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Path vs. Trajectory

Path: is an ordered locus of points in the space 
(either joint or operational), witch the manipulator 
should follow. 
It is a pure geometric description of motion. 

Trajectory: a path on which timing law is specified, 
e.g., velocities and accelerations in each point. 
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Robot Motion Planning

Path planning: 
• Geometric path
• Issues: optimal path. 

Trajectory: 
• Interpolate or approximate the desired 

path by a class of polynomial functions.
• Generate a sequence of time-based 

“control set points” for the control of 
manipulator from the initial configuration 
to its destination. 
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Trajectory Generation

The aim of the trajectory generation is to generate inputs to the 
motion control system which ensures that the planned trajectory is 
executed.

The user or the upper-level planner describes the desired trajectory 
by some parameters, usually:
• Initial and final point (point-to-point control). 
• Finite sequence of points along the path (motion through 

sequence of points).

Trajectory planning/generation can be performed either in the joint 
space or operational space.
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Minimal Requirements

Capability to move robot arm and its end effector from the 
initial posture to the final posture.

Motion laws have to be considered in order not to:
• violate saturation limits of joint drives.
• excite the modeled resonant modes of the mechanical 

structure.

Generation of smooth trajectories.
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Joint Space vs. Operational Space

Joint-space description:
• The description of the motion to be made by the robot 

by its joint values.
• The motion between the two points is unpredictable.

Operational space description:
• The motion between the two points is known at all 

times and controllable.
• It is easy to visualize the trajectory, but it is difficult to 

ensure that singularity does not occur.
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Joint Space vs. Operational Space
Example

Sequential motions of a robot to 
follow a straight line.

Cartesian-space trajectory 
(a) The trajectory specified in Cartesian coordinates 
may force the robot to run into itself, and (b) the 
trajectory may requires a sudden change in the joint 
angles.
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Trajectory in the Operational Space

• Calculate path from the initial point to the final point.
• Assign a total time Tpath to traverse the path.
• Discretize the points in time and space.
• Blend a continuous time function between these points.
• Solve inverse kinematics at each step.

Advantages:
• Collision free path can be obtained.
Disadvantages:
• Computationally expensive due to inverse kinematics.
• It is unknown how to set the total time Tpath.
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Trajectory in the Joint Space

• Calculate inverse kinematics solution from initial point 
to the final point.

• Assign total time Tpath using maximal velocities in joints.
• Discretize the individual joint trajectories in time.
• Blend a continuous function between these point.

Advantages:
• Inverse kinematics is computed only once.
• Can easily take into account joint angle, velocity constraints. 

Disadvantages:
• Cannot deal with operational space obstacles.
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Trajectory Planning
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Best Planning Approach

• Combination of via points (global plan) and point 
to point (locally between two points).

• Via points provides an approximation of the 
path.
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Trajectory Planning

• Path Profile

• Velocity Profile 

• Acceleration Profile
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• Straight line (discontinuous velocity at path points).
• Linear functions with parabolic blends.
• Cubic polynomials (splines). 
• High order polynomials (quantic: polynomial of 

degree 5, ..).

Candidate Curves For Interpolation

D

B C
A



D
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• Straight line (discontinuous velocity at path points).
• Linear functions with parabolic blends.
• Cubic polynomials (splines). 
• High order polynomials (quantic: polynomial of 

degree 5, ..).

Candidate Curves For Interpolation

B C
A

Parabola



D

11.01.2017 J.Nassour 15

• Straight line (discontinuous velocity at path points).
• Linear functions with parabolic blends.
• Cubic polynomials (splines). 
• High order polynomials (quantic: polynomial of 

degree 5, ..).

Candidate Curves For Interpolation

B C
A

Cubic: order 3
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• Different approaches will be demonstrated on a simple example.
• Let us consider a simple 2 degree of freedom robot.
• We desire to move the robot from Point A to Point B.
• Let’s assume that both joints of the robot can move at the 

maximum rate of 10 degree/sec.

Basics for Trajectory generation
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• Move the robot from A to B, to 
run both joints at their 
maximum angular velocities.

• After 2 [sec], the lower link 
will have finished its motion, 
while the upper link continues 
for another 3 [sec].

• The path is irregular and the 
distances traveled by the 
robot’s end are not uniform.

Non-Normalized Movement 
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• Let’s assume that the motions 
of both joints are normalized 
by a common factor such that 
the joint with smaller motion 
will move proportionally 
slower and the both joints will 
start and stop their motion 
simultaneously.

• Both joints move at different 
speeds, but move 
continuously together.

• The resulting trajectory will be 
different.

Normalized Movement 
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• Let us assume that the robot 
hand follows a straight line 
between points A and B. 

• The simplest way is to draw a 
line (interpolate) between A, B. 

• Divide the line into five 
segments and solve for 
necessary angles α and β at 
each point. 

• The joint angles do not change 
uniformly.

Straight Line Movement 
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• Again interpolation between A, 
B by a straight line. 

• The aim is to accelerate at the 
beginning and decelerate at the 
end. 

• Divide the segments differently.
 The arm move at earlier

segments as we speed up at the 
beginning. 

 Go at a constant cruising rate. 
 Decelerate with later segments 

as approaching point B. 

Straight Line Movement 
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• Stop-and-go motion through the via-point list creates jerky 
motions with unnecessary stops.

• Solution: take multiple neighbouring trajectory into account and 
enforce constraints on the same tangent and acceleration on the 
trajectory point.

• How? Blend the two portions of the motion at point B.

Continuous Transition Between 
Points
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Alternative scheme ensuring that the trajectory passes through 
control points.

• Two via points D and E are picked such that point B will fall on the 
straight-line section of the segment ensuring that the robot will 
pass through point B.

Continuous Transition Between 
Points

E
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Consider the problem of moving the tool frame from its initial position to a desired 
goal position. The initial position of the manipulator is known in the form of a set of 
joint angles. The set of joint angles for the terminal position is calculated by means 
of inverse kinematics.
What is required is a function for each joint whose value at 𝑡0 is the initial position 
of the joint and whose value at 𝑡𝑓 is the desired goal position of that joint.

Cubic Polynomials

As shown in the figure, there are many smooth 
functions, 𝜃(𝑡), that might be used to interpolate 
the joint value.

In making a single smooth function, at least four 
constraints of 𝜃(𝑡) are evident:
• Initial value 𝜃 0 = 𝜃0 ,
• Final value𝜃 𝑡𝑓 = 𝜃f ,

• Initial velocity  𝜃 0 = 0 ,

• Final velocity  𝜃 𝑡𝑓 = 0.
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These four constraints can be satisfied by a polynomial of third order: 
𝜃 𝑡 = 𝑎0+ 𝑎1𝑡 + 𝑎2𝑡

2+ 𝑎3𝑡
3

Joint velocity and acceleration along this path are
 𝜃 𝑡 = 𝑎1+ 2𝑎2𝑡 + 3𝑎3𝑡

2

 𝜃 𝑡 = 2𝑎2 + 6𝑎3𝑡

Applying the four constraints gives four equations for the unknown 𝑎𝑖: 
𝜃0 = 𝑎0
0 = 𝑎1

𝜃𝑓 = 𝑎0+ 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3

0 = 𝑎1+ 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓
2

The solution: 

𝑎0 = 𝜃0 , 𝑎1 = 0, 𝑎2 =
3

𝑡𝑓
2
𝜃𝑓 − 𝜃0 , 𝑎3 = −

2

𝑡𝑓
3
𝜃𝑓 − 𝜃0

Cubic Polynomials
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The solution: 

𝑎0 = 𝜃0 , 𝑎1 = 0, 𝑎2 =
3

𝑡𝑓
2
𝜃𝑓 − 𝜃0 , 𝑎3 = −

2

𝑡𝑓
3
𝜃𝑓 − 𝜃0

This cubic polynomial can be used to connect any initial joint-angle position with 
any desired final position.

This solution is valid only for the case when the joint starts and finishes at zero 
velocity.

The single Cubic Polynomial equation that satisfies these conditions is: 

𝜃 𝑡 = 𝑎0+ 𝑎1𝑡 + 𝑎2𝑡
2+ 𝑎3𝑡

3

𝜽 𝒕 = 𝜽𝟎 +
𝟑

𝒕𝒇
𝟐
𝜽𝒇 − 𝜽𝟎 𝒕𝟐 −

𝟐

𝒕𝒇
𝟑
𝜽𝒇− 𝜽𝟎 𝒕𝟑

Cubic Polynomials
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A single-link manipulator with a revolt joint stopping at 𝜃 = 15 degrees. 
It is desired to move the joint in a smooth manner to 𝜃 = 75 degrees in 3 seconds. 
Find the coefficients of a cubic that accomplishes this motion and brings the 
manipulator to rest at the goal.

Example

𝜃
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A single-link manipulator with a revolt joint stopping at 𝜃 = 15 degrees. 
It is desired to move the joint in a smooth manner to 𝜃 = 75 degrees in 3 seconds. 
Find the coefficients of a cubic that accomplishes this motion and brings the 
manipulator to rest at the goal.

Example

𝜃

Solution:

𝑎0 = 𝜃0 , 𝑎1 = 0, 𝑎2 =
3

𝑡𝑓
2
𝜃𝑓 − 𝜃0 , 𝑎3 = −

2

𝑡𝑓
3
𝜃𝑓 − 𝜃0

𝑎0 = 15 ,
𝑎1 = 0,

𝑎2 =
3

9
75 − 15 = 20 ,

𝑎3 = −
2

27
75 − 15 = −4.44
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Example

𝜃

Joint position: 
𝜃 𝑡 = 15 + 20 𝑡2 − 4.44 𝑡3

Joint velocity along this path:
 𝜃 𝑡 = 40 𝑡 − 13.32 𝑡2

Joint acceleration along this path:
 𝜃 𝑡 = 40 − 26.4 𝑡
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Example
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If the desired velocities of the joints at the via points have non-zero values, then we 
can construct cubic polynomials as before with considering new constraints: 

• Initial value 𝜃 0 = 𝜃0 ,
• Final value𝜃 𝑡𝑓 = 𝜃f ,

• Initial velocity  𝜃 0 =  𝜃0,

• Final velocity  𝜃 𝑡𝑓 =  𝜃𝑓.

Applying the four constraints gives four equations for the unknown 𝑎𝑖: 

𝜃0 = 𝑎0
 𝜃0 = 𝑎1

𝜃𝑓 = 𝑎0+ 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3

 𝜃𝑓 = 𝑎1 + 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓
2

Cubic Polynomials With via 

Points
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𝜃0 = 𝑎0
 𝜃0 = 𝑎1

𝜃𝑓 = 𝑎0+ 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3

 𝜃𝑓 = 𝑎1+ 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓
2

The solution: 
𝑎0 = 𝜃0
𝑎1 =  𝜃0

𝑎2 =
3

𝑡𝑓
2
𝜃𝑓 − 𝜃0 −

1

𝑡𝑓
2  𝜃0 +  𝜃𝑓

𝑎3 = −
2

𝑡𝑓
3
𝜃𝑓 − 𝜃0 +

1

𝑡𝑓
2

 𝜃0 +  𝜃𝑓

Now we are able to calculate the cubic polynomial that connects any initial and final 
positions with any initial and final velocities. 

Cubic Polynomials With via 

Points
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Velocities at via Points
There are several ways to work out the desired velocity at the via points:

The user specifies the desired velocity at each via point in terms of a Cartesian linear 
and angular velocity of the tool frame at that instant. Cartesian velocities at the via 
points are mapped to the desired joint velocity by using the inverse Jacobian of the 
manipulator at that point.

The system automatically chooses the velocities
at the via points. Desired velocities at the points
are indicated with the tangents. The via points
are connected with straight line segments. If the
slope of these lines changes the sign at the via
point, choose zero velocity (point A and B), else,
choose the average of the two slopes as the via
velocity (point C).
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Velocities at via Points

The system automatically chooses the velocities at the via points in such a way that 
acceleration is continuous at the via points.

To do this, a new approach is needed. We will replace the two velocity constraints at 
the connection of two cubics with the two constraints that velocity and acceleration 
be continuous.
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Solve for the coefficients of two cubics that are connected in a two-segment spline 
with continuous velocity and acceleration at the via point. The given values are:
• the initial angle 𝜃0 ,
• the via point 𝜃v ,
• the goal point 𝜃g .

𝜽𝟏 𝒕 = 𝒂𝟏𝟎+ 𝒂𝟏𝟏𝒕 + 𝒂𝟏𝟐𝒕
𝟐 + 𝒂𝟏𝟑𝒕

𝟑

𝜽𝟐 𝒕 = 𝒂𝟐𝟎+ 𝒂𝟐𝟏𝒕 + 𝒂𝟐𝟐𝒕
𝟐 + 𝒂𝟐𝟑𝒕

𝟑

Angular constraints for first cubic:
Initial position 𝜽0=𝒂𝟏𝟎
Terminal position 𝜽𝒗 = 𝒂𝟏𝟎+ 𝒂𝟏𝟏𝒕𝒇𝟏 + 𝒂𝟏𝟐𝒕𝒇𝟏

𝟐 + 𝒂𝟏𝟑𝒕𝒇𝟏
𝟑

Angular constraints for second cubic:
Initial position 𝜽v=𝒂2𝟎

Terminal position 𝜽𝒈 = 𝒂𝟐𝟎+ 𝒂𝟐𝟏𝒕𝒇𝟐+ 𝒂𝟐𝟐𝒕𝒇𝟐
𝟐 + 𝒂𝟐𝟑𝒕𝒇𝟐

𝟑

Example
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Solve for the coefficients of two cubics that are connected in a two-segment spline 
with continuous velocity and acceleration at the via point. The given values are:
• the initial angle 𝜃0 ,
• the via point 𝜃v ,
• the goal point 𝜃g .

𝜽𝟏 𝒕 = 𝒂𝟏𝟎+ 𝒂𝟏𝟏𝒕 + 𝒂𝟏𝟐𝒕
𝟐 + 𝒂𝟏𝟑𝒕

𝟑

𝜽𝟐 𝒕 = 𝒂𝟐𝟎+ 𝒂𝟐𝟏𝒕 + 𝒂𝟐𝟐𝒕
𝟐 + 𝒂𝟐𝟑𝒕

𝟑

Angular velocity constraint for first cubic: Start from rest: 
𝟎 = 𝒂𝟏𝟏

Angular velocity constraint for second cubic: End at rest: 
𝟎 = 𝒂𝟐𝟏+ 𝟐 𝒂𝟐𝟐𝒕𝒇𝟐+ 𝟑 𝒂𝟐𝟑𝒕𝒇𝟐

𝟐

Both cubics must have the same angular velocity and acceleration at the via point: 
𝒂𝟏𝟏+ 𝟐 𝒂𝟏𝟐𝒕𝒇𝟏+ 𝟑 𝒂𝟏𝟑𝒕𝒇𝟏

𝟐 = 𝒂𝟐𝟏

𝟐 𝒂𝟏𝟐+ 𝟔 𝒂𝟏𝟑𝒕𝒇𝟏 = 𝟐 𝒂𝟐𝟐

Example
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𝜽0=𝒂𝟏𝟎

𝜽𝒗 = 𝒂𝟏𝟎 + 𝒂𝟏𝟏𝒕𝒇𝟏+ 𝒂𝟏𝟐𝒕𝒇𝟏
𝟐 + 𝒂𝟏𝟑𝒕𝒇𝟏

𝟑

𝜽v=𝒂2𝟎

𝜽𝒈 = 𝒂𝟐𝟎+ 𝒂𝟐𝟏𝒕𝒇𝟐 + 𝒂𝟐𝟐𝒕𝒇𝟐
𝟐 + 𝒂𝟐𝟑𝒕𝒇𝟐

𝟑

𝟎 = 𝒂𝟏𝟏

𝟎 = 𝒂𝟐𝟏+ 𝟐 𝒂𝟐𝟐𝒕𝒇𝟐+ 𝟑 𝒂𝟐𝟑𝒕𝒇𝟐
𝟐

𝒂𝟏𝟏 + 𝟐 𝒂𝟏𝟐𝒕𝒇𝟏+ 𝟑 𝒂𝟏𝟑𝒕𝒇𝟏
𝟐 = 𝒂𝟐𝟏

𝟐 𝒂𝟏𝟐+ 𝟔 𝒂𝟏𝟑𝒕𝒇𝟏 = 𝟐 𝒂𝟐𝟐

Example
If we consider 𝑡𝑓 = 𝑡𝑓1 = 𝑡𝑓2, solution:

𝒂𝟏𝟎 = 𝜽0

𝒂𝟏𝟏 = 𝟎

𝒂𝟏𝟐 =
𝟏𝟐𝜽𝒗 − 𝟑𝜽𝒈− 𝜽𝟎

𝟒𝒕𝒇
𝟐

𝒂𝟏𝟑 =
−𝟖 𝜽𝒗+ 𝟑𝜽𝒈 + 𝟓 𝜽𝟎

𝟒𝒕𝒇
𝟑

𝒂𝟐𝟎 = 𝜽v

𝒂𝟐𝟏 =
𝟑 𝜽𝒈− 𝟑 𝜽𝟎

𝟒𝒕𝒇

𝒂𝟐𝟐 =
−𝟏𝟐𝜽𝒗 + 𝟔𝜽𝒈+ 𝟔𝜽𝟎

𝟒𝒕𝒇
𝟐

𝒂𝟐𝟑 =
𝟖𝜽𝒗 − 𝟓𝜽𝒈− 𝟑𝜽𝟎

𝟒𝒕𝒇
𝟑
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initial point

terminal point

via point
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If we wish to be able to specify the position, velocity, and acceleration at the 
beginning and end of a path segment, a quintic polynomial is required:

𝜽(𝒕) = 𝒂𝟎+ 𝒂𝟏𝒕 + 𝒂𝟐𝒕
𝟐+ 𝒂𝟑𝒕

𝟑+ 𝒂𝟒𝒕
𝟒 + 𝒂𝟓𝒕

𝟓

Where the constraints are given as: 
𝜽𝟎 = 𝒂𝟎

𝜽𝒇 = 𝒂𝟎+ 𝒂𝟏𝒕𝒇+ 𝒂𝟐𝒕𝒇
𝟐+ 𝒂𝟑𝒕𝒇

𝟑+ 𝒂𝟒𝒕𝒇
𝟒+ 𝒂𝟓𝒕𝒇

𝟓

 𝜽𝟎 = 𝒂𝟏
 𝜽𝒇 = 𝒂𝟏+ 𝟐 𝒂𝟐𝒕𝒇+ 𝟑 𝒂𝟑𝒕𝒇

𝟐+ 𝟒 𝒂𝟒𝒕𝒇
𝟑+ 𝟓 𝒂𝟓𝒕𝒇

𝟒

 𝜽𝟎 = 𝟐 𝒂𝟐
 𝜽𝒇 = 𝟐 𝒂𝟐+ 𝟔 𝒂𝟑𝒕𝒇+ 𝟏𝟐 𝒂𝟒𝒕𝒇

𝟐+ 𝟐𝟎 𝒂𝟓𝒕𝒇
𝟑

These constraints specify a linear set of six 
equations for the six unknowns

Quintic Polynomials
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The solution of this system of six linear equations is: 

𝒂𝟎 = 𝜽𝟎
 𝒂𝟏 = 𝜽𝟎

𝒂𝟐 =  𝜽𝟎/𝟐

Quintic Polynomials
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Another choice of joint-path shape is linear. 
That is, we simply interpolate linearly to move from the present joint position to the 
final position. 
Remember that, although the motion of each joint in this scheme is linear, the end-
effector in general does not move in a straight line in Cartesian space.

However, straightforward linear interpolation would 
cause the velocity to be discontinuous at the 
beginning and at the end of the motion.

To create a smooth path with continuous position
and velocity, we start with the linear function but
add a parabolic blend region at each path point.

Linear interpolation
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During the blend part of the trajectory, constant acceleration is used to change 
velocity smoothly.

The linear function and the two parabolic functions are “splined” together so that 
the entire path is continuous in position and velocity.

We will assume that the parabolic blends have 
the same duration; therefore, the same constant 
acceleration is used during the blends.

Linear Int. with Parabolic 
Blends
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The velocity at the end of the blend region must equal the velocity of the linear 
section, and so we have:

 𝜽𝒕𝒃 =
𝜽𝒉− 𝜽𝒃

𝒕𝒉− 𝒕𝒃

where 𝜽𝒃 is the joint angle at the end of the blend region, and  𝜽 is the joint 
acceleration acting during the blend region. 

The value of 𝜽𝒃 is given by 𝜽𝒃= 𝜽𝟎+
𝟏

𝟐
 𝜽𝒕𝒃

𝟐

Combining the two equations and taking into 
account the symmetry of the path and its 
duration 𝒕𝒇 = 𝟐𝒕𝒉, we get: 

 𝜽𝒕𝒃 𝒕𝒉− 𝒕𝒃 = 𝜽𝒉− 𝜽𝟎 −
𝟏

𝟐
 𝜽𝒕𝒃

𝟐

Linear Int. with Parabolic 
Blends
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 𝜽𝒕𝒃 𝒕𝒉− 𝒕𝒃 = 𝜽𝒉− 𝜽𝟎 −
𝟏

𝟐
 𝜽𝒕𝒃

𝟐

 −  𝜽𝒕𝒃
𝟐 +  𝜽𝒕𝒃𝒕𝒉 = 𝜽𝒉− 𝜽𝟎−

𝟏

𝟐
 𝜽𝒕𝒃

𝟐

 
𝟏

𝟐
 𝜽𝒕𝒃

𝟐 −  𝜽𝒕𝒃𝒕𝒉+ 𝜽𝒉− 𝜽𝟎 = 𝟎

 
𝟏

𝟐
 𝜽𝒕𝒃

𝟐 −  𝜽𝒕𝒃
𝒕𝒇
𝟐
+
𝟏

𝟐
𝜽𝒇 − 𝜽𝟎 = 𝟎

  𝜽𝒕𝒃
𝟐 −  𝜽𝒕𝒃𝒕𝒇 + 𝜽𝒇 − 𝜽𝟎 = 𝟎

where tf is the desired duration of 
the motion.

Linear Int. with Parabolic 
Blends
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 𝜽𝒕𝒃
𝟐 −  𝜽𝒕𝒃𝒕𝒇+ 𝜽𝒇 − 𝜽𝟎 = 𝟎

Given 𝜽𝒇, 𝜽𝟎 and 𝒕𝒇 we can follow any of the path given by the choices of   𝜽 and 𝒕𝒃
that satisfy the previous equation. 

The solution of the equation for the 
blend duration is: 

𝒕𝒃 =
𝒕𝒇
𝟐
−

 𝜽𝟐𝒕𝒇
𝟐− 𝟒  𝜽(𝜽𝒇− 𝜽𝟎)

𝟐  𝜽

A real solution exists if: 

 𝜽 ≥
𝟒 (𝜽

𝒇
−𝜽

𝟎
)

𝒕
𝒇
𝟐

Linear Int. with Parabolic 
Blends
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A single-link manipulator with a revolt joint stopping at 𝜃 = 15 degrees. 
It is desired to move the joint in a smooth manner to 𝜃 = 75 degrees in 3 seconds. 
Show two examples, one with high acceleration and one with low acceleration of a 
linear path with parabolic blends.

Example

𝜃
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Example

𝜃

Position, velocity, and acceleration 
profiles for linear interpolation with 
parabolic blends. The set of curves 
on the left is based on a higher 
acceleration during the blends than 
is that on the right.
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Linear Int. with Parabolic Blends 
for Several Segments

.

𝜃𝑚
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Linear Int. with Parabolic Blends 
for Several Segments

Given: 

• Positions 𝜃𝑖, 𝜃𝑗, 𝜃𝑘, 𝜃𝑙, 𝜃𝑚
• Desired time durations tdij, tdjk, tdkl, tdlm

• The magnitudes of the accelerations  |𝜽i|,  |𝜽j|,  |𝜽k|,  |𝜽l|

Compute: 

• Blends times ti, tj, tk, tl, tm

• Straight segment times tij, tjk, tkl, tlm

• Slopes (velocities)  𝜃𝑖𝑗,  𝜃𝑗𝑘,  𝜃𝑘𝑙,  𝜃𝑙𝑚

• Signed accelerations 

.
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Linear Int. with Parabolic Blends 
for Several Segments

For inside segments:

The duration of the blend region at path point k is tk.

The duration of the linear portion between points j and k is tjk. 

.
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Linear Int. with Parabolic Blends 
for Several Segments

For the first segments:

.
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Linear Int. with Parabolic Blends 
for Several Segments

For the last segments:

.
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The trajectory of a particular joint is specified as follows: Path points in degrees: 10, 
35, 25, 10. The duration of these three segments should be 2, 1, and 3 seconds, 
respectively. The magnitude of the default acceleration to use at all blend points is 
50 degrees/second2. Calculate all segment velocities, blend times, and linear times 
and sketch the resulting trajectory.

Example
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Example



11.01.2017 J.Nassour 54

Example
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Example
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Example
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Example
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Example

Note that in these linear-parabolic-blend splines the via points are not actually reached 
unless the manipulator comes to a stop.
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Pseudo Via Points

If we wishes to specify that the manipulator pass exactly 
through a via point without stopping, we should 
introduce “Pseudo Via Points”
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