our understanding of this problem.

40

Chapter 6.

Approximating Execution Demand Bounds

In the previous chapter, we proposed a technique that works around the computation of
carry-over execution demand, which originates due to switching from LO to HI mode at ar-
bitrary points in time. The proposed technique separates the schedulability analysis of the
transition between LO and HI mode from that of stable HI mode allowing us to guarantee
schedulability in a transition from LO to HI mode, if an equivalent task set derived from the
original is schedulable under plain EDF. Since the proposed approach is based on standard
demand bound functions for EDF, we can apply approximation techniques such as, e.g., the
well-known Devi’s test to derive further tests that trade off accuracy versus complexity/run-
time.

6.1. Applying Approximation Techniques
Basically, there are different two possible ways of applying, Devi’s test [38] to the demand
bound functions of Section 5.1. This leads either to a per-task deadline scaling or a uniform
deadline scaling as discussed next.

In this section, we apply approximation techniques, particularly, Devi’s test [38] to derive
two variants of the proposed approach trading off accuracy for the sake of lesser complexi-
ty/runtime. The first variant computes one deadline scaling factor per HI task, similar to the
proposed approach, but with less accuracy to reduce complexity. In contrast to it, the second
variant computes only one deadline scaling factor for all HI tasks requiring, in principle, less
computation. However, as discussed later in detail, this does not necessarily lead to a lower
complexity.

6.2. Devi’s Test
In the following, we make use of approximation techniques such as the well-known Devi’s test
[38] to derive further schedulability tests for MC systems under EDF that trade off accuracy
versus performance (complexity/runtime). We apply Devi’s test to derive two approximated
variants of our proposed approach, namely, based on per-task and on uniform deadline scaling,
that is, using Devi’s test to compute a scaling factor for each individual HI task and a uniform
deadline scaling factor for all HI tasks in τ .

Devi proposed a schedulability test of periodic task sets. Assume that τ = {τ1, τ2, . . . τn} is
the task systems of n preemptable, asynchronous and periodic tasks with arbitrary relative
deadlines, sorted in order of non-decreasing relative deadlines. τ is schedulable under an
optimal scheduling algorithm such as EDF if the following inequality holds for every possible
k [38]:

41

Chapter 6. Approximating Execution Demand Bounds

∀k : 1 ≤ k ≤ n ::

k∑
i=1

Ci

Ti
+

1

Dk

k∑
i=1

(
Ti −min (Ti, Di)

Ti

)
Ci ≤ 1 (6.2.1)

where each task contains an execution time Ci, a relative deadline Di and a period Ti with
the considered case ∀i : Di < Ti. This test has a complexity of O(n log n) because it requires
sorted task sets.

6.2.1. Per-task deadline scaling

We can now derive the first approximated variant of our proposed approach from Chapter 5
computing a scaling factor for each individual HI task in τ . To this end, we use Devi’s test
to analyze each mode and the transition between them.

Schedulability in LO mode. When applying Devi’s test, the demand bound function in
(5.1.1) reduces to the following condition:

k∑
i=1

CLO
i

Ti
+

1

xk ·Dk

 k∑
i=1

χi=LO

Ti −Di

Ti
CLO
i +

k∑
i=1

χi=HI

Ti − xi ·Di

Ti
CLO
i

 ≤ 1, (6.2.2)

where 1 ≤ k ≤ |τ | and |τ | denotes the total number of tasks in τ . Tasks in (6.2.2) need to be
sorted in order of non-decreasing real deadlines Di for χi = LO or virtual deadlines xi ·Di

for χi = HI. Note that the order of tasks might change depending on the values of xi. As
a result, (6.2.2) might need to be recomputed for the corresponding tasks, if their relative
order changes.

Further, in (6.2.2), we have considered that the current τk (i.e., for the current value of k) is
a HI task. As a result, a deadline scaling factor xk needs to be computed. If τk is a LO task,
the second term of (6.2.2) is divided by Dk instead of xk ·Dk, since LO tasks are scheduled
within their real deadline and require no xk to be computed. However, clearly, (6.2.2) still
needs to hold for all previously selected xi.

Schedulability in stable HI mode. Applying Devi’s test to the demand bound function
in (5.1.4) now results in the following condition:

k∑
i=1

χi=HI

CHI
i

Ti
+

1

Dk

 k∑
i=1

χi=HI

Ti −Di

Ti
CHI
i

 ≤ 1, (6.2.3)

where again 1 ≤ k ≤ |τ | holds. Note that only HI tasks are considered in (6.2.3), which need
to be sorted in order of non-decreasing Di.

42

6.2. Devi’s Test

Schedulability in the transition from LO to HI mode. The demand bound function
in (5.1.6) reduces to the following condition after applying Devi’s test:

k∑
i=1

χi=HI

∆Ci

Ti
+

1

(1− xk)Dk

 k∑
i=1

χi=HI

Ti −∆Di

Ti
∆Ci

 ≤ 1, (6.2.4)

with 1 ≤ k ≤ |τ | as before, ∆Ci = CHI
i − CLO

i , and ∆Di = (1 − xi) ·Di. Similar to stable
HI mode, only HI tasks are considered in (6.2.4). However, this time, tasks are sorted in the
order of non-decreasing ∆Di instead. Similar to LO mode, the order of tasks might change
depending on the values of xi. In this case, (6.2.4) needs to be recomputed for all tasks whose
relative order changes for a newly computed xk.

Finding deadline scaling factors. As already discussed, (6.2.2) needs to hold for all k in
1 ≤ k ≤ |τ |, which is tested in an iterative manner. Clearly, xk only needs to be computed
for χk = HI. To this end, let us first reshape (6.2.2) to the following:

k∑
i=1

CLO
i

Ti
+

1

xk ·Dk

 k∑
i=1

χi=LO

Ti −Di

Ti
CLO
i

+

k−1∑
i=1

χi=HI

Ti − xi ·Di

Ti
CLO
i +

Tk − xk ·Dk

Tk
CLO
k

 ≤ 1,

which we can then solve for xk leading to:

k∑
i=1

χi=LO

Ti−Di
Ti

CLO
i +

k−1∑
i=1

χi=HI

Ti−xi·Di
Ti

CLO
i + CLO

k

Dk

(
1−

∑k
i=1

CLO
i
Ti

)
+Dk

CLO
k
Tk

≤ xk.

Note that we can change the upper limit of the first summation in the numerator to k − 1,
since χk = HI holds. Further, reshaping the denominator, we finally obtain:

k−1∑
i=1

χi=LO

Ti−Di
Ti

CLO
i +

k−1∑
i=1

χi=HI

Ti−xi·Di
Ti

CLO
i + CLO

k

Dk

(
1−

∑k−1
i=1

CLO
i
Ti

) ≤ xk. (6.2.5)

43

Chapter 6. Approximating Execution Demand Bounds

As already mentioned, we might need to recompute (6.2.2) for all tasks whose relative order
changes depending on the value of xk. To avoid this complication, we derive the following
lower bound for xk:

DLO
k−1

Dk
≤ xk, (6.2.6)

where DLO
k−1 = Dk−1 or DLO

k−1 = xk−1 ·Dk−1 depending on whether χk−1 = LO or χk−1 = HI
respectively. In words, (6.2.6) guarantees that the selected xk does not change the order
of tasks in LO mode to avoid having to recompute (6.2.2), clearly, at the cost of a lesser
accuracy.

Now, we can obtain an upper bound on xk reshaping (6.2.4) to:

k∑
i=1

χi=HI

∆Ci

Ti
+

1

(1− xk) ·Dk

 k−1∑
i=1

χi=HI

Ti −∆Di

Ti
∆Ci +

Tk − (1− xk) ·Dk

Tk
∆Ck

 ≤ 1.

Solving for 1− xk and reshaping as before, we obtain:

1−

k−1∑
i=1

χi=HI

Ti−∆Di
Ti

∆Ci +∆Ck

Dk

(
1−

∑k−1
i=1

∆Ci
Ti

) ≥ xk. (6.2.7)

Similar to before, to avoid having to recompute (6.2.4), we need to prevent that the order of
tasks changes, for which we derive the following upper bound on xk:

1− (1− xk−1) ·Dk−1

Dk
≥ xk. (6.2.8)

Finally, a system is feasible under mixed-criticality EDF, if (6.2.2) holds for all k and (6.2.3)
holds for all k with χk = HI. In addition, we need to find a valid xk for every τk with
χk = HI. That is, xk must be greater than or equal to the maximum between (6.2.5) and
(6.2.6). Simultaneously, xk must be less than or equal to the minimum between (6.2.7) and
(6.2.8).

6.2.2. Uniform deadline scaling

We can also apply Devi’s test to derive a second approximated variant of our proposed ap-
proach, computing only one deadline scaling factor for all HI tasks in τ . In principle, this
requires less computation than our first approximated variant. However, in contrast to what
is expected, this second variant does not result in a lower complexity, since it cannot prevent
the order of tasks from changing as discussed below.

44

6.2. Devi’s Test

Schedulability in LO mode. Similar to before, we apply Devi’s test to the demand bound
function in (5.1.1), but considering this time a uniform deadline scaling factor denoted by x.
This results in:

k∑
i=1

CLO
i

Ti
+

1

x ·Dk

 k∑
i=1

χi=LO

Ti −Di

Ti
CLO
i +

k∑
i=1

χi=HI

Ti − x ·Di

Ti
CLO
i

 ≤ 1, (6.2.9)

where 1 ≤ k ≤ |τ | and |τ | denote the total number of tasks in τ . Tasks in (6.2.9) need to be
sorted in order of non-decreasing real deadlines Di for χi = LO or virtual deadlines x · Di

for χi = HI. Although the relative order of HI tasks (among themselves) never changes, the
order of LO tasks with respect to HI tasks might still change for some x. If that happens,
(6.2.9) needs to be recomputed for the corresponding tasks.

In (6.2.9), note that the current τk is considered to be a HI task, hence, the second term of
(6.2.9) is divided by x ·Dk. If the current τk is a LO, this term will be divided by only Dk

leading to:

k∑
i=1

CLO
i

Ti
+

1

Dk

 k∑
i=1

χi=LO

Ti −Di

Ti
CLO
i +

k∑
i=1

χi=HI

Ti − x ·Di

Ti
CLO
i

 ≤ 1. (6.2.10)

Schedulability in stable HI mode. When considering a uniform deadline scaling factor x,
we still obtain (6.2.3) as a result of applying Devi’s test to (5.1.5). Hence, this case requires
no further discussion.

Schedulability in the transition from LO to HI mode. The demand bound function
in (5.1.7) reduces to the following condition after applying Devi’s test for a uniform deadline
scaling factor x:

k∑
i=1

χi=HI

∆Ci

Ti
+

1

(1− x) ·Dk

 k∑
i=1

χi=HI

Ti − (1− x) ·Di

Ti
∆Ci

 ≤ 1, (6.2.11)

with 1 ≤ k ≤ |τ |, and ∆Ci is defined as before. Only HI task are considered in (6.2.11) and
tasks are sorted in the order of non-decreasing (1− x) ·Di. This time, however, the order of
tasks cannot change for different values of x, since x affects all deadlines the same.

45

Chapter 6. Approximating Execution Demand Bounds

Finding a uniform deadline scaling factor. We can obtain two lower bounds on x
depending on whether we operate on (6.2.9) or (6.2.10). From (6.2.9), i.e., for χk = HI, we
obtain:

k∑
i=1

χi=LO

Ti−Di
Ti

CLO
i +

k∑
i=1

χi=HI

CLO
i

Dk

(
1−

∑k
i=1

CLO
i
Ti

)
+

k∑
i=1

χi=HI

Di
CLO

i
Ti

≤ x. (6.2.12)

Similarly, we obtain the following lower bound on x by operating on (6.2.10), i.e., for the case
χk = LO:

k∑
i=1

χi=LO

Ti−Di
Ti

CLO
i +

k∑
i=1

χi=HI

CLO
i −Dk

(
1−

∑k
i=1

CLO
i
Ti

)
k∑

i=1
χi=HI

Di
CLO

i
Ti

≤ x. (6.2.13)

Note that the order between some HI and LO tasks might change for a given x, requiring
us to recompute (6.2.9). As mentioned above, in contrast to the per-task deadline scaling, it
becomes difficult to derive an additional lower bound on x that prevents this from happening.
We can, of course, select an x for the current τk such that DLO

k−1 ≤ x ·Dk holds, where DLO
k−1

represents τk−1’s deadline in LO mode (independent of whether this is a LO or HI task).
However, this is not sufficient, since a new value of x also affects all previously tested HI
tasks, whose deadlines might become smaller than some deadline of a LO task.

An upper bound on x can be obtained from (6.2.11), which leads to:

x ≤ 1−

k∑
i=1

χi=HI

∆Ci

Dk

1−
k∑

i=1
χi=HI

∆Ci
Ti

+
k∑

i=1
χi=HI

Di
∆Ci
Ti

. (6.2.14)

According to this second variant of our proposed approach, the system is feasible under
mixed-criticality EDF, if (6.2.9) holds for all k and (6.2.3) holds for all k in 1 ≤ k ≤ |τ |
with χk = HI. In addition, none of the values of x obtained with (6.2.14) for 1 ≤ k ≤ |τ |
with χk = HI should be less than any value obtained either by (6.2.12) or by (6.2.13) for
1 ≤ k ≤ |τ |.

6.2.3. Complexity
Similar to GREEDY [42] and ECDF [40], the proposed approach of Section 5.1 is based
on computing demand bound functions and, hence, has a pseudo-polynomial complexity
O(Kn · n) for task sets with a total utilization that is strictly less than 1 [17]. Note that n

46

6.3. Findings of this Chapter

represents the number of tasks in the given task set and Kn is a factor that depends on task
parameters and, therefore, on n. In contract to this, EDF-VD [8] has a linear complexity
O(n).

The approximated variant in Section 6.2.1, based on computing per-task deadline scaling
factors, has a polynomial complexity O(n · log n), when the bounds in (6.2.6) and (6.2.8) are
considered. As explained above, these prevent that the order of tasks changes for a newly
computed deadline scaling factor. If (6.2.6) and (6.2.8) are not considered, the order of tasks
might change requiring us to retest some of the (previously tested) tasks and, hence, leading
to a quadratic complexity O(n2) instead.

On the other hand, the complexity of our second approximated variant of Section 6.2.2 is
quadratic O(n2), since, in the general case, i.e., with at least one LO task in the system, it
cannot guarantee that the order of tasks does not change. As a result, retesting cannot be
avoided.

6.3. Findings of this Chapter
In this chapter, we proposed applying approximaiton techniques to the demand bound func-
tions derived in Chapter 5. The rationale behind this is to reduce the complexity of the
resulting algorithms for the sake of a reduced runtime. In contrast to that of Chapter 5, the
approximated algorithms of this chaper with either a per-task or a uniform deadline scaling
are more suitable for online tests in a MC setting. On the other hand, such faster tests
are also more benefitial for design-space exploration, where they are repeatedly run and can
considereably reduce the overall time required.

47

48

Chapter 7.

Evaluation and Results

This chapter evaluates our proposed approaches from Chapter 4, Chapter 5 and Chapter 6,
and compares them with other state-of-the-art approaches from the literature. We perform
a simulation-based evaluation of the three proposed thechniques on the basis of synthetic
data.

7.1. Mixed-Criticality EDF

In contrast to EDF-VD, where deadlines are assumed to be equal to periods, we now allow a
deadline Di with Di ≤ Ti. In addition, we now assign a virtual deadline equal to xi ·Di with
xi ∈ (0, 1) to all τi with χi = HI.

Similar to EDF-VD, this virtual deadline is used instead of Di — the real deadline — to
schedule HI tasks in LO mode. The parameter xi is now a per-task deadline scaling factor.
There is no deadline scaling for LO tasks such that they are scheduled (only in LO mode)
using their Di.

When the system switches to HI mode, HI tasks start being scheduled according to their real
deadlines Di whereas LO tasks are discarded immediately. Clearly, whereas schedulability
of separated modes can be easily tested, i.e., when the system is stable in either LO or HI
mode, it is difficult to test schedulability of transitions between modes. In particular, careful
analysis is required when the system switches from LO to HI mode.

In this work, similar to other approaches from the literature, transitions from HI back to LO
mode are disregarded. The reason is that, in contrast to changes from LO to HI, a change
from HI to LO mode can be programmed or postponed to a suitable point in time, e.g., at
which the processor idles after all HI tasks have run again for their optimistic WCETs, and
does not require further analysis.

7.2. Obtaining Test Data

This section briefly describes how test data was created for this comparison. This description
is common to all curves presented next, however, we distinguish between the case Di = Ti

and Di ≤ Ti. Details concerning a specific curve will be given as it becomes necessary.

7.2.1. The Case Di = Ti

For comparing the different algorithms in the case where Di = Ti for all tasks, we gener-
ate a large number of task sets. In particular, each data-point of the curves shown below

49

Chapter 7. Evaluation and Results

was obtained by randomly generating 1000 task systems and testing each for schedulabil-
ity according to the corresponding algorithms. To this end, we made use of the algorithm
UUniFast [24] to generate valid utilization values, i.e., CLO

i
Ti

, for each task in a set.

We then use a log-uniform distribution approach proposed by Emberson et al. [45] to generate
the task periods Ti with a factor of 1000 difference between the minimum and maximum
possible task period. This represents a range of task periods from 1ms to 1000ms as found
in most hard real-time applications such as automotive and aerospace. The log-uniform
distribution generates an equal number of tasks in each time band (e.g., 1−10ms, 10−100ms
etc.), thus providing reasonable correspondence with real systems.

We later use the obtained values of CLO
i
Ti

and Ti to compute a corresponding value of CLO
i .

Further, given a percentage of HI tasks, which we vary in our experiments, we assumed that
HI tasks experience a random increase in execution demand in HI mode of either 10% or
100% more of their respective CLO

i
Ti

. With this, we finally obtained the values of CHI
i that

match that increase.

7.2.2. The Case Di ≤ Ti

We again used the algorithm UUniFast [23] [24] to generate sets with different numbers of
tasks for a varying LO utilization, i.e., for a varying ULO

LO + ULO
HI . For each curve, a total

number of 5,000 different task sets were created.

For a given value of LO utilization, UUniFast returns a vector of (individual) task utilizations
as explained before. We then generate periods Ti randomly based on the log-uniform distri-
bution [45] and use the task utilization to obtain the values of CLO

i similar to the previous
case. Now, given a percentage of HI tasks, we assumed again that HI tasks experience a
random increase in execution demand in HI mode of either 10% or 100% more of their CLO

i
Ti

to obtain the values of CHI
i . Finally, we randomly selected Di in [CHI

i , Ti] for HI tasks and
in [CLO

i , Ti] for LO tasks.

7.3. Weighted schedulability
In the following, we make use of the concept of weighted schedulability [22] [36] to analyze
performance by the different algorithms. That is, for a schedulability test y whose accuracy
on testing a task set τ is a function of parameter p, e.g., the number of tasks per set, etc.,
its weighted schedulability Wy(p) is given by:

Wy(p) =

∑
∀τ

U(τ) · Sy(τ, p)∑
∀τ

U(τ)
, (7.3.1)

where U(τ) is the utilization of a given τ and Sy(τ, p) is y’s binary result (1 if schedulable and
0 if not) for a task set τ with parameter value p. In other words, individual schedulability
results by y are weighted according to the utilization of the task sets tested, putting more
emphasis on higher-utilization ones.

We created weighted schedulability curves varying following parameters: (i) total number of
tasks, (ii) percentage of HI tasks, (iii) increase of HI execution demand and (iv) range of task
periods. Every time we varied one of these parameters, we generated 1000 different task sets

50

7.4. Algorithms in this Comparison

for each LO utilization value between 0 and 100% at steps of 10%, i.e., a total of 10,000 task
sets per marker on the shown curves. To this end, we proceeded as described previously to
obtain task parameters.

7.4. Algorithms in this Comparison

In this section, we introduce and briefly explain the algorithms to which we compare the
proposed ones in this evaluation.

7.4.1. The EDF-VD and DEDF-VD Algorithms

As discussed above, EDF with Virtual Deadlines (EDF-VD) assumes that deadlines are
equal to periods Di = Ti ∀i. Under EDF-VD, virtual deadlines are obtained by x ·Di, where
x ∈ (0, 1) is a uniform deadline scaling factor for all HI tasks [10].

Based on this, the LO and HI tasks are schedulable with their corresponding CLO
i under EDF

in LO mode. Similarly, in HI mode, the HI tasks also need to be schedulable under EDF,
but with their corresponding CHI

i instead, leading to schedulability conditions as shown in
Section 2.5.1.

Now, since we are concerned with the case Di ≤ Ti for all tasks, we need to adapt EDF-VD
for this case. We call the resulting algorithm Density EDF-VD or DEDF-VD. This latter
is based on the concept of density. CLO

i
Di

and CLO
i

xḊi
then characterize LO and HI tasks in LO

mode, whereas CHI
i
Di

characterizes HI tasks in HI mode. This all leads to:

δLOLO =
∑

χi=LO

CLO
i

Di
,

δLOHI =
∑

χi=HI

CLO
i

x ·Di
,

and
δHI
HI =

∑
χi=HI

CHI
i

Di
.

As a result, DEDF-VD’s schedulability conditions now turn to the following:

δLOLO + δHI
LO ≤ 1, (7.4.1)

δHI
HI ≤ 1, (7.4.2)

Note that these two conditions do not ensure schedulability in the transition phase. Hence,
they are indeed only necessary, but not sufficient conditions.

51

Chapter 7. Evaluation and Results

In [8], Baruah et al. also obtained a sufficient schedulability condition for EDF-VD in the form
of a utilization bound: max

(
ULO
LO + ULO

HI , U
HI
HI

)
≤ 3/4. They also proposed a more accurate

schedulability test based on whether feasible lower and upper bounds can be obtained on
x [8]:

δHI
LO

1− δLOLO

≤ x, (7.4.3)

x ≤
1− δHI

HI

δLOLO

. (7.4.4)

Similar to EDF-VD, if the value of x obtained with (7.4.3) is less than or equal to the value
obtained with (7.4.4), then it is possible to find a valid x for the considered system rendering
it schedulable under DEDF-VD.

7.4.2. The GREEDY algorithm

In LO mode, note that dbfLO(t) in (5.1.1) is identical to that of Ekberg and Yi — denoted
by gdbfLO(t) in this work. That is, dbfLO(t) = gdbfLO(t) for all 0 < t ≤ t̂LO.

In HI mode, Ekberg and Yi proposed a demand bound function — denoted gdbfHI(t) in this
study — which is given by the following expression [42]:

gdbfHI(t) =
∑

χi=HI

(⌊
t−∆Di

Ti

⌋
+ 1

)
CHI
i −

∑
χi=HI

donei(t), (7.4.5)

with ∆Di = Di − xi ·Di and donei(t) is given by:

donei(t) =

{
max

(
0, CLO

i − mod
(

t
Ti

)
+∆Di

)
, if Di > mod

(
t
Ti

)
≥ ∆Di,

0, otherwise.

Note that gdbfHI(t) bounds the execution demand in HI mode taking transitions into account.
In our case, as discussed above, we derive different bounds on the execution demand at
transitions and in stable HI mode, viz., dbfSW (t) and dbfHI(t) respectively.

7.4.3. The ECDF algorithm

Similar to the case of the GREEDY algorithm, note that dbfLO(t) in (5.1.1) is identical to
that used in the ECDF algorithm in LO mode. We denote this latter by edbfLO(t) in this
work. That is, dbfLO(t) = edbfLO(t) for all 0 < t ≤ t̂LO.

In HI mode, the ECDF algorithm uses a demand bound function — denoted edbfHI(t) in
this work — which is given by the following expression [40]:

52

7.5. Evaluation of Utilization Caps

edbfHI(t1, t2) = min

t1,

3∑
j=1

dbfLj (t1, t2)


+

∑
χi=HI

and case 2 or 3

dbfHI
i (t1, t2)

+
∑

χi=HI
and case 2

(CO(t2 − t1) + ∆Ci) , (7.4.6)

where ∆Ci is defined as CHI
i −CLO

i . In addition, 0 ≤ t2 ≤ t̂HI and 0 ≤ t1 ≤ t2− min
χi=HI

(∆Di)

hold with again ∆Di = Di − xi ·Di.

Here t1 represents the point in time at which the system switches to HI mode (i.e., t1 = t′

in our notation) and t2 is the point in time at which a deadline is potentially missed (i.e.,
t2 = tmiss ≤ t′′ in this work). Note that dbfHI

i (·) is a τi’s contribution to dbfHI(·) shown
in (5.1.4). HI tasks in (7.4.6) are classified into three cases: case 1 which plays a role in
computing dbfLj (·), case 2, and case 3. For details on how to compute dbfLj (·) for 1 ≤ j ≤ 3
and how to compute CO(·) we refer to [40].

7.5. Evaluation of Utilization Caps
In this section, we evaluate the benefits and drawbacks of the proposed approach consisting
in introducing utilization caps to MC scheduling. In particular, we compare our approach as
given in Alg. 1, i.e., with fixed utilization caps, to the original EDF-VD algorithm in the case
where Di = Ti holds for all tasks. The choice of Alg. 1 over Alg. 2 was taken to facilitate
comparison based on synthetic data. Alg. 1 makes it easier to systematically investigate how
performance is affected by a decreasing utilization cap UL.

In particular, we consider that the processor three cases UL = 1/2, UL = 1/3 and UL =
1/4, i.e., where the total processor utilization is uniformly divided in 2, 3 and 4 portions
respectively. As discussed in Chapter4, we assume that tasks in τ are partitioned or grouped
according to some functional dependency. For the sake of comparison, however, we use the
well-known first fit decreasing (FFD) heuristic to build partitions or groups of tasks in this
section. Thereby, tasks are sorted according to non-increasing utilization values — CLO

i
Ti

for

LO tasks or CHI
i
Ti

for HI tasks.

The impact of (i) the total number of tasks, (ii) the number of HI tasks and (iii) a varying
increase of HI execution demand for each HI task is investigated in Fig. 7.1 to Fig. 7.12.
In each curve, the percentage of schedulable task sets that could be found by the different
algorithms is shown on the y-axis for a varying ULO

LO + ULO
HI on the x-axis.

7.5.1. 10 tasks per task set
Fig. 7.1 to Fig. 7.4 show the results of our experiments for 10 tasks per set and different
comparison conditions. We vary the number of HI tasks in each task set from 50%, i.e., 5
tasks, in Fig. 7.1 and 7.3 to 10%, i.e., 1 task, in Fig. 7.2 and 7.4. In addition, we vary the
amount of execution demand from 100% in Fig. 7.1 and Fig. 7.2, i.e., HI tasks double their
execution demand in HI mode, to 10% in Fig. 7.3 and Fig. 7.4, i.e., HI tasks have an increase
of 10% more execution demand in HI mode.

53

Chapter 7. Evaluation and Results

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.1.: Schedulability vs. LO utilization for 10 tasks, 50% of HI tasks, 100% increase
of execution demand in HI mode

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.2.: Schedulability vs. LO utilization for 10 tasks, 10% of HI tasks, 100% increase
of execution demand in HI mode

As it can be seen, the smaller the value of UL, the worse the algorithm’s performance, i.e.,
less task sets will be rendered schedulable. In other words, UL = 1/3 and UL = 1/4 have
the the worst performance compared to UL = 1/2. On the other hand, UL = 1/2 has a
performance that is close to that of the original EDF-VD. This means that we can safeguard
half of the LO tasks from being discarded in HI mode without significantly reducing the total
usable utilization on the processor.

54

7.5. Evaluation of Utilization Caps

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.3.: Schedulability vs. LO utilization for 10 tasks, 50% of HI tasks, 10% increase of
execution demand in HI mode

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.4.: Schedulability vs. LO utilization for 10 tasks, 10% of HI tasks, 10% increase of
execution demand in HI mode

7.5.2. 20 tasks per task set

Fig. 7.5 to Fig. 7.8 show the results of our experiments for 20 tasks per set and different com-
parison conditions. We vary the number of HI tasks in each task set from 50%, i.e., 10 tasks,
in Fig. 7.5 and 7.7 to 10%, i.e., 2 tasks, in Fig. 7.6 and 7.8. The amount of execution demand
was varied from 100% in Fig. 7.5 and 7.6, i.e., HI tasks double their execution demand in HI
mode, to 10% in Fig. 7.7 and Fig. 7.8, i.e., HI tasks have an increase of 10% more execution

55

Chapter 7. Evaluation and Results

demand in HI mode.

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100
%

 s
ch

ed
ul

ab
le

 ta
sk

 s
et

s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.5.: Schedulability vs. LO utilization for 20 tasks, 50% of HI tasks, 100% increase
of execution demand in HI mode

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.6.: Schedulability vs. LO utilization for 20 tasks, 10% of HI tasks, 100% increase
of execution demand in HI mode

Again, the smaller the value of UL, the worse the algorithm’s performance in terms of schedu-
lable task sets. This time, however, UL = 1/3 and UL = 1/4 are closer to the performance of
UL = 1/2 and of EDF-VD, being UL = 1/4 still the one with the worst performance among
all. The amount of usable utilization on the processor is not so drastically impacted as in the
case of 10-task sets. The exception is Fig. 7.5, where the total HI execution demand is much
higher than for Fig. 7.6 to Fig. 7.8.

56

7.5. Evaluation of Utilization Caps

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.7.: Schedulability vs. LO utilization for 20 tasks, 50% of HI tasks, 10% increase of
execution demand in HI mode

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.8.: Schedulability vs. LO utilization for 20 tasks, 10% of HI tasks, 10% increase of
execution demand in HI mode

7.5.3. 50 tasks per task set
Similar to the case of 10-task and 20-task sets, Fig. 7.9 to Fig. 7.12 show the results of our
experiments for 50 tasks per set and different comparison conditions. We vary the number
of HI tasks in each task set from 50%, i.e., 25 tasks, in Fig. 7.9 and 7.11 to 10%, i.e., 5 tasks,
in Fig. 7.10 and 7.12. The amount of execution demand was varied from 100% in Fig. 7.9
and 7.10, i.e., HI tasks have twice their LO execution demand in HI mode, to 10% in Fig. 7.11
and Fig. 7.12, i.e., HI tasks have an increase of 10% more execution demand in HI mode.

57

Chapter 7. Evaluation and Results

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.9.: Schedulability vs. LO utilization for 50 tasks, 50% of HI tasks, 100% increase
of execution demand in HI mode

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.10.: Schedulability vs. LO utilization for 50 tasks, 10% of HI tasks, 100% increase
of execution demand in HI mode

We can see that, this time, all algorithms behave almost the same. Only in Fig. 7.9, where
the greatest HI execution demand is considered, they still have some difference in the number
of task sets they render schedulable. In Fig. 7.10 to 7.12, algorithms’ performance curves
almost overlap fully showing a negligible difference with respect to EDF-VD.

58

7.5. Evaluation of Utilization Caps

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.11.: Schedulability vs. LO utilization for 50 tasks, 50% of HI tasks, 10% increase
of execution demand in HI mode

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.12.: Schedulability vs. LO utilization for 50 tasks, 10% of HI tasks, 10% increase
of execution demand in HI mode

7.5.4. Comparison of runtime

In this section, we compare runtime versus utilization and versus number of tasks by our
approach as given in Alg. 1, i.e., with fixed utilization caps, to the original EDF-VD algorithm.
Again, the purpose is to show relative behavior rather than providing absolute timing values.
To this end, all algorithms were implemented in Matlab and executed on a computer featuring
an Intel Core i5 processor.

Fig. 7.13 compares average runtime versus utilization for a fixed number of task (n = 10) and
increasing utilization considering 10,000 different task sets. As it can be observed, UL = 1/3

59

Chapter 7. Evaluation and Results

and UL = 1/4 are around two or more times faster than UL = 1/2, however, they are also
almost one or two times slower than EDF-VD.

0 20 40 60 80 100
LO utilization [%]

0

0.5

1

1.5

2
R

un
tim

e[
m

s] EDF-VD
U

L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.13.: Runtime vs. utilization for n = 10 and 50% of HI tasks with 100% increase of
HI execution demand

Fig. 7.14 depicts runtime as the number of tasks grows. Again, UL = 1/3 and UL = 1/4
remain approximately two or more times faster than UL = 1/2 as the number of tasks grows,
but they are also almost two or more times slower than EDF-VD. In other words, the values of
UL = 1/3 and UL = 1/4 provide a comparatively good performance in terms of schedulability
at a lesser cost in terms of runtime.

0 2000 4000 6000 8000 10000
Number of tasks

0

2

4

6

8

R
un

tim
e[

m
s] EDF-VD

U
L
=1/2

U
L
=1/3

U
L
=1/4

Figure 7.14.: Runtime vs. number of tasks for 50% of HI tasks with 100% increase of HI
execution demand

60

7.6. Evaluation of Execution Demand Bounds

7.6. Evaluation of Execution Demand Bounds
In this section, we evaluate the proposed technique from Chapter 5 based on synthetic data
and compare it to the most prominent approaches from the literature. Again, the intention
of this section is to show how the different algorithms roughly behave with respect to each
other.

In particular, we compare the proposed technique in form of Alg. 3 (denoted by Proposed in
the next curves) with DEDF-VD [8], with the GREEDY algorithm by Ekberg and Yi [42],
and with ECDF by Easwaran [40]. It should be noted that the proposed Alg. 3 as well
as GREEDY and ECDF essentially perform two inter-related functions: (i) selection of xi
parameters by some deadline tightening technique, (ii) schedulability test for a given set of
xi. Clearly, the more accurate the schedulability test is, the better the selection of xi is and
vice versa.

As discussed above, the aim of this work is not to improve the deadline tightening, but to
propose a new technique to bound execution demand of mixed-criticality EDF. As a result,
the proposed Alg. 3 makes use of a rather rudimentary (though less complex) tightening
technique compared to those of the GREEDY and the ECDF algorithms. However, on
average, experimental results evidence that benefits overcome drawbacks by the proposed
Alg. 3.

Finally, as already stated, we had to modify EDF-VD — denoted by DEDF-VD in this
section — to consider the deadlines Di of tasks instead of their inter-arrival times or periods
Ti, i.e., to consider the tasks’ densities instead of their utilizations, to account for the case of
constrained deadlines Di ≤ Ti and be meaningfully compared with the other algorithms in
this section.

7.6.1. Comparison for sets of 10 tasks
Fig. 7.15 to Fig. 7.20 show the results of our experiments for 10 tasks and a varying number
of HI tasks. In Fig. 7.15, Fig. 7.16 and Fig. 7.17, only one HI task was considered (10% of
n) for an increasing amount of HI execution demand.

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.15.: Schedulability vs. LO utilization for n = 10 and 10% of HI tasks with 10%
increase of HI execution demand

61

Chapter 7. Evaluation and Results

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.16.: Schedulability vs. LO utilization for n = 10 and 10% of HI tasks with 50%
increase of HI execution demand

As we can see, in this case, the Proposed algorithm and ECDF behave almost the same with
ECDF being slightly better for an increase in HI execution demand that goes from 10% in
Fig. 7.15 to 100% in Fig. 7.17, i.e., the HI task doubles its execution demand in HI mode. The
GREEDY algorithm is outperformed by the Proposed algorithm and by ECDF by around
10%, i.e., the Proposed algorithm and ECDF constantly find around 10% more task sets that
are feasible under mixed-criticality EDF than the GREEDY algorithm.

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.17.: Schedulability vs. LO utilization for n = 10 and 10% of HI tasks with 100%
increase of HI execution demand

62

7.6. Evaluation of Execution Demand Bounds

In Fig. 7.18, Fig. 7.19 and Fig. 7.20, three HI tasks were considered (30% of n) again for an
increasing amount of HI execution demand. In this case, the Proposed algorithm and ECDF
behave almost the same; however, the Proposed algorithm is most of the time slightly better
than ECDF for an increase in HI execution demand that goes from 10% in Fig. 7.18 to 100%
in Fig. 7.20, i.e., the three HI tasks double their execution demand in HI mode.

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.18.: Schedulability vs. LO utilization for n = 10 and 30% of HI tasks with 10%
increase of HI execution demand

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.19.: Schedulability vs. LO utilization for n = 10 and 30% of HI tasks with 50%
increase of HI execution demand

63

Chapter 7. Evaluation and Results

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.20.: Schedulability vs. LO utilization for n = 10 and 30% of HI tasks with 100%
increase of HI execution demand

The GREEDY algorithm is outperformed by the Proposed and ECDF by around 20% this
time, i.e., the Proposed algorithm and ECDF constantly find around 20% more task sets that
are feasible under mixed-criticality EDF.

Even though there is not much difference between the Proposed algorithm and ECDF, it
should be noted that ECDF has a more sophisticated deadline tightening technique than
Alg. 3. Tightening deadlines in a more efficient manner will certainly improve Alg. 3’s per-
formance.

7.6.2. Comparison for sets of 20 tasks

Fig. 7.21 to Fig. 7.26 show the results of our experiments for 20 tasks and a varying number
of HI tasks. In Fig. 7.21, Fig. 7.22 and Fig. 7.23, two HI tasks were considered (10% of n)
for an increasing amount of HI execution demand.

Here, it can be seen that the Proposed algorithm and ECDF behave almost the same with
ECDF being again slightly better for an increase in HI execution demand that goes from 10%
in Fig. 7.21 to 100% in Fig. 7.23. The GREEDY algorithm is again outperformed by the
Proposed and the ECDF algorithm by around 10%, i.e., these latter find around 10% more
task sets that are feasible under mixed-criticality EDF.

In Fig. 7.24, Fig. 7.25 and Fig. 7.26, six HI tasks were considered (30% of n) for an increasing
amount of HI execution demand. This time the Proposed algorithm considerably outperforms
ECDF by around 10% to 20% more accepted task sets. The GREEDY algorithm is still
outperformed by ECDF and the Proposed one.

64

7.6. Evaluation of Execution Demand Bounds

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.21.: Schedulability vs. LO utilization for n = 20 and 10% of HI tasks with 10%
increase of HI execution demand

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.22.: Schedulability vs. LO utilization for n = 20 and 10% of HI tasks with 50%
increase of HI execution demand

65

Chapter 7. Evaluation and Results

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.23.: Schedulability vs. LO utilization for n = 20 and 10% of HI tasks with 100%
increase of HI execution demand

The performance of the Proposed algorithm is the highest for the experiments in Fig. 7.24,
i.e., where there are a relatively big number of HI tasks, each of which experiences a rel-
atively small increase in execution demand in HI mode. Again, the performance of the
Proposed Alg. 3 can be further improved by using a more sophisticated deadline tightening
scheme.

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.24.: Schedulability vs. LO utilization for n = 20 and 30% of HI tasks with 10%
increase of HI execution demand

66

7.7. Evaluation of Approximation Techniques

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.25.: Schedulability vs. LO utilization for n = 20 and 30% of HI tasks with 50%
increase of HI execution demand

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DEDF-VD
GREEDY
ECDF
Proposed

Figure 7.26.: Schedulability vs. LO utilization for n = 20 and 30% of HI tasks with 100%
increase of HI execution demand

7.7. Evaluation of Approximation Techniques
In this section, we compare the proposed approach of Section 5.1 and its approximated variant
based on per-task deadline scaling of Section 6.2.1 with DEDF-VD as explained above, with
the GREEDY algorithm by Ekberg and Yi [42], and with ECDF by Easwaran [40].

To this end, we evaluate the impact of different factors on performance by the different
algorithms: (i) the total number of tasks, (ii) the number of HI tasks and (iii) a varying
increase of HI execution demand for each HI task.

67

Chapter 7. Evaluation and Results

In addition, we include our first approximated variant from Section 6.2.1 in this comparison.
As discussed in Section 6.2.3, this is the one with the lowest complexity and helps illustrating
how much performance can be attained with the proposed technique at the least possible
cost.

7.7.1. Schedulability curves

Fig. 7.27 shows schedulability curves, i.e., the percentage of feasible task sets by the above
algorithms, versus LO utilization. For every increase in LO utilization, a total number of
1000 different sets of 20 tasks each were randomly generated — 10,000 task sets in total. We
made use of UUniFast [24] to generate individual task utilizations.

Further, we used the log-uniform distribution proposed by Emberson et al. [45] to create the
task periods Ti in the range of 1ms to 1000ms. The log-uniform distribution guarantees that
task periods are equally spread into the time bands 1− 10ms, 10− 100ms, etc.

With Ti and the task utilization, we obtained the values of CLO
i . We assumed that 30% of

the tasks are HI tasks, i.e., 6 out of 20 tasks. Further, for each HI task, we randomly selected
an increase in HI execution demand of at most 50% of CLO

i
Ti

. With this, we then obtained the
values of CHI

i . Deadlines Di are constrained and chosen from a uniform distribution in the
range [CHI

i , Ti] for HI tasks and in [CLO
i , Ti] for LO tasks.

As depicted in Fig. 7.27, expectedly, the percentage of schedulable task sets decreases with
an increasing LO utilization. On the other hand, whereas all algorithms perform similarly for
a LO utilization below 50%, they exhibit different behaviors for higher LO utilizations. In
particular, the proposed approach outperforms ECDF by around 10% to 20% more accepted
task sets in the range of 60% to 100% LO utilization. Interestingly, in spite of having a
lesser complexity, our approximated variant shows a similar performance to the GREEDY
algorithm.

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
[%

]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.27.: Schedulability vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase
of HI execution demand

68

7.7. Evaluation of Approximation Techniques

7.7.2. Weighted schedulability

Next, we make use of the concept of weighted schedulability [22] [36] to analyze the perfor-
mance by the above algorithms. That is, for a schedulability test y whose accuracy on testing
a task set τ is a function of parameter p, its weighted schedulability Wy(p) is given by:

Wy(p) =

∑
∀τ

U(τ) · Sy(τ, p)∑
∀τ

U(τ)
, (7.7.1)

where U(τ) is the utilization of a given τ and Sy(τ, p) is y’s binary result (1 if schedulable and
0 if not) for a task set τ with parameter value p. In other words, individual schedulability
results by y are weighted according to the utilization of the task sets tested, putting more
emphasis on higher-utilization ones.

We created weighted schedulability curves varying following parameters: (i) total number of
tasks, (ii) percentage of HI tasks, (iii) increase of HI execution demand and (iv) range of task
periods. Every time we varied one of these parameters, we generated 1000 different task sets
for each LO utilization value between 0 and 100% at steps of 10%, i.e., a total of 10,000 task
sets per marker on the shown curves. To this end, we proceeded as described previously to
obtain task parameters.

20 40 60 80 100
Number of tasks per set

0

20

40

60

80

100

W
ei

gh
te

d
sc

he
du

la
bi

lit
y

[%
]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.28.: Weighted schedulability vs. total number of tasks for 30% HI tasks and 50%
increase of HI execution demand

Fig. 7.28 shows weighted schedulability curves for a varying total number of tasks where
we selected the number of HI tasks to be equal to 30% of the total (i.e., it also varies
proportionally) and the increase of HI execution demand to be 50% of the LO execution
demand for each HI task. The proposed approach outperforms all other algorithms by around
10% to 20% depending on the total number of tasks. In general, the more the tasks, the better
the proposed algorithm performs with respect to the others. It is interesting to note that

69

Chapter 7. Evaluation and Results

ECDF performs better than GREEDY up to 30 tasks per set, after which GREEDY performs
better. Further, ECDF seems to stagnate at around 80% weighted schedulability, in contrast
to GREEDY and the proposed approach.

Our approximated variant has a good performance up to around 40 tasks, after which it decays
pronouncedly, even becoming worse than EDF-VD from 80 tasks onwards. The reason is that
this algorithm is based on Devi’s test, which requires tasks to be sorted by deadline. Since
the order of tasks may change with every new deadline scaling factor, some tasks may need
to be retested as explained in Section 6.2.1. Clearly, the more tasks there are, the more
likely it is that their order changes (when scaling one deadline). To avoid this and reduce
complexity, we introduced conditions (6.2.6) and (6.2.8), which truncate the valid range of
deadline scaling factors. This has the downside, however, that the number of wrongly rejected
task sets increases disproportionally as the total number of tasks grows.

Weighted schedulability curves for a varying percentage of HI tasks are shown in Fig. 7.29.
This time, we selected the total number of tasks to be 20, whereas the increase of HI execution
demand continues to be 50% as in the previous case. We can see that the performance of
all approaches decreases with an increasing number of HI tasks. Up to around 20% HI tasks
(i.e., 4 out of 20), the proposed approach and ECDF behave similarly. However, ECDF’s
performance then decreases rapidly, becoming worse than GREEDY and even DEDF-VD at
50% and 60% HI tasks respectively.

At around 80% HI tasks (16 out of 20 tasks), the proposed approach still allows for around
80% schedulable task sets independent of the LO utilization, whereas all other algorithms
are at or below 40% schedulable task sets. This evidences the effectiveness of the proposed
approach over GREEDY and ECDF for general cases. In particular, GREEDY and ECDF
are based on estimating the worst-case contributions by carry-over jobs at the moment of
switching from LO to HI mode. This inevitably becomes pessimistic as the number of carry-
over jobs grows, which directly depends on the number of HI tasks.

In the case of our approximated variant, again, conditions (6.2.6) and (6.2.8) start dominating
in Fig. 7.29. Even though the total number of tasks remains constant, these two conditions
are evaluated for each HI task. As a result, if the number of HI tasks increases, they start
playing a bigger role and, hence, accentuating the decrease in performance.

In Fig. 7.30, we further present weighted schedulability curves for a varying increase of HI
execution demand. We again selected the total number of tasks to be 20 and the number
of HI tasks is set to 30%. In this case, the behavior of algorithms slightly worsens for a
growing HI execution demand with exception of ECDF, whose behavior slightly improves. In
spite of this, the proposed algorithm outperforms all others by around 10% more schedulable
task sets in the range of 10% to 80% increase in HI execution demand. Interestingly, our
approximated variant also shows a good performance in this range, which is even better than
that of the GREEDY algorithm up to 60% increase in HI execution demand.

70

7.7. Evaluation of Approximation Techniques

0 20 40 60 80 100
HI tasks [%]

0

20

40

60

80

100

W
ei

gh
te

d
sc

he
du

la
bi

lit
y

[%
]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.29.: Weighted schedulability vs. percentage of HI tasks for |τ | = 20 and 50% in-
crease of HI execution demand

0 20 40 60 80 100
Increase of HI execution demand [%]

0

20

40

60

80

100

W
ei

gh
te

d
sc

he
du

la
bi

lit
y

[%
]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.30.: Weighted schedulability vs. increase of HI execution demand for |τ | = 20 and
30% HI tasks

Last, Fig. 7.31 shows weighted schedulability curves for a varying range of task periods with
the total number of tasks being again 20, out of which 30% are HI tasks with a 50% increase
in HI execution demand. In this case, the performance of all algorithms rapidly goes down
for an increasing range of task periods. The proposed approach outperforms ECDF by 10%
to 20% more schedulable task sets when the minimum and the maximum task period are 3
to 4 orders of magnitude apart. Note that our approximated variant outperforms GREEDY

71

Chapter 7. Evaluation and Results

for period ranges of 2.5 orders of magnitude upwards and has a comparable performance to
that of ECDF between 3.5 to 4 orders of magnitude.

1 1.5 2 2.5 3 3.5 4
Order of magnitude range of task periods

0

20

40

60

80

100

W
ei

gh
te

d
sc

he
du

la
bi

lit
y

[%
]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.31.: Weighted schedulability vs. range of task periods for |τ | = 20, 30% HI tasks
and 50% increase of HI execution demand

7.7.3. Comparison of runtime

Fig. 7.32, Fig. 7.33 to Fig. 7.34 show a comparison of runtime versus LO utilization, total
number of tasks and range of task periods respectively. However, note that we have im-
plemented the different algorithms in Matlab and, hence, they can be further optimized,
potentially changing their behavior with respect to runtime.

Now, ECDF is around one to two orders of magnitude faster than GREEDY and the proposed
approach depending on LO utilization as shown in Fig. 7.32. Our approximated variant is
around one order of magnitude slower than DEDF-VD and around one to two orders of
magnitude faster than ECDF. This behavior remains almost unchanged as the number of
tasks increases towards 100 tasks per set — see Fig. 7.33. Here we maintained the percentage
of HI tasks and the increase of HI execution demand equal to 30% and 50% respectively.
Only for 10 tasks per set, GREEDY and the proposed algorithm are as fast as ECDF.

Fig. 7.34, shows runtime curves for an increasing range of task periods. We again kept the
total number of tasks at 20, the percentage of HI tasks at 30% and the increase of HI execution
demand at 50%. As expected, our approximated variant and DEDF-VD have a constant
runtime for an increasing range of periods, since both have polynomial complexity. All other
algorithms experience an increasing runtime for greater period ranges. ECDF continues to be
around one order of magnitude faster than GREEDY and the proposed algorithm. However,
this difference reduces as the range of task periods grows. At 4 orders of magnitude between
the minimum and the maximum period, all these algorithms show the same runtime.

It should be noted that Fig. 7.33 and Fig. 7.34 are independent of LO utilization. For each
marker on these curves, we generated 1000 different task sets for each LO utilization value

72

7.8. Summary

0 20 40 60 80 100
LO utilization [%]

10-6

10-4

10-2

100

R
un

tim
e

[s
]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.32.: Runtime vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase of HI
execution demand

between 0 and 100% at steps of 10%, i.e., a total of 10,000 task sets per marker.

7.8. Summary

This chapter evaluated the proposed approaches containing utilization caps, the proposed
demand bound function for transitions from LO to HI mode and our approximation technique
based on it. We particularly, compared them to state-of-the-art solutions from the literature.
To this end, this chapter is organized into three main sections.

In Section 7.5, we evaluated the benefits and drawbacks of the proposed approach consisting
in introducing utilization caps to MC scheduling. This technique allows LO tasks to continue
running without degradation (in spite of some HI tasks having switched to HI mode).

We compared our approach as given in Alg. 1, i.e., with fixed utilization caps, to the original
EDF-VD algorithm. Our results illustrated that our algorithm’s performance curves almost
overlap fully showing a negligible difference with respect to EDF-VD. However, there is
a performance degradation with respect to EDF-VD. The smaller the utilization cap of one
partition, the less performance in terms of schedulable task sets can be achieved. However, our
experiments indicated that, on average, dividing the processor into two halves has almost no
performance degradation with respect to EDF-VD (with the processor fully dedicated).

The second Section 7.6 evaluated our technique to better bounding the execution demand
under mixed-criticality EDF, which is based on separating the schedulability analysis of tran-
sitions to HI mode from that of stable HI mode. This allows working around the computation
of carry-over execution demand. We showed how the different algorithms roughly behave with
respect to each other. In particular, we compared the proposed technique in form of Alg. 3
with DEDF-VD [8], with the GREEDY algorithm by Ekberg and Yi [42], and with ECDF
by Easwaran [40].

73

Chapter 7. Evaluation and Results

20 40 60 80 100
Number of tasks per set

10-6

10-4

10-2

100

R
un

tim
e

[s
]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.33.: Runtime vs. total number of tasks for 30% HI tasks and 50% increase of HI
execution demand

Our experiments indicated that the Proposed algorithm and ECDF behaved almost the same
with ECDF being slightly better when the increase in HI execution demand is distributed
among a few tasks. On the other hand, the Proposed algorithm considerably outperformed
ECDF by around 10% to 20% more accepted task sets when the increase in HI execution
demand is due to a greater number of tasks. The GREEDY algorithm was outperformed by
the Proposed and the ECDF algorithm by around 10%, i.e., these latter found around 10%
more tasks sets that are feasible under mixed-criticality EDF.

Overall, the proposed technique results not only in a considerably simpler, but also tighter
bound on execution demand under mixed-criticality EDF, in particular, as the number of HI
tasks increases.

Section 7.7 presented evaluation results between the proposed approach of Section 5.1 and
its approximated variant based on uniform scaling of Section 6.1 as well as DEDF-VD the
GREEDY algorithm [42], and ECDF [40].

Our proposed approximation technique such consists in applying the well-known Devi’s test
to the demand bound functions obtained in Chapter 5 with the aim of trading off accuracy
versus complexity/runtime. Based on our experiments, this approach allows considerably
reducing the runtime of the resulting algorithms while maintaining a very good performance
in terms of schedulability ratio.

74

7.8. Summary

1 1.5 2 2.5 3 3.5 4
Order of magnitude range of task periods

10-6

10-4

10-2

100

R
un

tim
e

[s
]

DEDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure 7.34.: Runtime vs. range of task periods for |τ | = 20, 30% HI tasks and 50% increase
of HI execution demand

75

76

Chapter 8.

Conclusion and Future Work

This chapter provides concluding remarks and discusses contributions in the context of mixed-
criticality real-time embedded systems. Finally, a brief outlook of possible future extensions
and modifications to the proposed approaches is further given.

In this work, new techniques for the scheduling of Mixed-Criticality (MC) systems based on
EDF were investigated. Thereby, we considered a dual-criticality system consisting of a mix
of high-criticality (HI) and low-criticality (LO) tasks.

Basically, the system implements two operation modes: LO and HI mode. In LO mode, HI
tasks run for their optimistic WCETs and are scheduled within virtual deadlines together
with all LO tasks. Virtual deadlines are given by xi · Di and are usually shorter than real
deadlines Di with xi ∈ (0, 1) being referred to as deadline scaling factor.

A switch to HI mode occurs when one or more HI tasks require running for longer than its
optimistic WCETs (but still less than its conservative one). HI tasks are then scheduled
within their real deadlines and LO tasks are stopped from running in HI mode, i.e., LO tasks
are immediately discarded, which then allows accommodating this increase in HI execution
demand. In this context, following findings by this work can be highlighted:

• We proposed introducing utilization caps to the original EDF-VD algorithm, which
allows LO tasks to continue running without degradation (in spite of some HI tasks
having switched to HI mode).

In principle, tasks are partitioned following some functional criteria. In particular, if
a HI task switches to HI mode and, hence, it does not make sense that some LO task
continues running, e.g., it becomes unnecessary or superfluous, then these two tasks
should belong to the same partition or subset. Each of such partition is assigned a
utilization cap, i.e., a portion of the total processor utilization.

If one HI task switches to HI mode, then only those LO tasks within the same partition
or subset will be discarded, whereas LO tasks in other partitions continue running. The
main advantage over the server-based approach is that there is no starvation period, i.e.,
the time interval between two runs/repetitions where no service is provided to tasks
within the server. In contrast to this, tasks in a partition run as long as they have not
used up their assigned utilization, i.e., as long as they are below their utilization cap.
This is a decisive property that allows reducing pessimism with respect to server-based
approaches.

The proposed technique does not require modifying EDF-VD algorithm, which remains
unchanged within a partition/subset of tasks. It hence facilitates a compositional design
of MC systems. Our experimental evaluation based on synthetic data evidences the
benefits of the proposed technique.

77

Chapter 8. Conclusion and Future Work

• Whereas utilization caps can be basically used for Di = Ti, we also proposed a technique
to better bound execution demand for the case Di ≤ Ti. Especially, we derived a sepa-
rate demand bound function for transitions from LO to HI mode and proved its validity.
This technique allows us to work around the computation of carry-over execution de-
mand and, hence, to reduce the amount of pessimism in characterizing mixed-criticality
EDF. We further proved that the proposed technique leads to a tighter bound on the
execution demand under mixed criticality EDF for most relevant cases.

As discussed before, it is interesting to notice that the proposed technique reduces the
problem of testing schedulability under mixed criticality EDF to testing schedulability
of three almost unrelated task sets: the one in LO mode, the one in HI mode and the
equivalent task set for transitions between LO and HI mode. This leads to a consider-
ably simpler schedulability test while improving our understanding of this problem.

• Since we showed that testing schedulability for mixed-criticality EDF reduces to testing
three separate task sets under standard EDF scheduling, we are now able to extend
and apply known approximation techniques from the literature (originally conceived for
standard EDF).

In particular, we extended the so-called Devi’s test to be used in the context of MC
systems. This extension of Devi’s test is also sufficient but not necessary, however, it
is more accurate than using utilization caps (our first approach) and is considerably
faster than any exact test (including the one proposed in this thesis). This represents a
good trade-off between accuracy in testing schedulability for MC systems and running
time of the test (relevant in online settings where testing needs to be done while the
system is running, e.g., admission control).

Further, we conducted a large set of experiments on synthetic data illustrating the
effectiveness of the proposed approach and of its approximated variant in terms of
(weighted) schedulability and runtime compared to the most prominent approaches
from the literature. This is particularly notable as the number of HI tasks increases.

Which algorithm should be used depends very much on the context. If we are testing
offline, we believe, there is no harm in using all three algorithms (GREEDY, ECDF
and the proposed test). If tests are to be performed online, it is probably better to
used the approximated variant of the proposed test — with a O(n · log n) rather than
pseudo-polynomial complexity.

Finally, in the Appendix A.1, we show how to extend the proposed approach to more
than two levels of criticality considering ordered (i.e., where criticality levels cannot be
skipped) and unordered modes switches.

In the following, Table 8.1 and Table 8.2 summarize the results of our experimental evaluation.
These tables covered a simulation-based evaluation examining the performance of proposed
scheduling algorithms and comparing them to other scheduling algorithms from the literature.

78

Comparision Criteria (Di = Ti) / Algorithms EDF-VD UL = 1/2 UL = 1/3 UL = 1/4

10 Tasks, 10% to 50% HI tasks, 10% more HI execution demand XXX XX - -

10 Tasks, 10% to 50% HI tasks, 100% more HI execution demand XXX XX - -

20 Tasks, 10% to 50% HI tasks, 10% more HI execution demand XXX XX XX X

20 Tasks, 10% to 50% HI tasks, 100% more HI execution demand XXX XX X -

50 Tasks, 10% to 50% HI tasks, 10% more HI execution demand XXX XXX XXX XXX

50 Tasks, 10% to 50% HI tasks, 100% more HI execution demand XXX XXX XX X

Runtime, 10 Tasks, 50% HI tasks, 100% more HI execution demand XXX - X XX

Table 8.1.: Comparison of the different algorithms. ’-’ means poor performance, ’X’ medium performance, ’XX’ good performance and ’XXX’
excellent performance.

79

Chapter 8. Conclusion and Future Work

As it can be seen in Table 8.1, UL = 1/4 has the worst performance and dividing the pro-
cessor into two halves has a performance that is close to that of the original EDF-VD. This
means that we can safeguard half of the LO tasks from being discarded in HI mode without
reducing the total usable utilization on the processor. It can be observed that as the number
of tasks and HI tasks grow, all algorithms behave almost the same where HI tasks have an
increase of 10% more execution demand in HI mode. On the other hand, in terms of runtime
comparison, UL = 1/4 is faster than UL = 1/2 as the number of tasks grows, however, it is
also slower than EDF-VD.

Table 8.2 illustrates that the Proposed algorithm and ECDF behave almost the same for an
increase in HI execution demand that goes from 10% to 100%. It can be seen that DEDF-VD
shows the worst performance among all algorithms. On the other hand, the Approximated
algorithm has a performance close to that of GREEDY. From these results, it is observed
that the Proposed algorithm outperforms all approaches as the number of HI tasks per task
set grows. The Approximated algorithm also has a good performance close to GREEDY
algorithm. On the other hand, in terms of runtime comparison, the Approximated and the
Proposed algorithm are faster than ECDF and GREEDY, however, they are also slower than
DEDF-VD.

80

Comparision Criteria (Di ≤ Ti) / Algorithms DEDF-VD GREEDY ECDF Proposed Approximated

10 Tasks, 10% HI tasks, 10% to 100% more HI execution demand - XX XXX XXX X

10 Tasks, 30% HI tasks, 10% to 100% more HI execution demand - XX XXX XXX X

20 Tasks, 10% HI tasks, 10% to 100% more HI execution demand - XX XXX XXX XX

20 Tasks, 30% HI tasks, 10% to 100% more HI execution demand - X XX XXX X

Runtime, 20 Tasks, 30% HI tasks, 50% more HI execution demand XXX - X - XX

Table 8.2.: Comparison of the different algorithms. ’-’ means poor performance, ’X’ medium performance, ’XX’ good performance and ’XXX’
excellent performance.

81

Chapter 8. Conclusion and Future Work

8.1. Outlook/Future Perspectives
To conclude this chapter (and this work), this section briefly discusses possible future exten-
sions to scheduling MC systems based on EDF. Regarding the scheduling policies presented
in Chapter 4, we would like to develop a technique in which LO tasks are not affected by
switching to HI mode and continue running in the same partition. To this end, an interesting
approach is to provide a tardiness bound for LO task that allows LO tasks in a partition to
incur some amount of deadline miss when switching to HI mode. This allows us to safeguard
some of the LO tasks from being discarded in HI mode enabling for more design flexibil-
ity.

In addition, the performance of the proposed Alg. 3 in Chapter 5 can be further improved by
using a more sophisticated deadline tightening scheme. In this thesis, however, the contri-
bution was rather a new technique for bounding demand execution, which can be combined
with existing deadline tightening techniques, e.g., from [42] or [40], presumably achieving
even better results.

Finally, although aerospace and automotive safety regulations define around five levels of
criticality, for ease of exposition, we considered only two such levels in this thesis. As a
result, a further extension is to adapt the proposed techniques from Chapter 4, Chapter 5
and Chapter 6 to multiple levels of criticality.

82

Bibliography

[1] More than 50 billion connected devices. In Ericsson, white paper 284 23-3149 Uen,
2011.

[2] Strategic research agenda 2012. Technical report, The Embedded Systems Institute
(ESI), Eindhoven, 2012.

[3] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks with
arbitrary start times. Technical Report YCS 164, University of York, York, England,
UK, 1991.

[4] N. C. Audsley. On priority assignment in fixed priority scheduling. Information Pro-
cessing Letters, 79(1):39–44, 2001.

[5] M. A. Awan, K. Bletsas, P. F. Souto, and E. Tovar. Semi-partitioned mixed-criticality
scheduling. In Architecture of Computing Systems - ARCS 2017, pages 205–218.
Springer International Publishing, 2017.

[6] A. Azim and S. Fischmeister. Efficient mode changes in multi-mode systems. In
2016 IEEE 34th International Conference on Computer Design (ICCD), pages 592–
599, 2016.

[7] J. Barhorst, T. Belote, P. Binns, J. H. nd James Paunicka, P. Sarathy, J. Scoredos,
P. Stanfill, D. Stuart, and R. Urzi. A research agenda for mixed-criticality systems. In
In Cyber-Physical Systems Week, 2009.

[8] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster,
and L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-
deadline sporadic task systems. In Proc. of Euromicro Conference on Real-Time Sys-
tems (ECRTS), 2012.

[9] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster,
and L. Stougie. Preemptive uniprocessor scheduling of mixed-criticality sporadic task
systems. Journal of the ACM (JACM), 62(2), 2015.

[10] S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. Van Der Ster, and
L. Stougie. Mixed-criticality scheduling of sporadic task systems. In Proc. of European
Symposium on Algorithms (ESA), 2011.

[11] S. Baruah and A. Burns. Implementing mixed criticality systems in Ada. In A. Ro-
manovsky and T. Vardanega, editors, Ada-Europe’11 Proceedings of the 16th Ada-
Europe International Conference on Reliable Software Technologies, pages 174–188.
Springer, 2011.

[12] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed criticality sys-
tems. In Proc. of Real-Time Systems Symposium (RTSS), 2011.

[13] S. Baruah, A. Burns, and R. Davis. An extended fixed priority scheme for mixed critical-
ity systems. In Proc. of Workshop on Real-Time Mixed Criticality Systems (ReTiMics),
Aug. 2013.

83

BIBLIOGRAPHY

[14] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality scheduling on
multiprocessors. Real-Time Systems (RTS), 50, 2013.

[15] S. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: Simplified and optimally quantified.
In Proc. of Real-Time Systems Symposium (RTSS), 2015.

[16] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-criticality
systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
2010 16th IEEE, pages 13–22, 2010.

[17] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In Proc. of Real-Time Systems Symposium (RTSS), Dec. 1990.

[18] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with multiple criti-
cality specifications. In ECRTS ’08 Proceedings of the 2008 Euromicro Conference on
Real-Time Systems, pages 147–155, 2008.

[19] S. K. Baruah. Optimal utilization bounds for the fixed-priority scheduling of periodic
task systems on identical multiprocessors. Computers, IEEE Transactions on, 53(6):781
– 784, June 2004.

[20] S. K. Baruah. Schedulability analysis for a general model of mixed-criticality recurrent
real-time tasks. In 2016 IEEE Real-Time Systems Symposium (RTSS), 2016.

[21] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow,
and L. Stougie. Scheduling real-time mixed-criticality jobs. 2012.

[22] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-related preemption and mi-
gration delays: Empirical approximation and impact on schedulability. In Proc. of Sixth
Int’l Workshop on Operating Systems Platforms for Embedded Real-Time Applications,
pages 33–44, July 2010.

[23] E. Bini and G. Buttazzo. Biasing effects in schedulability measures. In Proc. of Eu-
romicro Conference on Real-Time Systems (ECRTS), 2004.

[24] E. Bini and G. Buttazzo. Measuring the performance of schedulability tests. Real-Time
Systems (RTS), 30(1-2), 2005.

[25] V. Bonifaci and A. Marchetti-Spaccamela. Feasibility analysis of sporadic real-time
multiprocessor task systems. In Proceeding ESA’10 Proceedings of the 18th annual
European conference on Algorithms: Part II, pages 230–241, 2010.

[26] A. Burns and S. Baruah. Timing faults and mixed criticality systems. In C. B. Jones and
J. L. Lloyd, editors, Dependable and Historic Computing. Lecture Notes in Computer
Science, pages 146–166. Springer, 2011.

[27] A. Burns and R. Davis. Adaptive mixed criticality scheduling with deferred preemption.
In Proc. of Real-Time Systems Symposium (RTSS), Dec. 2014.

[28] A. Burns and R. I. Davis. Mixed criticality systems - a review. Technical report,
Department of Computer Science, University of York, York, UK, 2018.

[29] A. Burns and R. I. Davis. A survey of research into mixed criticality systems. ACM
Computing Surveys (CSUR), 2018.

[30] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In
Proc. of Real-Time Systems Symposium (RTSS), 1998.

[31] G. C. Buttazzo. Hard RealTime Computing Systems: Predictable Scheduling Algorithms
and Applications (Third Edition). Springer, third edition, 2011.

84

BIBLIOGRAPHY

[32] H. Chai, G. Zhang, J. Sun, A. Vajdi, J. Hua, and J. Zhou. A review of recent techniques
in mixed-criticality systems. Journal of Circuits, Systems and Computers, 28(7):25,
2018.

[33] Y. Chen, K. G. Shin, and H. Xiong. Generalizing fixed-priority scheduling for better
schedulability in mixed-criticality systems. Information Processing Letters, 116(8):508–
512, 2016.

[34] H. Chetto and M. Chetto. Some results of the earliest deadline scheduling algorithm.
IEEE Transactions on Software Engineering, 15:1261–1269, 1989.

[35] G. K. C. S. L. M. H. S. Christian Buckl, Alexander Camek and A. Knoll. The software
car: Building ICT architectures for future electric vehicles. In 2012 IEEE International
Electric Vehicle Conference, pages 1–8, 2012.

[36] R. I. Davis. On the evaluation of schedulability tests for real-time scheduling algorithms.
In International Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), 2016.

[37] M. L. Dertouzos. Control robotics: The procedural control of physical processes. In
IFIP Congress, pages 807–813, 1974.

[38] U. C. Devi. An improved schedulability test for uniprocessor periodic task systems. In
Proc. of Euromicro Conference on Real-Time Systems (ECRTS), 2003.

[39] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability and sensitivity
analysis of multiple criticality tasks with fixed-priorities. Real-Time Systems (RTS),
46:305–331, 2010.

[40] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one
processor. In Proc. of Real-Time Systems Symposium (RTSS), Dec. 2013.

[41] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Computer,
(42):42–42, 2009.

[42] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-criticality sporadic
tasks. In Proc. of Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[43] P. Ekberg and W. Yi. Bounding and shaping the demand of generalized mixed-criticality
sporadic task systems. Real-Time Systems (RTS), 50(1), 2014.

[44] P. Emberson and I. Bate. Minimising task migration and priority changes in mode tran-
sitions. In RTAS ’07 Proceedings of the 13th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS), pages 158–167, 2007.

[45] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis of multiprocessor
tasksets. In G. Lipari and T. Cucinotta, editors, Proc. of 1st Int’l Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010) In
conjunction with the 22nd Euromicro Conference on Real-Time Systems (ECRTS10),
pages 6–11, Brussels, Belgium, July 2010.

[46] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal of Computing, 4:397–411, 1975.

[47] R. Gratia, T. Robert, and L. Pautet. Generalized mixed-criticality scheduling based on
RUN. In Proceedings of the 23rd International Conference on Real Time and Networks
Systems (RTNS), 2015.

85

BIBLIOGRAPHY

[48] R. Gratia, T. Robert, and L. Pautet. Scheduling of mixed-criticality systems with
RUN. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA), pages 1–8, 2015.

[49] X. Gu and A. Easwaran. Efficient schedulability test for dynamic-priority scheduling
of mixed-criticality real-time systems. ACM Transactions on Embedded Computing
Systems (TECS), 17:1–24, 2017.

[50] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient scheduling of certi-
fiable mixed-criticality sporadic task systems. In Proceedings of the 32nd IEEE Real-
Time Systems Symposium, (RTSS), pages 13–23, 2011.

[51] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Improving the scheduling of certifiable
mixed criticality sporadic task systems. Technical report, Uppsala University, 2013.

[52] Z. Guo and S. Baruah. Mixed-Criticality Real-Time Systems, pages 1–20. Springer,
Berlin, Heidelberg, 2018.

[53] S. Heath. Embedded Systems Design. Newnes, 2 edition, 2002.

[54] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions for mixed-
criticality systems. Technical report, Computer Engineering and Networks Laboratory,
ETH Zurich, 2013.

[55] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. Run and be safe: Mixed-
criticality scheduling with temporary processor speedup. In Proc. of Design, Automa-
tion and Test in Europe (DATE), March 2015.

[56] L. L. Jean-franois Hermant and N. Rivierre. Real-time fixed and dynamic priority
driven scheduling algorithms: Theory and experience. REFLECS - Distributed Real-
Time Fault-Tolerant Computing Systems, 1996.

[57] O. R. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of fixed-priority mixed-
criticality task sets. In TRUSTCOM ’11 Proceedings of the 2011IEEE 10th Interna-
tional Conference on Trust, Security and Privacy in Computing and Communications,
pages 1051–1059, 2011.

[58] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions. Springer, second edition, 2011.

[59] L. Kosmidis, J. Abella, F. Wartel, E. Quinones, A. Colin, and F. Cazorla. PUB:
Path upper-bounding for measurement-based probabilistic timing analysis. In Proc. of
Euromicro Conference on Real-Time Systems (ECRTS), July 2014.

[60] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive real-time systems. In Proc.
of Real-Time Systems Symposium (RTSS), 1991.

[61] J. Lee, K.-M. Phan, X. Gu, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid model-
based mixed-criticality scheduling on multiprocessors. In Proc. of Real-Time Systems
Symposium (RTSS), 2014.

[62] H. Li. Scheduling Mixed-Criticality Real-Time Systems. PhD thesis, 2013.

[63] H. Li and S. K. Baruah. An algorithm for scheduling certifiable mixed-criticality spo-
radic task systems. In Proceedings of the 31st IEEE Real-Time Systems Symposium,
(RTSS), 2010.

[64] H. Li and S. K. Baruah. Global mixed-criticality scheduling on multiprocessors. In
2012 24th Euromicro Conference on Real-Time Systems (ECRTS), 2012.

86

BIBLIOGRAPHY

[65] G. Lipari and G. C. Buttazzo. Resource reservation for mixed criticality systems. In
Proc. of the Workshop on Real-Time Systems: the past, the present, and the future,
2013.

[66] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (JACM), 20, 1973.

[67] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[68] A. P. Manfred Broy, Ingolf H. Kruger and C. Salzmann. Engineering automotive soft-
ware. Proceedings of the IEEE, 95(2):356–373, 2007.

[69] A. Masrur, D. Müller, and M. Werner. Bi-level deadline scaling for admission control
in mixed-criticality systems. In Proc. of IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), Aug. 2015.

[70] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos.
Mixed-criticality real-time scheduling for multicore systems. In CIT ’10 Proceedings of
the 2010 10th IEEE International Conference on Computer and Information Technology
(CIT), pages 1864–1871, 2010.

[71] D. Müller. SS01 — explicit per-task deadline scaling for uniprocessor scheduling of job-
level static mixed-criticality systems. In Proc. of Symposium on Industrial Embedded
Systems (SIES), 2016.

[72] D. d. Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-criticality
real-time task sets. In RTSS ’09: Proceedings of the 2009 30th IEEE Real-Time Systems
Symposium, pages 291–300, Washington, DC, USA, Dec. 2009. IEEE Computer Society.

[73] R. Palin, D. Ward, I. Habli, and R. Rivett. ISO 26262 safety cases: Compliance and
assurance. In Proc. of System Safety Conf., 2011.

[74] F. Panzieri and R. Davoli. Real time systems: A tutorial. In Lecture Notes in Computer
Science, volume 729, 2005.

[75] T. Park and S. Kim. Dynamic scheduling algorithm and its schedulability analysis for
certifiable dual-criticality systems. In 2011 Proceedings of the Ninth ACM International
Conference on Embedded Software (EMSOFT).

[76] R. M. Pathan. Schedulability analysis of mixed-criticality systems on multiprocessors.
In Proc. of Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[77] P. Pedro and A. Burns. Schedulability analysis for mode changes in flexible real-time
systems. In Proceeding. 10th EUROMICRO Workshop on Real-Time Systems (Cat.
No.98EX168), pages 172–179, 1998.

[78] A. Pétrissans, S. Krawczyk, G. Cattaneo, N. Feeney, L. Veronesi, and C. Meunier.
Design of future embedded systems toward system of systems: trends and challenges.
Technical report, European Commission, 2012.

[79] L. T. X. Phan, S. Chakraborty, and I. Lee. Timing analysis of mixed time/event-
triggered multi-mode systems. In RTSS ’09 Proceedings of the 2009 30th IEEE Real-
Time Systems Symposium, pages 271–280, 2009.

[80] L. T. X. Phan, I. Lee, and O. Sokolsky. A semantic framework for mode change
protocols. In 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 91–100, 2011.

87

BIBLIOGRAPHY

[81] S. Ramanathan and A. Easwaran. Utilization difference based partitioned scheduling
of mixed-criticality systems. In DATE ’17 Proceedings of the Conference on Design,
Automation and Test in Europe, pages 238–243, 2017.

[82] J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and a
new proposal. Real-Time Systems, 26(2):161–197, 2004.

[83] J. Ren and L. T. X. Phan. Mixed-criticality scheduling on multiprocessors using task
grouping. In Proc. of Euromicro Conference on Real-Time Systems (ECRTS), July
2015.

[84] P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens. Multi-criteria evaluation
of partitioned EDF-VD for mixed-criticality systems upon identical processors. In 1st
International Workshop on Mixed Criticality Systems (WMC), 2013.

[85] J. Rushby. New challenges in the certification for aircraft software. In Proc. of Conf.
on Embedded Software (EMSOFT), 2011.

[86] L. Santinelli, D. Doose, G. Durrieu, F. Boniol, C. Lesire-Cabaniols, and C. Grand.
Schedulability analysis for mixed critical cyber physical systems. In 2018 IEEE Indus-
trial Cyber-Physical Systems (ICPS), pages 297–303, 2018.

[87] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change protocols for
priority-driven preemptive scheduling. Journal of Real-Time Systems (RTS), 1:243–264,
1989.

[88] J. Singh and S. P. Singh. Schedulability test for soft real-time systems under multi-
processor environment by using an earliest deadline first scheduling algorithm. CoRR,
page 14, 2012.

[89] M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. Time-analysable
non-partitioned shared caches for real-time multicore systems. In Proc. of Design Au-
tomation Conference (DAC), June 2014.

[90] J. A. Stankovic and K. Ramamritham. Tutorial on Hard Real-Time Systems. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1987.

[91] H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm.
In Proc. of Design, Automation and Test in Europe (DATE), 2013.

[92] H. Su, D. Zhu, and D. Mossé. Scheduling algorithms for elastic mixed-criticality tasks
in multicore systems. In 2013 IEEE 19th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2013.

[93] D. Tămaş-Selicean, P. Pop, and J. Madsen. Design of mixed-criticality applications on
distributed real-time systems. Technical University of Denmark, 2014.

[94] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority preemptively
scheduled systems. In [1992] Proceedings Real-Time Systems Symposium (RTSS), pages
100–109, 1992.

[95] F. Vahid and T. Givargis. Embedded System Design: A Unified Hardware/Software
Introduction. John Wiley & Sons, 2002.

[96] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In Proc. of Real-Time Systems Symposium (RTSS), 2007.

[97] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold.
In Proc. of Real-Time Computing Systems and Applications (RTCSA), 1999.

88

BIBLIOGRAPHY

[98] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Müller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenström. The worst-case execution-time problem - overview of methods and
survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7, 2008.

[99] H. Xu and A. Burns. Semi-partitioned model for dual-core mixed criticality system. In
23rd International Conference on Real-Time Networks and Systems (RTNS), 2015.

[100] C. Yao, L. Qiao, L. Zheng, and X. Huagang. Efficient schedulability analysis for mixed-
criticality systems under deadline-based scheduling. Chinese Journal of Aeronautics,
24:856–866, 2014.

[101] F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF schedul-
ing. IEEE Transactions on Computers, 58:1250–1258, 2009.

[102] Q. Zhao, Z. Gu, and H. Zeng. PT-AMC: Integrating Preemption Thresholds into Mixed-
Criticality Scheduling. In Proc. of Design, Automation and Test in Europe (DATE),
pages 141–146, 2013.

89

90

Appendix A.

Introduction

A.1. Multiple Levels of Criticality

In practice, usually more than two levels of criticality are common, e.g., four different au-
tomotive safety integrity levels (ASIL) are defined in the ISO 26262 standards. To account
for this, we illustrate how to apply the proposed approach to add a third level of criticality
between LO and HI: the mid-criticality (MI) level. Note that additional levels of criticality
can also be added in an straightforward manner based on the presented analysis.

Just as before, the system implements a mode of operation per criticality level resulting
now in three modes: LO, MI, and HI mode. Further, tasks are classified according to their
criticality χi into LO, MI and HI tasks. LO tasks only run in LO mode and are discarded in
MI and HI mode. MI tasks run in LO and MI mode, but are discarded in HI mode, whereas
HI tasks run in all modes.

All tasks are defined by their minimum inter-release times Ti and their relative deadlines Di.
LO task are characterized by their WCET parameter CLO

i , whereas MI tasks have a CLO
i

and a CMI
i parameter, which denote their WCET in LO and MI mode respectively. HI tasks

now have three WCET parameters, i.e., CLO
i , CMI

i , and CHI
i where CLO

i < CMI
i < CHI

i ≤
Di ≤ Ti holds.

A.1.1. Ordered mode switches

We first consider ordered mode switches. That is, the system switches from LO to MI, if
either a MI or a HI task runs for more than its CLO

i in LO mode, and from MI to HI mode, if
a HI task runs for more than its CMI

i in MI mode. Note that there is no direct transition from
LO and HI mode, i.e., the system first switches to MI and then to HI mode. The necessary
extensions for unordered mode switches, i.e., when the system switches from LO directly to
HI mode, are discussed below. Next, for ease of exposition, we first analyze schedulability in
MI mode, then in HI mode, and last in LO mode.

Schedulability in stable MI mode. In MI mode, LO tasks are discarded and MI tasks are
scheduled together with HI tasks. MI tasks are scheduled within their real deadline, however,
HI tasks are assigned virtual deadlines yi ·Di. Here, yi ∈ (0, 1] denotes the per-task scaling
factor in MI mode. Both MI and HI run for their corresponding CMI

i leading to the following
demand bound function — which resembles (5.1.1):

dbfMI(t) =
∑

χi=MI

(⌊
t−Di

Ti

⌋
+ 1

)
CMI
i

+
∑

χi=HI

(⌊
t− yi ·Di

Ti

⌋
+ 1

)
CMI
i . (A.1.1)

91

Appendix A. Introduction

Now, proceeding as before, we obtain an upper bound on t̂MI , i.e., the point in time until
which we need to check feasibility, i.e., that dbfMI(t) < t holds. With UMI

MI =
∑

χi=MI

CMI
i
Ti

,

UMI
HI =

∑
χi=HI

CMI
i
Ti

and letting yi tend to 0, we obtain:

t̂MI ≤

∑
χi=MI

(Ti −Di)
CMI

i
Ti

1− UMI
MI − UMI

HI

+

∑
χi=HI

CMI
i

1− UMI
MI − UMI

HI

. (A.1.2)

Schedulability in stable HI mode. Only HI tasks are allowed to run and they are sched-
uled within their real deadlines in HI mode. Hence, dbfHI(t) is given by (5.1.4) and the upper
bound on t̂HI is given by (5.1.5), which requires no further discussion.

Schedulability in the transition from MI to HI mode. We can apply Theorem 1 to
obtain the demand bound function at transitions from MI to HI mode. Note that this also
resembles (5.1.6):

dbfSW1(t) =
∑

χi=HI

(⌊
t−∆DSW1

i

Ti

⌋
+ 1

)
∆CSW1

i , (A.1.3)

with ∆DSW1
i = Di − yi ·Di, and ∆CSW1

i = CHI
i − CMI

i . Similarly, we proceed to obtain an
upper bound on t̂SW1, i.e., the point in time until which dbfSW1(t) < t needs to be checked.
The resulting expression resembles (5.1.7) with USW1

HI given by
∑

χi=HI

∆CSW1
i
Ti

:

t̂SW1 ≤

∑
χi=HI

∆CSW1
i

1− USW1
HI

. (A.1.4)

Schedulability in LO mode. In LO mode, LO tasks need to be scheduled together with
MI and HI tasks. MI tasks are assigned virtual deadlines xi ·Di, while HI tasks are assigned
virtual deadlines xi · yi · Di. That is, their virtual deadlines in MI mode (i.e., yi · Di) are
again scaled by xi ∈ (0, 1]. As a consequence, the resulting demand bound function dbfLO(t)
in LO mode is given by:

dbfLO(t) =
∑

χi=LO

(⌊
t−Di

Ti

⌋
+ 1

)
CLO
i

+
∑

χi=MI

(⌊
t− xi ·Di

Ti

⌋
+ 1

)
CLO
i ,

+
∑

χi=HI

(⌊
t− xi · yi ·Di

Ti

⌋
+ 1

)
CLO
i . (A.1.5)

92

A.1. Multiple Levels of Criticality

We can proceed as before to obtain an upper bound on t̂LO. That is, the point in time until
which we need to check that dbfLO(t) < t holds. In addition to ULO

LO and ULO
HI , considering

ULO
MI =

∑
χi=MI

CLO
i
Ti

and letting xi tend to 0, we obtain:

t̂LO ≤

∑
χi=LO

(Ti −Di)
CLO

i
Ti

1− ULO
LO − ULO

MI − ULO
HI

+

∑
χi=MI∨HI

CLO
i

1− ULO
LO − ULO

MI − ULO
HI

, (A.1.6)

where it should be noted that the second summation on the right-hand side applies to both
MI and HI tasks in the system.

Schedulability in the transition from LO to MI mode. We can again apply Theorem 1
to obtain the demand bound function for transitions from LO to MI mode:

dbfSW2(t) =
∑

χi=MI

(⌊
t−∆DSW2

i

Ti

⌋
+ 1

)
∆CSW2

i

+
∑

χi=HI

(⌊
t− ∆̂DSW2

i

Ti

⌋
+ 1

)
∆CSW2

i , (A.1.7)

with ∆DSW2
i = Di − xi · Di, ∆̂DSW2

i = Di − xi · yi · Di, and ∆CSW2
i = CMI

i − CLO
i .

Similarly, we proceed to obtain an upper bound on t̂SW2, i.e., the point in time until which
dbfSW2(t) < t needs to be checked:

t̂SW2 ≤

∑
χi=MI∨HI

∆CSW2
i

1− USW2
MI − USW2

HI

, (A.1.8)

where USW2
MI is given by

∑
χi=MI

∆CSW2
i
Ti

and USW2
HI is given by

∑
χi=HI

∆CSW2
i
Ti

.

Finding deadline scaling factors. In contrast to the case of two levels of criticality, we
now have to compute two deadline scaling factors yi and xi. We can still use the proposed
approach from Section 5.1, but in an iterative manner. That is, we first use the proposed
approach to obtain yi, i.e., the deadline scaling factor in MI mode. Once we have the values
of yi, we can apply this approach again to find xi, i.e., the deadline scaling factor in LO
mode.

A.1.2. Unordered mode switches

If we were to allow for unordered mode switches, i.e., from LO directly to HI mode in the
above setting with three levels of criticality, we need to consider it separately. To this end,
we assume that a subset of the HI tasks cause a direct transition to HI mode (instead of MI

93

Appendix A. Introduction

mode as assumed so far) when running for more than CLO
i in LO mode.1 As a result, in LO

mode, we now have:

dbfLO(t) =
∑

χi=LO

(⌊
t−Di

Ti

⌋
+ 1

)
CLO
i

+
∑

χi=MI

(⌊
t− xi ·Di

Ti

⌋
+ 1

)
CLO
i ,

+
∑

χi=HI

(⌊
t− zi ·Di

Ti

⌋
+ 1

)
CLO
i , (A.1.9)

where zi is a deadline scaling factor that guarantees schedulability for the direct transition
from LO to HI mode. In HI mode, again, dbfHI(t) given by (5.1.4) continues to be valid.
As a result, with all xi obtained as discussed for the case of ordered mode switches, we can
compute each zi in (A.1.9) also based on the approach from Section 5.1.

Finally, to guarantee safety independent of whether the system switches to MI or HI mode,
HI task will now have to be scheduled in LO mode using the minimum between xi · yi that
covers ordered transitions and zi that accounts for the unordered case. For more than three
levels of criticality, note that all possible unordered mode switches will have to be analyzed
as shown here to determine suitable deadline scaling factors for the tasks involved.

1In principle, any HI task can be allowed to switch either to MI or to HI mode too. However, in this case,
we will need to extend our task model such that mode switches can be triggered independent of the tasks’
execution budgets.

94

Appendix B.

Evaluation and Results

B.1. Uniform Distribution for Task Periods
In Chapter 7 we used the log-uniform distribution proposed by Emberson et al. [45] to generate
task periods in [1, Tmax], where Tmax was set to 1000 in the default case. The log-uniform
distribution equally spreads task periods into the time bands 1 − 10, 10 − 100, etc. and,
hence, the resulting task sets have an equal number of tasks in each such bands.

In contrast to this, a uniform distribution tends to concentrate task periods in the middle of
[1, Tmax], resulting in task sets where most tasks have periods of the same order of magnitude
around 500 for Tmax = 1000. Task sets generated this way lead to different performance
by algorithms as shown below in Fig. B.1 for schedulability and in Fig. B.2 to Fig. B.5
for weighted schedulability. In particular, the algorithms’ behavior changes with respect to
runtime as shown in Fig. B.6 to Fig. B.8.

0 20 40 60 80 100
LO utilization [%]

0

20

40

60

80

100

Sc
he

du
la

bl
e

ta
sk

 s
et

s
[%

]

EDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure B.1.: Schedulability vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase
of HI execution demand — uniform distribution of task periods

95

Appendix B. Evaluation and Results

10 20 30 40 50 60 70 80 90 100 110
Number of tasks per set

0

20

40

60

80

100
W

ei
gh

te
d

sc
he

du
la

bi
lit

y
[%

] EDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure B.2.: Weighted schedulability vs. total number of tasks for 30% HI tasks and 50%
increase of HI execution demand — uniform distribution of task periods

0 20 40 60 80 100
HI tasks [%]

0

20

40

60

80

100

W
ei

gh
te

d
sc

he
du

la
bi

lit
y

[%
]

EDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure B.3.: Weighted schedulability vs. percentage of HI tasks for |τ | = 20 and 50% increase
of HI execution demand — uniform distribution of task periods

96

B.1. Uniform Distribution for Task Periods

0 20 40 60 80 100
Increase of HI execution demand [%]

0

20

40

60

80

100
W

ei
gh

te
d

sc
he

du
la

bi
lit

y
[%

]
EDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure B.4.: Weighted schedulability vs. increase of HI execution demand for |τ | = 20 and
30% HI tasks — uniform distribution of task periods

1 1.5 2 2.5 3 3.5 4
Order of magnitude range of task periods

0

20

40

60

80

100

W
ei

gh
te

d
sc

he
du

la
bi

lit
y

[%
]

EDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure B.5.: Weighted schedulability vs. range of task periods for |τ | = 20, 30% HI tasks and
50% increase of HI execution demand — uniform distribution of task periods

97

Appendix B. Evaluation and Results

0 20 40 60 80 100
LO utilization [%]

10-6

10-4

10-2

100
R

un
tim

e
[s

]

EDF-VD

Approximated

Proposed/GREEDY

ECDF

Figure B.6.: Runtime vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase of HI
execution demand — uniform distribution of task periods

10 20 30 40 50 60 70 80 90 100 110
Number of tasks per set

10-6

10-4

10-2

100

R
un

tim
e

[s
]

EDF-VD

ECDF

Approximated

Proposed/GREEDY

Figure B.7.: Runtime vs. total number of tasks for 30% HI tasks and 50% increase of HI
execution demand — uniform distribution of task periods

98

B.1. Uniform Distribution for Task Periods

1 1.5 2 2.5 3 3.5 4
Order of magnitude range of task periods

10-6

10-4

10-2

100

R
un

tim
e

[s
]

EDF-VD
GREEDY
ECDF
Proposed
Approximated

Figure B.8.: Runtime vs. range of task periods for |τ | = 20, 30% HI tasks and 50% increase
of HI execution demand — uniform distribution of task periods

99

Summary of Findings

1. Utilization caps: We introduced utilization caps to the original EDF-VD (Earliest
Deadline First with Virtual Deadlines) algorithm, which is typically used for scheduling
mixed-criticality (MC) tasks. To this end, an MC task set is partitioned into disjoint
subsets, each of which is assigned a portion of the total processor utilization. EDF-VD is
then applied to each such subset or partition independently. As a result, low-criticality
(LO) tasks within one partition are not affected by high-criticality (HI) tasks from other
partitions in case that the latter switch to HI mode, which normally cause the abortion
of LO tasks (as per EDF-VD) to accommodate increases in execution demand by HI
tasks. On the contrary, HI tasks can only cause the abortion of LO task within their
own partition. This allows LO tasks in partitions not affected by HI mode to continue
running without being degraded. This already allows for some LO tasks to be protected
from switching to HI mode enabling for more design flexibility. This resulted in the
proposed Utilization Caps algorithm of Chapter 4.

2. Better exact schedulability test: The idea is to better bound execution demand
under mixed-criticality EDF. To this end, we derive a separate demand bound function
for transitions from LO to HI mode and prove its validity. This technique allows
us to work around the computation of carry-over execution demand and, hence, to
reduce the amount of pessimism in characterizing mixed-criticality EDF. We further
proved that the proposed technique leads to a tighter bound on the execution demand
under mixed criticality EDF. It is interesting to notice that the proposed technique
reduces the problem of testing schedulability under mixed criticality EDF to testing
schedulability of three almost unrelated task sets: the one in LO mode, the one in HI
mode and the equivalent task set for transitions between LO and HI mode. This leads
to a considerably simpler schedulability test and improves our understanding of this
problem. This has led to the proposed a new Demand Bound Function of Chapter 5.

3. Better approximated tests: Since we showed that testing schedulability for mixed-
criticality EDF boils down to testing three separate task sets under standard EDF
scheduling, we are now able to extend and apply known approximation techniques from
the literature (originally conceived for standard EDF). In particular, we extend the so-
called Devi’s test to be used in the context of MC systems. This extension of Devi’s test
is also sufficient but not necessary, however, it is more accurate than using utilization
caps (our first approach) and is considerably faster than any exact test (including the
one proposed in this thesis). This represents a good trade-off between accuracy in
testing schedulability for MC systems and running time of the test (relevant in on-line
settings where testing needs to be done while the system is running, e.g., admission
control). Moreover, we presented a large set of experiments based on synthetic data
illustrating the benefits of the proposed approach in term of weighted schedulability
and runtime compared to the most prominent approaches from the literature. This
resulted in approving new demand bound function and presenting an approximation
technique of Chapter 6.

List of own publications
The following publications were published in the context of this work.

Journal publications
• M.Mahdiani andA.Masrur,ANovel ViewonBounding ExecutionDemandunderMixed-Criticality EDF,
In Springer Real-Time Systems (RTS)-The International Journal of Time-Critical Computing Systems,
2020

Peer-reviewed conferences (acceptance ratio < 30%)
• M.Mahdiani and A. Masrur,On Bounding Execution Demand underMixed-Criticality EDF, (Outstand-
ing paper), In Proceedings of the 26th International Conference on Real-Time Networks and Systems
(RTNS’18), 2018

• M.Mahdiani andA.Masrur, IntroducingUtilizationCaps intoMixed-Criticality Scheduling, In Proceed-
ings of the 19th Euromicro Conference on Digital Systems Design (DSD), 2016

Mitra Mahdiani— Curriculum Vitae

Contact Dept. of Computer Science
Information TU Chemnitz

Straße der Nationen 62
09111 Chemnitz, Germany

Office: +49 371 531 34672
Mobile: +49 1516 3967 503
Email: mitra.mahdiani.83@gmail.com

Research Interest
My research interests cover synchronous languages and real-time scheduling for embedded systems, in par-
ticular, scheduling of mixed-criticality real-time systems. To this end, a mix of Low and High criticality tasks
should be considered to schedule on one or more processors under the different scheduling algorithms and
provide guaranteemeeting timing constraints for this kind of systems to operate correctly. This includes new
approaches to improve scheduling techniques.

Education
2015 - 2019 PhD, Computer Science - Technical University Chemnitz, Germany

Field: Embedded Systems and Real-Time Scheduling
Thesis (PhD): Advanced Scheduling Techniques for Mixed Criticality Systems

2010 - 2013 M.Sc., Information Science and Technology - National University of Malaysia (UKM), Malaysia
Field: Information Technology - Industrial Computing (total grade 1.4)
Thesis (M.S.): Abnormal Control Chart Pattern Classification Optimisation Using Multilayered

Perceptron and Bees Algorithm

2003 - 2007 B.Sc., Sciences - Azad University of Gorgan, Iran
Field: Applied Mathematics (total grade 2.0)

2001 - 2002 Post-Secondary Diploma - Basirat Pre–University School, Kordkuy, Iran
Major: Mathematics and Physics (grade 1.3)

1998 - 2001 High School Diploma - Shahid Ali Miandare High School, Kordkuy, Iran
Major: Theoretical and Techno–vocational branch of Mathematics and Physics Discipline

(grade 1.7)

Teaching
• Software Platforms for Automotive Systems (En), Winter Term 2015/16

• Seminar AUTOSAR Based Software Design (En), Winter Term 2016/17 - Summer Term 2019

Employment History
2014 - 2015 Faculty of Information Science and Technology,The National University of Malaysia (UKM)

(43600 UKM Bangi, Selangor, Malaysia)
Research Assistant

Working for one year as a research assistant in department of visual informatic to bridge the time between
studying and PhD.
Scope: Cooperation in publishing papers, research collaboration with visual informatic group and doing
research on different thema such as stock prediction, CAD converter for product design innovation in man-
ufacturing.

2007 - 2008 Resana Afzar Sharif Ltd. (No.10, Sanaii St. Karimkhan Zand Ave., Tehran, Iran)
Project Managment Assistant
Working for 3months as a trainee and 1 year full position.
Scope: Directing, scheduling and optimizing themid-size IT and Telecommunication projects.

2008 - 2009 Behbood Gostaran Sanat Tabarestan Co. (No.1, Ansar Alley, Gharan St., Sari, Iran)
IT Assistant
Working for 3month as a trainee and 9months full position.
Scope: Managing of IT projects in research and industrial projects, assist in planning, coor-
dination and monitoring IT projects, implementing, support and developing of systems (Soft-
/Hardware).

Software Engineering Skills
• Programming: Java (intermediate), Matlab (good), Javascript (good), Scade (basic), Esterel (basic),
C/C++ (basic)

• Frameworks/IDEs: ReactJS (intermediate), ES6 (intermediate), HTML5 (good), CSS (good)

Languages
• Persian (native)

• English (fluent)

• German (intermediate)

• Malay (basic)

Interests
• Dancing

• Traveling

• Cycling, Jogging and Gym

• Volleyball, Badminton and Zumba

• Reading Books, Watching Movie and Listening to Music

Erklärungen

Ich versichere, dass die vorgelegte Arbeit weder im Inland noch im Ausland in

gleicher oder in ähnlicher Form einer anderen Prüfungsbehörde zum Zwecke

einer Promotion oder eines anderen Prüfungsverfahren vorgelegt wurde und

auch noch nicht veröffentlicht wurde.

Es fand ein früheres Promotionsverfahren statt. Ja Nein
(wenn ja)

Thema:

Bescheid: Zeit:

Hochschule:

 Ich versichere, dass die vorliegende Arbeit ohne unzulässige Hilfe und ohne

Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde und die

aus fremden Quellen direkt oder indirekt übernommenen Gedanken in der

Arbeit als solche kenntlich gemacht sind.

 Ich versichere, dass weitere Personen bei der geistigen Herstellung der

vorliegenden Arbeit nicht beteiligt waren, insbesondere auch nicht die Hilfe

eines Promotionsberaters in Anspruch genommen wurde, und dass Dritte vom

Bewerber weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten

erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten

Dissertation stehen.

Ich bin mit der elektronischen Überprüfung meiner Dissertation auf etwaige

Plagiate hin einverstanden.

Datum Unterschrift

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of this Thesis

	2 Concepts, Models and Assumptions
	2.1 Real-Time Systems
	2.1.1 Tasks Models

	2.2 Scheduling Policies
	2.2.1 Feasibility versus Schedulability
	2.2.2 Schedulability Test

	2.3 Mixed-Criticality Systems
	2.4 Basic Nomenclature
	2.5 The Earliest Deadline First Algorithm
	2.5.1 EDF-VD
	2.5.2 Mixed-Criticality EDF
	2.5.3 Demand Bound Function

	3 Related Work
	3.1 Uniprocessor Scheduling
	3.1.1 Uniprocessor Scheduling Based on EDF

	3.2 Multiprocessor Scheduling
	3.2.1 Multiprocessor Scheduling Based on EDF

	4 Introducing Utilization Caps
	4.1 Introducing Utilization Caps
	4.1.1 Fixed utilization caps
	4.1.2 Optimized utilization caps

	4.2 Findings of this Chapter

	5 Bounding Execution Demand under Mixed-Criticality EDF
	5.1 Bounding Execution Demand
	5.2 Analytical Comparison
	5.2.1 The GREEDY Algorithm
	5.2.2 The ECDF Algorithm

	5.3 Finding Valid xi
	5.4 Findings of this Chapter

	6 Approximating Execution Demand Bounds
	6.1 Applying Approximation Techniques
	6.2 Devi's Test
	6.2.1 Per-task deadline scaling
	6.2.2 Uniform deadline scaling
	6.2.3 Complexity

	6.3 Findings of this Chapter

	7 Evaluation and Results
	7.1 Mixed-Criticality EDF
	7.2 Obtaining Test Data
	7.2.1 The Case Di=Ti
	7.2.2 The Case DiTi

	7.3 Weighted schedulability
	7.4 Algorithms in this Comparison
	7.4.1 The EDF-VD and DEDF-VD Algorithms
	7.4.2 The GREEDY algorithm
	7.4.3 The ECDF algorithm

	7.5 Evaluation of Utilization Caps
	7.5.1 10 tasks per task set
	7.5.2 20 tasks per task set
	7.5.3 50 tasks per task set
	7.5.4 Comparison of runtime

	7.6 Evaluation of Execution Demand Bounds
	7.6.1 Comparison for sets of 10 tasks
	7.6.2 Comparison for sets of 20 tasks

	7.7 Evaluation of Approximation Techniques
	7.7.1 Schedulability curves
	7.7.2 Weighted schedulability
	7.7.3 Comparison of runtime

	7.8 Summary

	8 Conclusion and Future Work
	8.1 Outlook/Future Perspectives

	Bibliography
	A Introduction
	A.1 Multiple Levels of Criticality
	A.1.1 Ordered mode switches
	A.1.2 Unordered mode switches

	B Evaluation and Results
	B.1 Uniform Distribution for Task Periods

