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Abstract

This report presents an evaluation of the cognitive model “mSentential” for human

propositional reasoning in terms of predictive accuracy on individual responses. By

contrasting the model with statistical baselines such as random guessing or the most

frequently selected response and a pure logic-based model as well as a machine

learning model, we gain understanding of the extent to which the model performs

in a propositional reasoning task. To further investigate the model’s potential, we

propose some optimization options and also discuss what can be done to further

improve performance.
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1 Introduction

Humans reason about many things. Especially about facts, possibilities, and prob-

abilities (Khemlani et al., 2018, p. 1). Among other things the field of cognitive

sciences is trying to understand the reasoning process. One theory is that human

behavior is a set of mental simulations of situations in the real world (Johnson-Laird,

1975). From that, cognitive sciences inferred systematic patterns in the reasoning

process, creating multiple cognitive models with different approaches of explaining

human reasoning. It has been found that using a pure logical model that always gives

the logic answer does not represent the human answering behavior (Johnson-Laird et

al., 2015). This is due to the fact that human reasoning is not based on pure logic

(Leighton, 2004) and even tasks that seem straightforward at first glance may turn

out to be beyond the reach of some subjects. Thus, a theory about the reasoning

process must explain the difficulties encountered by the unsuccessful subjects as well

as the correct procedures of the successful ones (Rips, 1983). To test their theories,

cognitive scientists create simple factual inferences that can look like this:

If the card is an ace, then it is a heart.

The card is an ace.

Therefore, the card is a heart.

(1)

Words such as “if”, “or” and “and” connect the sentence together. Reasoning with

such connected sentences is called sentential or propositional reasoning (Khemlani

et al., 2018). One of the most important cognitive reasoning theories based on the

so-called mental model theory.
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The goal of this project is to analyze the cognitive model called “mSentential” (Johnson-

Laird & Khemlani, 2017) which is a concrete implementation of sentential reasoning,

against a statistical and a machine learning based baseline. It has been shown, in

other domains, that cognitive theories are often not capable of generating accurate

predictions of individual human participants (Riesterer et al., 2020). This is why

we want to evaluate the predictive performance of mSentential and its potential in

predicting for propositional reasoning while measured in concrete benchmarks and

create a context with our baselines to accurately assess the generated results. Recent

work has also shown that mSentential in particular is well suited for modal reasoning

tasks (Guerth, 2019). Because modal reasoning augments propositional reasoning by

adding operations about necessity and possibility (Lewis, 1912) the model is expected

to perform similar on a propositional reasoning task.

First, we are going to take a look at the state of research and some theoretical

background to understand why and how cognitive models work and how the model

mSentential in particular tries to emulate sentential reasoning. Then we are going to

test the model against our baselines and present an interpretation of the empirical

result. In the final section we then discuss the problems that arise and the conclusion

of the project.
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2 State of Research and Theoretical

Background

2.1 Mental Models

In cognitive science, a hypothesis for human reasoning is that humans create men-

tal simulations of situations that can be described with a so-called mental model

(Johnson-Laird, 1975). Those mental models are based on a small set of fundamental

assumptions about the given situation and so, each of these models represents one

possibility of outcome, capturing what is common to all the different ways in which

the possibility may occur (Johnson-Laird & Byrne, 2002). Furthermore, mental

models are based on the principle of truth. That means, they typically only represent

what is possible in the given context. Although it is possible for a mental model to

represent what is false, temporarily assumed to be true for example in counterfactual

thinking (Byrne, 2005).

Mental models in reasoning establish validity by ensuring that the conclusion holds

true over all of the model’s premises (Jeffrey, 1981, p. 1). To refute invalid interferences

the model needs to rely on valid counter examples to exist. So, a human that reasons

tend to reject a conclusion if they find a valid counterexample. Or in other words,

if they find a possibility in which the premises hold, but the conclusion does not

(Schroyens et al., 2003; Verschueren et al., 2005).
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2.2 mSentential

2.2.1 Building of Mental Models

Now that mental models have been introduced, let’s look how they are built and

how they can be fleshed out into fully explicit models. As stated in the introduction

factual inferences like this:

If the card is an ace, then it is a heart.

The card is an ace.

Therefore, the card is a heart.

(2)

consist of some compound assertions and are connected via sentential connectives. For

simplification we can rewrite the inferences by substituting the problems facts/content

with abstract symbols as follows:

If A, then B.

A

Therefore, B

(3)

From this we can extract our first single mental model. The compound assertion “If A,

then B” represent the set of the models “A” and “B”. Then the assertion “A” obviously

has the model “A” in it. Compound assertions with only a single model refer to facts,

whereas compounds with multiple models refer to conjunctions of default possibilities

(Khemlani et al., 2018, p. 9). Reasoning now depends on conjoining the sets of

models for the different assertions as seen in Table 1. The process is then simple in

principle (Johnson-Laird, 2006, Ch. 8). Two sets of models are conjoined pairwise to

form their product. So, when models are consistent in both sets, the result is a model

of all propositions represented in both models (Khemlani et al., 2018, p. 9). However,

if they are not a null model is generated. The null model represents a contradiction

and therefore no longer has an impact on the result.
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From our example a conjoined product for the single mental models will look as

follows:

Table 1: Example of how single mental models are created.
If A then B A Product
A B & A → A B

As previously mentioned, models represent only possibilities, not impossibilities

(Johnson-Lair & Savary, 1999). But in our example one of the premises is an “if-

clause”, so our model does not make explicit the possibilities in which the “if-clause”

is false. This is where fully explicit models come in and use negation to represent

clauses in the premises that are false as seen in Table 2.

Table 2: Example of how fully explicit models are created.
If A then B A Product

A B & A → A B
¬ A ¬ B & A → null model
¬ A B & A → null model

The result in both cases is the product “A, B”, but obviously that doesn’t always have

to be the case. See Table 1 from “Facts and Possibilities: A Model-Based Theory of

Sentential Reasoning” by Khemlani et al. (2018) for further information on possible

cases. The so called “model theory” now assumes two Systems for reasoning. The

first one called System 1 uses single mental models and the other called System 2

uses fully explicit models.

The so called “new model theory” builds on top of the model theory creating the

principles of sentential reasoning as seen in the next section. For a in depth look at

the “new model theory” we refer the reader to the paper “Facts and Possibilities: A

Model-Based Theory of Sentential Reasoning” by Khemlani et al. (2018).
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2.2.2 Principles of Sentential Reasoning

The cognitive model mSentential implements the principles of sentential reasoning in

common Lisp. The principles of sentential reasoning (Khemlani et al., 2018, Table 3)

are that

i) Representation: reasoners interpret compound assertions as conjunctive sets of

possibilities so they should draw modal conclusions from non-modal premises

e.g., A or B or both. Therefore, possibly A.

ii) Inference: Necessary inferences are those in which the models of the premises

support all and only the models of the conclusion. So, reasoners should reject

inferences in which the premises do not support one of the models of the

conclusion e.g., A or B but not both. Therefore, A or B or both.

iii) Dual Systems: Intuitive inferences depend on mental models and deliberative

inferences depend on fully explicit models. So that mental models should lead

to fallacies in certain cases, e.g., One of these assertions is true and one of them

is false: A and B. B or else C. Therefore, it is possible that A and B.

iv) Modulation: Background knowledge blocks the construction of possibilities and

can add relations. So that reasoners should interpret ambiguous disjunctive

constructions, e.g., A or B, as exclusive disjunctions when the contents block

the model of A and B

v) Verification: It depends on relations between the evidence and models of

assertions. So that intuitions should evaluate some evidence as irrelevant to

the truth or falsify of conditionals.
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2.2.3 Program Architecture

Implementing these principles from the new model theory results in a dual system

architecture, as seen in Figure 1 below.

Figure 1: A diagram of the reasoning program implementing the new model theory
taken from (Khemlani et al., 2018, Fig. 1.)

In Figure 1, the terminology System 1 and System 2 represents the intuitive and

deliberate thinking parts of the brain, respectively (Kahneman, 2011). System 1

bases its conclusions on a single mental models . Whereas the deliberative component

is the heart of System 2 for reasoning with fully explicit models. The white boxes

show the main components of the program with the black boxes representing the

output the program generates. The box with the “Success” label denotes whether the

System constructed a non-null model, indicating if a conclusion can be generated.

The “KB” labeled cylinders represent a knowledge base wherefrom the program looks

up information. This represents a kind of background knowledge the model can

have.
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3 Approach

To approach the subject of evaluating the performance of our cognitive model we

first need to take a look at our evaluation process and our data. The data consists of

different participants finding conclusions for inferences in a random sequence. Because

every participant is giving about 30 inferences and there are 16 different inferences

in total, every participant has to find a conclusion to a specific inference more than

ones. To find a conclusion to an inference a participant is given four out of five

possible conclusions to choose from. To evaluate our models, we use the Cognitive

Computation for Behavioral Reasoning Analysis (CCOBRA) (Riesterer & Brand,

2018) Framework. It provides the possibility to generate a predictive performance

measure for individual participants by evaluating the model’s prediction against the

response given by the participant in a function called “predict”. Models evaluated in

the CCOBRA Framework, are also able to gain information about the inferences and

responses given by other participants in a function called “pre training”. The “adapt”

function can be used to adapt to the response patterns of the current participant.

3.1 Baseline

To analyze the effectiveness of the model mSentential, we first need to assess a baseline

of what can be a lower and an upper bound, to create a context for our results.
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3.1.1 Random Model

To create a lower bound the “RandomModel” assumes a uniform distribution between

the possible conclusions and then randomly samples one to create a baseline that

should be outperformed by every other model. In our data for propositional reasoning,

we always have four different possibilities for the model to choose from, which results in

an average 1/4 probability for the “RandomModel” to predict a correct conclusion.

3.1.2 Logic Model

Because of the nature of the task, it is useful to provide another baseline to compare

against. A logic solver should give us useful insights in how accurate our reasoners

compare against a pure logical approach. This model was created as part of the

Bachelor project by Giessel (2019a).

3.1.3 MFA Model

On the upper end we have the “MFAModel”. MFA stands for Most Frequent Answer

and it creates a response distribution from the data for each possible answer and

then returns the one with the highest probability. This approach is optimal if no

background information about the individual participants is added (Riesterer et al.,

2020). So, to beat the accuracy of the “MFAModel” we can assume that it is necessary

to add some amount of knowledge about the individual. This model was also created

as part of the Bachelor project by Giessel (2019b).
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3.1.4 UBCF Model

Because cognitive models need to be plausible in explaining the reasoning process,

they are limited in terms of predictive performance. To show an example for what

can be achieved in terms of predictive performance we created a UBCF Model to

compare our mSentential against. UBCF stands for “User Based Collaborative

Filtering” and is a technique used by recommender Systems to automatically predict

or filter the preferences of users (Ricci et al., 2011). The underlying assumption of

the collaborative filtering approach is that if a person A has the same opinion as a

person B on an issue, A is more likely to have B’s opinion on a different issue than

that of a randomly chosen person. So, the UBCF model, in a more general sense

tries to filter information or patterns involving collaboration of multiple participants.

Note that participants aren’t actually collaborating together, the model just assumes

a similarity between participants who’s answering patterns look similar.

As already mentioned, the UBCF model generates a similarity between participants

by looking for patterns in answering behavior. This is done by creating a database

of all other participants and their answering behavior in pre training. Also, all

previous predictions of the current participant are held to then compare against the

database. Then, every time a new prediction has to be done, the UBCF computes

the collaborative prediction vector by comparing the top k similar participants to the

current one and then making a prediction by choosing the most likely answer between

those top k participants. This prediction can be modified by another parameter called

exp. With this parameter the similarities of the top k participants are modified so

that the impact of the not so similar ones is reduced. So, increasing this parameter

reduces the impact of the not so similar participants. After some testing, we found

out that the best values for k and exp are k = 12 and exp = 0.1 for this particular

dataset.
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3.2 mSentential

With our baseline established we then want to modify our cognitive model mSentential

for propositional reasoning. This implies analyzing the already implemented version

of the model by Guerth (2019) for modal reasoning and modifying it for our use

case. The model when given a inference and a indicator if System 1 or 2 should

be used, returns a tuple of possible and necessary conclusions by using the “What

follows” function. So, we need to apply some basic filtering to get a single useable

conclusion. If the used system returns just one conclusion, for example there is one

possible and no necessary conclusion that follows the given inference, then we just

return that conclusion. But if the system has multiple conclusions, we need to apply

some method to figure out which of the conclusions is the correct one to return. After

trying multiple methods prioritizing necessary over possible conclusions or picking

only possible or necessary conclusions, always picking a random conclusion out of

the ones given by the model was the most effective. Finally, if the model returns

an empty tuple then “nothing” is predicted. With the basic modifications done, we

result in two variants of the model outlined in the next sections.

3.2.1 Paper Variant

As stated by Khemlani et al. (2018) we implemented a parameter σ to control the

probability that System 2 is engaged in making inferences. As we can see from the

predictive accuracies from Figure 2 there is a clear correlation between an increased

σ parameter and a higher accuracy. Ranging from σ = 0 with 35.10% to σ = 1 with

68.24%. Hence, we can make the conclusion that System 2 and with that, using fully

explicit models is inherently better for our predictive use case and the data we are

working with.
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Figure 2: Predictive accuracy of mSentential paper variant with σ parameter value
in 0.2 increments.

So, when we put these results in comparison with our baseline (Figure 3), even with a

σ value of 1 where not able to achieve a high enough accuracy to surpass the logic or

MFA model. But as we previously discussed, the decision process of choosing a likely

conclusion is in part a random one. This and the fact that the fully explicit models

generated by System 2 have a higher likelihood of predicting multiple conclusions led

us to the believe that optimizations can be done to further improve performance.

Figure 3: mSentential paper variant in comparison to the baseline.
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3.2.2 Optimized Variant

Because of the partially random decision process and the higher likelihood of predicting

multiple conclusions of System 2, we can optimize the model to improve performance.

Generally, System 2 performs much better than System 1, so System 2 always provides

the prediction, for this model. Further, a list of answered questions and responses

is kept. With that said, a truth value of answered “nothing” is saved as well. This

works as an indicator if a participant is not able to comprehend a given task and with

that, might not be able to comprehend similar tasks. With those basic improvements

always applying we then created some optimization options:

1. Consistence: If System 2 predicts multiple possible answers, this makes sure if

System 1 has predicted an answer that it chooses the answer that is predicted

by both systems. This provides prediction consistence between both systems.

2. Necessary: mSentential provides both necessary and possible conclusions for

a given premise. Some participants may only provide an answer if it follows

necessarily. So, with that option it is possible to return “nothing” if nothing

follows necessarily.

3. Size limit: Possible working memory size limit. This option, when enabled

checks the task for more or equal to 3 sentential connectives because this may

lead to working memory overload of the participant and nothing is predicted.

4. Memory: If this option is enabled the list for answered questions and responses

is used to predict answers if a question was already answered before.

Now to evaluate the optimization options we generated a model for each permutation

of those options to see what works best and how those options might affect each

other. To average out the leftover randomness in some permutations we created ten
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different runs of all permutated models and took the mean of all those runs as seen

in Figure 4 and 5.

Figure 4: All parameter permutations of the optimized mSentential model
also, MFA and “nothing” meaning no options enabled for reference
c = consistence, n = necessary, s = size limit, m = memory.

If a parameter is active the parameter is listed as the model name. This means, for

example in the model cnsm all parameters are active, whereas in model cs only the

options “consistence” and “size limit” are active.

So first we can see that if we enable all options the model has the highest accuracy.

This implies that the model was able to learn something about the individual, which

is indicated by a higher accuracy then the MFA Model. Second, our “nothing” or

σ = 1 paper model is lowest performing model. This means that every optimization

has indeed improved performance in some form. But as we can see in Figure

5 some optimizations are affected by randomness and, or by other optimizations

reducing performance in specific instances. Nevertheless, if we enable more and more

optimizations randomness starts to disappear, indicated by reduction in size of the

interquartile range of the individual models, seen in the boxplot.
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Figure 5: Boxplot of ten runs showing all parameter permutations of the optimized
mSentential model.

3.3 Results

As we can see in Figure 6 our final results look as expected. With every other model

outperforming the random model at 25.23%, mSentential in its unoptimized paper

variant with σ = 0.2 at 42.74% and σ = 1 at 68.84% coming in below the Logic

and MFA model with 74.42% and 77.93% respectively. Then with all optimization

parameters active the mSentential tuned model with 78.71% comes right behind the

UBCF Model for our propositional task at 79.22%.
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Figure 6: Final predictive accuracy results of all models

In summary, these final results show that a current upper bound in performance might

be located at a predictive accuracy of about 80%. The fact that the cognitive model

mSentential in its paper variant arrived at about 69% highlights that improvements

to the underlying cognitive model can still be made. Some improvement possibilities

where tested and implemented, even to surpass the MFA’s performance at 78%.

However, with only around a 1% gap the mSentential optimized model is only slightly

better. With that said even a machine learning based model stagnated shortly before

80%. While this could be due to the simplicity of the machine learning based model,

it could also indicate that the purely response-focused data are approaching an upper

bound.
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4 Discussion

In this project, we compared several different models to predict individual human

reasoning while performing a propositional or sentential reasoning task. mSentential

with its two-systems architecture ended up performing reasonably well in this par-

ticular use case, only after we created some optimizations and mostly ignored the

intuitive System 1 part of the model. This can be due to many reasons but should be

an indicator that more optimizations to the cognitive model can be done. Looking

at the optimizations we implemented, we were able to surpass the performance of

the most frequent answer model. This means, as previously stated, that we were

able to learn some information about an individual’s reasoning processes. Finding

optimal ways to integrate this information into our models is key for achieving even

higher accuracies. With that said, we are limited in terms of our data regarding

number of inferences and data quality about those crucial interindividual differences.

With only sixteen inferences and no additional information’s about the individual

participant in our dataset, further testing with multiple improved datasets needs to

be done to mitigate those problems. Also, as seen in the plot comparing the different

optimization options (Figure 4)‚ some implemented optimizations counteract each

other, which maybe an indicator that improvements to those can be made as well.

However, with all those optimizations we also have to ask ourselves if the resulting

model is a pure cognitive model anymore. One could argue that the model with

all the decisions done after the initial predictions by the cognitive model have been

made, it is now a hybrid between a statistical and a cognitive one. Knowing that,
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there might be a better cognitive model for the propositional reasoning task. The

model “mReasoner” (Johnson-Laird & Khemlani, 2016) might be a good start for

some future work.

As for the UBCF, reaching an upper boundary at around 80% can be argued as

well. User based collaborative filtering because of its approach seems to work for

our particular use case and data but might not be the optimal approach for figuring

out a true upper bound. Training a neural network or choosing a different machine

learning model might result in a higher accuracy then 80%. But UBCF is also a

promising model, so it might be possibility to improve performance by generating a

new similarity function to determine a higher similarity between participants. With

this or optimizations to the data collection process, to feature new mechanism, to

then determine a better similarity, it might be possible to improve past the 80% mark.

5 Conclusions

In conclusion the cognitive model mSentential performs reasonably well for a propo-

sition reasoning task. Nevertheless, it can be improved by different optimization

methods. With some proposed optimizations the model was able to surpass the most

frequent response model, which means that it was able to learn something about

the individual. Comparing it with different statistical and machine learning based

models yielded insights, such as that optimizations in the data collection process

and increasing the number of inferences is necessary to further improve the task of

predicting individual human behavior in propositional reasoning.
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