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Abstract

One of the goals of cognitive science is to comprehend the human reasoning processes.
In order to do that a significant amount of cognitive models have been developed over
the years. In the 60s scientists assumed that standard deductive logic is the basis for
reasoning, creating a so-called deductive paradigm. However, through psychological
experiments it has been shown that human reasoning does not always conform to
logical rules. Acknowledging uncertainties when reasoning led to the development
of a new probabilistic paradigm. This thesis examines how the performances of
models for conditional reasoning from the different paradigms compare to each
other. I developed a benchmark that tests the performance of two deductive and three
probabilistic theories on eight experiments with diverse data. The selected experiments
aim to manipulate reasoning properties leading to a larger variance in conclusion
endorsements made by individuals. Additionally, I propose a cognitive computational
model – ε-MMT, that combines the deductive and probabilistic modeling approaches.
I take the mental model representation of conditionals and extend it with probabilities
based on Pearl’s ε-semantics. I include the new model in the benchmark in order
to determine its competence among state-of-the-art cognitive models. Moreover, I
examine the ability of ε-MMT to account for various reasoning effects and properties
through its parameters.

The benchmark results show that overall the probabilistic models achieve the best
fits. However, by analyzing the models’ performances on each experiment separately
it is shown that in some scenarios they fall behind the deductive ones. Ultimately,
this supports the fact that there is not one single theory that can explain reasoning
processes in all circumstances. ε-MMT is one of the two best-performing models in
the benchmark. Additionally, I present a psychological interpretation of ε-MMT’s
parameters. A statistical analysis on the parameter values delivers significant results
which lead to the conclusion that the model can successfully provide insight into
human reasoning and how they interpret conditionals.
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1 Introduction and Theoretical
Background

“Humans, it seems, know things; and what they know helps them do
things.” (Russel & Norvig, 2010, pg. 234)

We are constantly gathering knowledge and information about ourselves and our
surroundings. We then use them to infer conclusions by processes of reasoning on
a daily basis. For example, consider a village where the people are trying to judge
whether a woman is a witch or not. They have learned that if she weighs the same as a
duck, then she is a witch. So, they put her on a scale against a duck. It turns out that
she does indeed weigh the same as a duck, therefore, she must be a witch1 – a logically
valid inference. However, consider having a larger knowledge base, introducing a
very strong belief in the fact that witches are not real. In that case one would most
probably no longer be in favor of the conclusion that she is a witch, meaning that a
logically valid inference would be refuted.

On the other hand, imagine a card that has a letter on one side and a number on
the other. You learn that if the letter is A then the number is 3. Then you are given
a card with the letter A, and you conclude that the number on the other side is 3.
Given such an abstract topic, no background knowledge or any other factor would
prevent a person from making that inference, even though it is the same inference as
in the first example from a logical point of view.

But, how do people reach these conclusions? What are the cognitive processes that
lead to them? Throughout the years, a vast amount of cognitive models and theories
have been developed in an effort to gain a better understanding of human reasoning.
In the 60s, cognitive scientists were following a deductive path assuming that logic is
the basis for reasoning (Evans & Over, 2004).

One of the most prominent deductive reasoning theories is the Mental Model Theory
(Johnson-Laird & Byrne, 1991). It assumes that individuals use mental models to

1You might recognize this inference from the 1975 movie “Monty Python and the Holy Grail”. For
an explanation as to why this rule is true according to the movie, please see Appendix A.6.
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represent knowledge. The rule “If she weighs the same as a duck then she is a witch”
used in the previous example is called a conditional rule. It describes the causal
relationship between the propositions “she weighs the same as a duck” and “she is a
witch”. Its mental model representation would be:

duck witch
...

The first proposition is represented with “duck” and the second with “witch”. The
three dots mean that this representation is not entirely complete. Imagine we know
that she could not weigh the same as a duck but she could still be a witch, then the
model “¬duck witch” (“¬” for negation) would also be added to the representation.
Additionally, we know that she could not weigh the same as a duck and she could not
be a witch. That world is represented with the model “¬duck ¬witch”. By adding
these two models we reach the complete fleshed-out mental model representation for
which the conditional rule holds:

duck witch
¬duck witch
¬duck ¬witch

But, as we have seen in the example – what if we believe that she might weight
the same as a duck, yet she is not a witch? From a logical point of view, that state
falsifies the conditional. Taking into consideration only the propositions’ truth states
for which the conditional is true is called material implication. Reasoning theories
in the deductive paradigm follow the material implication characterization when
interpreting conditional rules (Elqayam & Over, 2013). For instance, the Mental
Model Theory does not support adding the model “duck ¬witch” to the mental
representation (Johnson-Laird & Byrne, 1991).
Nevertheless, we still strongly believe that there is a possibility she could weigh

the same as a duck but she is not a witch. That way, we question the conditional’s
certainty in a way that standard deductive logic cannot grasp (Oaksford & Chater,
1995). In the present, we interpret these uncertainties as probabilities (Over, 2004),
leading to a major shift in the cognitive modeling research approach. This new
paradigm of reasoning comprised of probabilistic models is also called the Bayesian
paradigm. Now, the focus diverts from asking whether a conclusion is true to how
likely it is.

In this thesis, I propose a new cognitive reasoning model which combines the deduc-
tive and probabilistic modeling approaches. I take the mental model representation of

2



conditionals, include the logically invalid mental model and interpret them as possible
worlds. For example, the conditional rule “If she weighs the same as a duck then she
is a witch” is represented with the worlds:

duck witch
¬duck witch
¬duck ¬witch
duck ¬witch

Following Pearl’s (1991) ε-semantics, this representation is extended with a prob-
ability distribution that reflects the likelihood of each world. From now on, I will
refer to the proposed model as ε-MMT. To illustrate the main idea behind ε-MMT,
imagine that you are skeptical about the existence of witches. Then, the world where
she weighs the same as a duck and she is a witch (“duck witch”) could be 1% probable,
according to you. On the other hand, we strongly believe that it is possible she
weighs the same as a duck but she is not a witch (“duck ¬witch”), so that world
could be 99% probable. Your probability distribution of the possible worlds would be
represented as:

duck witch 1%
¬duck witch 0%
¬duck ¬witch 0%
duck ¬witch 99%

The inferences we make in the end depend on the probability distribution we have
for the possible worlds, which in turn depends on our subjective beliefs about the
content.
Now, suppose it is up to you to determine the likelihood that she is a witch. You

learn that she weighs the same as a duck. What would your answer be if beforehand
you were told that “if she weighs the same as a duck then she is a witch”? How
would your answer differ in case you were never presented with the rule? Singmann,
Klauer, and Beller (2016) report the results of experiments where the conditional
presentation form was manipulated in such a way, within participants. This is one of
many reasoning properties that psychological experiments aim to manipulate in order
to provide insight into how people’s inferences deviate in different circumstances.

Cognitive models can be applied to such experimental data and their performance
can be evaluated. In the scope of this thesis I am interested in determining how well
do certain models perform in contrast to others. In order to do that I developed a
benchmark. We have now reached the first research question of this thesis:

3



RQ 1: What would be a good form of a benchmark?

A benchmark would provide an answer to the question “Which model provides a
best experimental data fit overall?”. However, in the world of cognitive modeling
there are many more questions that can be asked. For example, how do deductive
models compete with new probabilistic ones? Would the latter always perform better
or would they fall behind in some scenarios? Ultimately, is there one model that can
explain the variety in individuals’ answers in different circumstances? On the other
hand, do all of the cognitive theories’ assumptions hold? For instance, one of the
Mental Model Theory’s assumptions is that the material implication interpretation
holds, but does experimental data corroborate that? The benchmark that I develop
for this thesis gives answers and insight into these questions.

Now that a benchmark is developed, I can pose the second research question of
this thesis:

RQ 2: How do various cognitive models perform when evaluated on
sensible data?

The benchmark contains data from experiments that manipulate various reasoning
properties, e.g., the conditional presentation form. Additionally, some experiments
provided participants with abstract materials and some with everyday contents. To
which extent are different models able to adapt to this variety in data? The benchmark
provides an answer to which model has the best capability to do that. Moreover, I
will analyze the models’ performances on each experiment separately. By doing that
I will determine in which circumstances certain models reach their peak performance
and when do they fall short.

The new cognitive model that I propose, ε-MMT, is also included in the benchmark
in order to assess its competence, leading to the next research question:

RQ 3: Can ε-MMT compete with state-of-the-art models?

ε-MMT extends a deductive way of conditional representation with probabilis-
tic assumptions from the new paradigm. Does this merger allow for competent
performance? How does ε-MMT compare to other probabilistic, state-of-the-art
models?

“To explain reasoning with conditionals, however, we need to understand
how they are understood.” (Johnson-Laird & Byrne, 1991, pg. 63)

This quote leads us to the final major focus and research question of this thesis –
ε-MMT’s parameters and their psychological interpretation.

4



RQ 4: Can ε-MMT account for various reasoning effects and properties
and provide insight into human reasoning and interpretation?

Can this model help us learn more about human reasoning? Can it adapt to the
experiments’ manipulations and represent reasoning effects adequately? I answer this
question by providing a psychological interpretation for the models’ parameters and
performing statistical analysis on their values.

Now that I introduced the four main focus points, I will provide an outline of the
thesis structure in the following. Then, in order to understand the research questions
better and answer them, we will go on a brief stroll through the relevant theoretical
background. In the upcoming sections, I provide the definition of conditionals
and possible inference forms. Afterwards, I explore how conditionals have been
characterized throughout the years and discuss issues and paradoxes that led to a
development of a new reasoning paradigm.

1.1 Outline

The thesis is organized as follows:
This introductory chapter presents the main research objectives of this thesis and

provides all the necessary theoretical background.
When developing the benchmark, I selected five existing theories, two from the

deductive paradigm and three from the probabilistic one. I present their theoretical
background and assumptions in Chapter 2.

Additionally, I selected eight experiments whose data is used in the benchmark. All
of them focus on manipulating different reasoning properties and effects. In Chapter
3 I first present those properties and give examples. Afterwards, the motivation
behind each experiment and its methods are covered.
Once all the relevant theories and data is introduced, I describe the benchmark

I developed in Chapter 4. I explain the in-depth details of how the theories are
implemented and provide their modeling equations. Afterwards I list the used
evaluation methods. I use three different goodness-of-fit measures when answering RQ
2 and RQ 3. For RQ 4 I use statistical analysis methods for determining significance
of value changes and correlation. The chapter ends with a brief description of the
general functionality of the benchmark program.

Following is Chapter 5 where I formally propose the new cognitive computational
model ε-MMT. I provide the relevant definition from Pearl’s (1991) ε-semantics and
explain how it is applied to the mental model representation. Additionally, I discuss

5



ε-MMT’s possible worlds interpretation along with the abandonment of the material
implication.
I show the results of the benchmark analysis in Chapter 6. First, I analyze the

overall models’ performances. Those results give us an answer to the question which
model has the best capability to adapt to various data. Additionally, we get a glimpse
of ε-MMT’s competitiveness among state-of-the-art models. Afterwards, I examine
each experiment separately in two stages. I start with a comparison of all models’
performances on one experiment only. With that, I can determine the circumstances
that give certain models potential (dis-)advantages. The second stage is comprised of
statistical analysis of ε-MMT’s parameter values aiming to answer RQ 4 and learn
more about human reasoning.

I extensively discuss and interpret the meaning of all analysis results in Chapter
7. Additionally, I also consider relevant general limitations in this field and propose
ideas for future work.
And, finally, I conclude this thesis in Chapter 8 by providing answers to the

research questions.

1.2 Conditionals

Conditionals are statements usually of the form “If X then Y” (also written as X→ Y,
where X is called the antecedent and Y, the consequent), used to describe a causal
relationship between two propositions X and Y.
Given a conditional (also called a major premise) and the current state of a

proposition (called a minor premise), a conclusion can be inferred about the state of
the other proposition. There are four inference forms, as shown in Table 1. Example
1 shows the Modus Ponens inference form. Table 2 shows the so-called converse
inferences (Oaksford, Chater, & Larkin, 2000). They have the same minor premise
as the corresponding original inference form, but the polarity of the conclusion is
inverted, i.e. its negation is taken.

Taking the traditional logical interpretation of conditionals into consideration, the
MP and MT inference forms are logically valid inferences, whereas AC and DA are
not and are often referred to as fallacious (Singmann & Klauer, 2011).

Example 1. If the number on the card is 3, then the card is colored red.
The number on the card is 3.

Therefore, the card is colored red.

6



Table 1: Inference Forms

Inference Form Conditional
Minor

Conclusion
Premise

Modus Ponens (MP) X→Y X Y
Modus Tollens (MT) X→Y ¬Y ¬X
Affirmation of the Consequent (AC) X→Y Y X
Denial of the Antecedent (DA) X→Y ¬X ¬Y

Table 2: Converse Inference Forms

Converse Inference Form Conditional
Minor

Conclusion
Premise

Modus Ponens (MP’) X→Y X ¬Y
Modus Tollens (MT’) X→Y ¬Y X
Affirmation of the Consequent (AC’) X→Y Y ¬X
Denial of the Antecedent (DA’) X→Y ¬X Y

1.3 Characterization of Conditionals and Reasoning
Paradigms

Conditionals are sentences made up of propositions, to which truth values can be
assigned. That led to a basic characterization of conditionals, sometimes called
material implication and it is logically equivalent to ¬X ∨ Y. The truth states of
material implication are shown in the “Material” column in Table 3 (Manktelow,
1999). These conditionals are also called truth functional conditionals. As discussed
by Evans and Over (2004), the invalidity of this approach leads to certain ‘paradoxes’:

P1: Given ¬X, it follows that if X then Y.
P2: Given Y, it follows that if X then Y.

These inferences are valid according to Table 3, yet it can be absurd to assume that
they are valid for conditionals in natural language. Evans and Over (2004) provide
an example of this invalidity using the conditional “If it rains, the plants will die.”.
When applying P1 to this conditional, the following is obtained:

It will not rain.
Therefore, if it rains, then the plants will die.

7



In the case that there has been a drought, which leads the plants to die, the conditional
would not be true, because it would not rain. However, treating this conditional as a
truth functional conditional would justify accepting the conditional as true, on the
basis that there is a drought.
The same is valid in the case of applying P2 to the conditional:

The plants will die.
Therefore, if it rains, then the plants will die.

By imagining the same situation that there is a drought, which would be the reason
for the plants dying, again it does not make sense that the death of the plants would
be a basis for accepting the conditional as true.

Table 3: Characterization of a conditional “If X then Y” with a truth-table

X Y
If X then Y If X then Y If X then Y
(Material) (Stalnaker) (Defective)

True True True True True
True False False False False
False True True True/False Irrelevant
False False True True/False Irrelevant

Furthermore, consider the conditional “If the moon is blue, then the moon is green.”.
Another issue with material implication when considering everyday natural language
conditionals is that Table 3 shows that this conditional is true, just because both
the antecedent and the consequent are false, however it is obvious to any human
individual that it is an absurd sentence, and no-one would endorse it (Oaksford &
Chater, 2007).

Additionally, even more problems arise when taking the so-called “strengthening of
the antecedent” into consideration. Given a conditional “If X then Y”, then “If X and
Z then Y” can also be concluded, which is mathematically acceptable. However, in
the world of natural language conditionals this can lead to complications. Consider
the conditional “If it’s a bird then it flies”. It should not allow an individual to then
endorse that “If it’s a bird and it’s a penguin then it flies”. However, if on the other
hand we learn that it is a parrot, then the conclusion still holds. An important point
is that whether the additional information Z has an effect on the conclusion or not is
entirely content dependent (Oaksford & Chater, 2003b).
Psychologists and philosophers argue for (Grice, 1989; Johnson-Laird & Byrne,

1991, 2002) and against (Stalnaker, 1968; Rips & Marcus, 1977; Evans, Handley, &
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Over, 2003; Over & Evans, 2003) the theory of natural language indicative conditionals
being truth functional (Evans & Over, 2004).

Evans and Over (2004) discuss early advancements towards not viewing indicative
conditionals as truth functional, as primarily done by Ramsey (1931/2013). He
suggests that when people are reasoning about a conditional “If X then Y”, they are
actually trying to judge the probability of Y given X, i.e. P(Y|X), widely known
as The Ramsey Test. More specifically, the ‘test’ states that humans add X to
their knowledge, and then argue about Y based on that. Stalnaker (1968) has also
extended this test stating that before adding X to the knowledge, humans might
need to modify their assumptions and belief by taking into consideration previous
knowledge they might have on the topic, e.g., by believing ¬X. That would lead to
assigning a very low value to P(Y|X). These approaches eliminate the paradoxes P1
and P2. Stalnaker (1968, 1975) developed a representation of conditionals differing
from the truth functional conditional representation of “If X then Y” in the cases
where X is false. He describes the possible truth states of X and Y as possible worlds.
He then discusses the idea of ‘closeness’ between two worlds. For instance, if we have
¬X Y, he states that the conditional might be true or it might also be false (contrary
to the definite true as given by the material implication) – it would be true if the
world where X and Y both happen is a closer possibility to ¬X Y than X ¬Y. In
order to understand this notion of ‘closeness’ better, we will go back to the example
“If it rains, then the plants will die” and imagine we are in a state that “it will not
rain” (¬X) and “the plants will die” (Y). Now, consider the worlds X ¬Y and X Y.
Suppose that there is a drought. In that situation X ¬Y means that rain will end the
drought and the plants will not die, and then the conditional will be false. However,
if the ground is waterlogged, the world X Y would mean that if it rains the plants will
die which makes the conditional true. This characterization relaxes the prerequisites
for a conditional to be considered true, in comparison to the material implication. It
also shows that in some cases, the contents of the rule would have a bigger influence
on the perceived truth state of the conditional, even if it is not logically valid.

Additionally, Wason (1966) suggests that when judging whether a conditional is
true or not, the cases where the antecedent is false are irrelevant. That led to what
he called a ‘defective’ truth table as shown in the “Defective” column in Table 3.
This is also referred to as a de Finetti table, after de Finetti (1936/1995), who is
the first one to construct it in a major theory of the conditional (Baratgin, Over, &
Politzer, 2013). The ‘defective’/de Finetti truth table has been corroborated through
experiments where participants were either provided with truth value combinations
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for the propositions and asked to decide which ones render the conditional true or
false, or they were asked to construct them themselves (Johnson-Laird & Tagart,
1969; Evans, 1972).

As pointed out by Manktelow (2012), tasks related to truth-tables, in general, have
not been as beneficial to conditional reasoning research the way that inference tasks
have. Nevertheless, both of them carry great importance towards understanding how
humans interpret conditionals.

In the 1960s a deductive paradigm was developed, which assumed that logic accounts
for rational reasoning, and the truth functional conditional was valid (Evans & Over,
2004). Cognitive models developed during that time focus on binary truth and truth
preservation from assumptions (Elqayam & Over, 2013). When reasoning, however,
humans do not always follow the norms provided by standard deductive logic. Their
conclusions can depend on a lot more than logical validity of an inference. In the real
world, inferences are thought of as uncertain and depend on judgements of probability,
therefore psychological theories should provide an account of the subjective probability
of conditionals (Over, 2004). This realization leads to the development of a new
probabilistic reasoning paradigm.

In experiments about reasoning with conditionals, participants are usually given a
conditional (major premise), a minor premise and then presented with a conclusion,
according to the relevant inference form. In the old, deductive paradigm participants
were asked if they accept an inference form or not. The conditionals’ contents are
usually abstract, therefore the individual would not have any background knowledge
about the topic. However, in the new, probabilistic paradigm they are given more
realistic every-day content and are asked about their endorsements of the inference
forms, i.e., probabilities, while being encouraged/allowed to take their background
knowledge into consideration (Singmann & Klauer, 2011). Simultaneously, the
endorsement of inference forms in the probabilistic paradigm is assumed to be
proportional to the conditional probability of the conclusion given the minor premise,
as expressed with Bayes’ theorem (Eq. 1) (Oaksford et al., 2000). Thus the alternative
name for the paradigm is Bayesian.

P(β|α) =
P(α|β) · P(β)

P(α)
(1)

Often, experiments manipulate contents and reasoning properties with the goal
to clearly demonstrate how participants’ endorsements can change, sometimes even
drastically. In order to account for these kinds of effects that promote ‘illogical’
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reasoning, models with a probabilistic approach seem to be more promising, as argued
by Oaksford and Chater (2007), who provide a substantial discussion on how much
deduction there really is in everyday human reasoning.
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2 Existing Models and State of the Art

Both reasoning paradigms are comprised of a vast amount of cognitive models. I have
selected five existing theories whose performances are analyzed in the benchmark.
Their theoretical background follows in this chapter. The deductive paradigm is
represented by the Mental Model Theory (Johnson-Laird & Byrne, 1991) and the
Suppositional Theory (Evans & Over, 2004). Both of them have multiple formalization
variants that challenge some of their assumptions, as presented further in this chapter.
Even though these two models belong to the old, deductive paradigm, they are still
highly relevant due to their psychological assumptions. Consequently, they have
potential to bring us a step closer to resolve the mystery of the human reasoning
process. Nevertheless, taking into consideration the uncertainties in our everyday
world, the individuals’ ‘irrationality’ and occasional inability to be logical, a better
account is provided by the state-of-the-art models belonging to the Bayesian paradigm
(Oaksford & Chater, 2007). In this thesis the probabilistic paradigm is represented
by the remaining three models. First is the Oaksford et al.’s (2000) Probabilistic
Model (from now on referred to as the “Oaksford-Chater (Probabilistic) Model”),
which is one of the most influential Bayesian cognitive models (Singmann et al., 2016).
Following is an extenstion of Spohn’s (2009) ranking theory with logistic regression
– the Logistic Regression Model (Skovgaard-Olsen, 2016). Finally, the Dual-Source
Model (Klauer, Beller, & Hütter, 2010) is presented, which aims to disentangle the
conditionals’ form and content and builds up on the Oaksford-Chater Model. All of
these theories and their variants are implemented in the benchmark, as presented in
Chapter 4.

2.1 Mental Model Theory

“To deduce is to maintain semantic information, to simplify, and to reach
a new conclusion.” (Johnson-Laird & Byrne, 1991, p. 22)

In simple words, the Mental Model Theory (MMT) assumes that when individuals
are presented with some information, they build a mental representation of it using
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mental models. They aim to reach a conclusion based on the maintained information,
and often, individuals would engage in a search for counterexamples to the conclusion.
If their search is successful, they would no longer accept the conclusion (Khemlani &
Johnson-Laird, 2012).

A mental model consists of the truth states of the propositions in the premise.
Given a conditional premise “If X then Y”, the initial mental model that an individual
would construct is the one where both propositions are true, i.e., X Y.

The Mental Model Theory assumes that once the initial model is created it triggers
the recollection of relevant facts and knowledge (Johnson-Laird & Byrne, 1991). Those
facts can either serve as evidence that the initial model is correct or will stimulate a
search for alternatives and lead to extending the mental model representation in a
second process.

The extended mental model representation is also called a fleshed-out representation.
It contains models that describe cases where X is false (written as ¬X), as shown in
Table 4. The fleshed-out representation consists of all the possible combinations of
truth-values for the propositions X and Y for which the conditional “If X then Y” is
true. Johnson-Laird and Byrne (2002) call representing only what is true and not false
the principle of truth. This coincides with the material implication definition which
is the leading interpretation of conditionals in the deductive paradigm (Elqayam
& Over, 2013). However, by claiming that conditionals are truth functional, then
we accept as valid the paradoxes stemming from the material implication, which
I discussed in Section 1.3. Johnson-Laird and Byrne (1991, 2002) state that they
accept these paradoxes and that they are only an apparent problem for MMT (Over,
2004).

Table 4: Mental Model representation of a conditional premise “If X then Y”

Premise Mental Model Fleshed-out Models

If X then Y X Y X Y
. . . ¬X ¬Y

¬X Y

Schroyens, Schaeken, and d’Ydewalle (2001) revise the model (not the theory)
presented by Johnson-Laird and Byrne (1991). They present an alternative model
within the mental models approach, focusing on the stage where individuals validate
the conclusion based on their mental model representation. They assume that when
looking for counterexamples individuals do not construct all possible alternative
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models but rather aim for the model that would falsify the inference. Based on
the original model’s theory, when looking for counterexamples individuals only test
whether alternative models are consistent with the premises. Schroyens et al. (2001),
on the other hand, take background knowledge about the content into consideration
and suppose that counterexamples are retrieved from long-term memory, which is
where this theory stops being a theory of deductive reasoning (Oberauer, 2006). With
this modification the material implication interpretation of conditionals within the
theory is abandoned because now the X ¬Y model can actually be retrieved from
long-term memory and become a part of the mental model representation. That leads
to the possibility of refuting the logically valid MP and MT inferences.
Oberauer (2006) has provided a formalization of the Mental Model Theory as a

multinomial processing tree (MPT), as shown in Fig. 1, built directly on the equations
provided by Schroyens et al. (2001). The MPT can be interpreted as a binary decision
diagram with parameters on the edges. In this case, the decisions are whether a
human reasoner will add a model to their representation, or not, and the parameters
describe the probability of a model being added.

X→Y

NoneXY

don’t add
¬X¬Y

don’t add
¬XY

don’t add
X¬Y

MP, AC

add
X¬Y

AC

e 1− e

add
¬XY

don’t add
X¬Y

MP

add
X¬Y

None

e 1− e

a 1− a

add
¬X¬Y

don’t add
¬XY

don’t add
X¬Y

All 4

add
X¬Y

AC, DA

e 1− e

add
¬XY

don’t add
X¬Y

MP, MT

add
X¬Y

None

e 1− e

a 1− a

f 1− f

r 1− r

Figure 1: Oberauer’s (2006) formalization of the MMT for the conditional “If X
then Y”. The parameters r, f, a, e take on values in the interval [0, 1],
indicating the probability of taking the respective decision path in the
model. The leafs represent the responses.

If a special case of the MPT shown in Figure 1 is used, where the parameter e is
set to 0, a strictly deductive variant of the MMT can be achieved, where the X ¬Y
model is impossible to be added to the mental representation. From now on, this
variant will be referred to as “MMT Deductive”.

Evans (1993) criticized the Mental Model Theory for its lack of directionality.
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Specifically, comparing the differences between reasoning problems involving “If X
then Y” and the ones involving “X only if Y”. Namely, people are more likely to draw
backward inferences (inferences from Y or ¬Y as a minor premise) in the “only if”
case and they are more likely to draw forward inferences (inferences from X or ¬X
as a minor premise) in the case of “if...then”. Following this observation, Oberauer
(2006) provided a second formalization of the MMT including directionality. From
this point onward, this variant will be referred to as “MMT with Directionality”.
Assuming a directionality from the antecedent variable to the consequent variable,
the only reachable conclusions are the ones following that direction. For example,
having only the model X Y in the mental representation supports concluding Y from
X (MP), but not X from Y (AC). By expanding the previous formalization (Figure
1) with one more parameter d, this directionality limitation can be overcome. The
MMT with Directionality MPT is shown in Figure 2.

X→Y

NoneXY

don’t add
¬X¬Y

don’t add
¬XY

don’t add
X¬Y

¬reverse

MP

reverse

MP, AC

d 1− d

add
X¬Y

¬reverse

None

reverse

AC

d 1− d

e 1− e

add
¬XY

don’t add
X¬Y

MP

add
X¬Y

None

e 1− e

a 1− a

add
¬X¬Y

don’t add
¬XY

don’t add
X¬Y

¬reverse

MP, DA

reverse

All 4

d 1− d

add
X¬Y

¬reverse

DA

reverse

AC, DA

d 1− d

e 1− e

add
¬XY

don’t add
X¬Y

¬reverse

MP

reverse

MP, MT

d 1− d

add
X¬Y

None

e 1− e

a 1− a

f 1− f

r 1− r

Figure 2: Oberauer’s (2006) formalization of the MMT with Directionality for the
conditional “If X then Y”. The parameters r, f, a, e, d take on values in the
interval [0, 1], indicating the probability of taking the respective decision
path in the model. The leafs represent the responses. “reverse”: Reversing
the directionality; “¬reverse”: Not reversing the directionality.

2.2 Suppositional Theory

The Suppositional Theory (Evans & Over, 2004) assumes that two systems of reasoning
are used in order to make a conclusion for a given reasoning problem, called System
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1 and System 2. System 1 describes the heuristic or pragmatic inferences, whereas
System 2 is dedicated to abstract rule-based reasoning (Evans & Over, 2004). The
influence of each system depends from one individual to another in terms of belief-
based vs. logic-based responses. System 1 is capable of only accepting MP inferences,
unless additional conditional premises are added through pragmatic implicature.
System 2, on the other hand, can accept MT as well by a suppositional line of proof
(Oberauer, 2006).

The suppositional proof starts by supposing that X is true, which combined with
the given conditional rule, “If X then Y”, leads to the conclusion that Y is true (MP
inference). However, this contradicts the minor premise of MT, ¬Y, therefore the
supposition must be false, so ¬X must be true. This leads to the acceptance of the
MT inference form. Starting the suppositional proof with Y, combined with the
converse, “If Y then X” (assuming that the converse of the conditional has been added
by pragmatic implicature), leads to accepting the DA inference form.

Oberauer (2006) has also provided a formalization of the Suppositional Theory.
Evans and Over (2004) do not explicitly specify how the two systems, System 1
and System 2, interact, so Oberauer (2006) provided two different variants of the
formalization of the theory: Sequential and Exclusive.

Reasoning

no X→Y

None

X→Y
no

Y→X

¬X→ ¬Y

¬Y→ ¬X

MP, DA, MT

no
¬Y→ ¬X

Supp. X

MP, DA, MT

no Supp. X

MP, DA

1− s s

1− c c

no
¬X→ ¬Y

Supp. X

MP, MT

no Supp. X

MP

1− s s

1− i i

Y→X

no
¬X→ ¬Y

¬Y→ ¬X

Supp. Y

All 4

no Supp. Y

MP, AC, MT

1− s∗ s∗

no
¬Y→ ¬X

Supp. X

Supp. Y

All 4

no Supp. Y

MP, AC, MT

1− s∗ s∗

no Supp. X

Supp.Y

MP, AC, DA

no Supp.Y

MP, AC

1− s∗ s∗

1− s s

1− i i

¬X→ ¬Y

no
¬Y→ ¬X

no Supp. X

MP, AC, DA

Supp. X

All 4

s 1− s

¬Y→ ¬X

All 4

i+ (1− i) · c (1− c) · (1− i)

i 1− i

c 1− c

b 1− b

Figure 3: Oberauer’s (2006) formalization of the Suppositional Theory (Sequen-
tial Variant) (Oberauer, 2006) for the conditional “If X then Y”. The
parameters b, c, i, s, s∗ take on values in the interval [0, 1], indicating the
probability of taking the respective decision path in the model. The leafs
represent the responses.

In the Sequential Variant (Figure 3), as the name suggests, it is assumed that the
two systems work sequentially. After the individual determines their degree of belief
in the conditional X→Y, System 1 takes over and has the possibility of adding the
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converse, Y→X, and inverse, ¬X→ ¬Y by pragmatic implicature. By combining
the two, it can arrive to the contraposition, ¬Y→ ¬X. Once System 1 is done with
adding conditionals, it derives all the conclusions following from them. Next, System
2 takes the conditionals System 1 has added and with a certain probability, applies the
procedure for suppositional proof. Two different suppositional proofs can take place.
One supposes the truth of X and the original conditional and the other supposes the
truth of Y and the converse.

In the Exclusive Variant (Figure 4), it is assumed that the two systems work
independently. After the individual determines their degree of belief in the conditional,
they will reason using either System 1 or System 2. If System 1 is chosen, the
conditionals are added via pragmatic implicature, and finally the conclusions are
derived from them. If System 2 is chosen, the approach is strictly deductive – MP
is derived from the conditional, and an attempt for deriving MT by a suppositional
proof is made.

Reasoning

no X→Y

None

believe X→Y

System 2

Supposition

MP, MT

no Supposition

MP

1− s s

System 1

no
Y→X

¬X→ ¬Y

¬Y→ ¬X

MP, DA, MT

no
¬Y→ ¬X

MP, DA

1− c c

no
¬X→ ¬Y

MP

1− i i

Y→X

no
¬X→ ¬Y

¬Y→ ¬X

MP, AC, MT

no
¬Y→ ¬X

MP, AC

1− i i

¬X→ ¬Y

no
¬Y→ ¬X

MP, AC, DA

¬Y→ ¬X

All 4

i+ (1− i) · c (1− c) · (1− i)

i 1− i

c 1− c

m 1−m

b 1− b

Figure 4: Oberauer’s formalization of the Suppositional Theory (Exclusive Vari-
ant) (Oberauer, 2006) for the conditional “If X then Y”. The parameters
b,m, c, i, s take on values in the interval [0, 1], indicating the probability
of taking the respective decision path in the model. The leafs represent
the responses.

2.3 Oaksford-Chater Probabilistic Model

Oaksford et al. (2000) propose a probabilistic computational level model (Marr, 1982)
for conditional reasoning. By using a 2 × 2 contingency table, as in Table 5, they
represent conditional rules, where, a = P(X) and b = P(Y), probabilities of the
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antecedent and consequent, respectively and ε = P(¬Y|X) is the exception parameter.

Table 5: Contingency table for a conditional rule “If X then Y”. a = P(X) - Prob-
ability of the antecedent; b = P(Y) - Probability of the consequent; ε =
P(¬Y|X) - Probability of the exception.

Y ¬Y
X a(1− ε) aε

¬X b− a(1− ε) (1− b)− aε

Their model belongs to the Bayesian paradigm as it assumes that inference form
endorsement is proportional to the conditional probability of the consequent given
the antecedent. So, from Table 5, they derived expressions for the inference form
endorsements as follows:

MP: P(Y|X) = 1− ε DA: P(¬Y|¬X) =
1− b− a · ε

1− a

AC: P(X|Y) =
a(1− ε)

b
MT: P(¬X|¬Y) =

1− b− a · ε
1− b

2.4 Logistic Regression Model

Skovgaard-Olsen (2016) proposes a Logistic Regression Model by taking Spohn’s
(2009) ranking theory and extending it using logistic regression. For the theoretical
background on ranking theory, logistic regression and the relation between the two,
see Appendix A.2.

Following the assumption that inference form endorsements are expressed through
conditional probability of the conclusion given the minor premise, regression lines can
be created to which the data can be fitted. However, the regression lines would differ
depending on whether X is the predictor of Y (MP, DA), or Y is the predictor of X
(AC, MT). As shown in Table 6, their slopes are identical, but, their intercepts differ.

Table 6: Logistic Regression Model parameters

X as a predictor of Y Y as a predictor of X

Intercept eb0 =
P(Y|¬X)

P(¬Y|¬X)
eb

∗
0 =

P(X|¬Y)

P(¬X|¬Y)

“Slope” eb1 =
P(Y ∧X)

P(¬Y ∧X)
· P(¬Y ∧ ¬X)

P(Y ∧ ¬X)
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The following equations are formulated and used as predicting expressions for
inference form endorsements:

MP: P(Y|X) = 1

1 + e−(b0+b1)
DA: P(¬Y|¬X) = 1

1 + eb0

AC: P(X|Y) = 1

1 + e−(b∗0+b1)
MT: P(¬X|¬Y) = 1

1 + eb
∗
0

2.5 Dual-Source Model

The Dual-Source Model (DSM) (Klauer et al., 2010; Singmann et al., 2016), is an
extension of the Oaksford-Chater Probabilistic Model (Oaksford et al., 2000). It
assumes that individuals integrate two different kinds of information: background
knowledge about the content and information related to the logical form of the
inference. Taking that into consideration, the Dual-Source Model uses three types of
parameters:

• ξ(C, x) - knowledge-based component, depending on the content C and inference
x

• τ(x) - form-based component reflecting the subjective degree of belief in the
inference x

• λ - a weight given to the form-based component (integrating ξ(C, x) and τ(x)

using Bayesian model averaging).

A reduced inference is when an individual is not given a conditional rule, but only
a minor premise and asked for the conclusion’s endorsement. The DSM expresses
this inference through the knowledge-based component ξ(C, x):

Er(C, x) = ξ(C, x)

Then, the endorsement of the full inference x with content C is given by:

Ef (C, x) = λ{τ(x) + (1− τ(x)) · ξ(C, x)}+ (1− λ)ξ(C, x)
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The ξ(C, x) parameters are obtained by using Oaksford et al. (2000)’s equations,
as follows:

MP: ξ(C, MP) = 1− ε DA: ξ(C, DA) =
1− b− a · ε

1− a

AC: ξ(C, AC) =
a(1− ε)

b
MT: ξ(C, MT) =

1− b− a · ε
1− b

In Singmann, Klauer, and Over (2014) an alternative approach for the DSM is
proposed, along with a presentation of two experiments. One of the experiments
uses abstract contents and asks participants for inference form endorsements. The
form-based component τ(x) is estimated by averaging the individual answers, per
participant. The second experiment uses everyday conditionals and asks participants
for a rather large variety of subjective probabilities. Their answers are then used to
determine the knowledge-based components ξ(C, x). This leaves the model with only
one free parameter, λ. However, in this approach, the components are estimated by
using equations describing Law of Total Probability, e.g., for MP:

P (Y ) = P (Y |X) · P (X) + P (Y |¬X) · (1− P (X)) (2)

In this approach the whole idea of representing inference form endorsements with
conditional probability is completely abandoned. When presenting the DSM once
again in Singmann et al. (2016), they return to the original idea of the model being an
extension to Oaksford et al. (2000)’s probabilistic model, using conditional probability,
as explained above.

In general, unfortunately, it is highly unlikely to find other experiments that ask for
all of the necessary subjective probabilities in order to be able to apply this model. As
a matter of fact, to my knowledge, no other such data exists (yet). Following personal
communication with Henrik Singmann about the Dual-Source Model in general and
the application and validity of this alternative approach, I decided that it will not be
used in this thesis due to lack of credibility in the alternative representation of the
endorsements.
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3 Data

In order to analyze the models’ performance on various data, I have chosen experiments
that exploit different effects and reasoning properties. In this chapter I first explain the
manipulated properties. Afterwards, I present the motivation behind the experiments
and their goals and methods. All of their data is included in the benchmark and the
analysis results are presented in Chapter 6.

3.1 Reasoning Properties and Effects

3.1.1 Suppression effect

Deductive reasoning is truth-preserving – given premises that hold, the conclusion
must also hold. That means if any additional information would be added, i.e., the
already existing premises would be conjoined with additional premises, the conclusion
would still hold. This is called ‘monotonicity’. ‘Non-monotonicity’, on the other hand,
is when additional information prevents the conclusion from still being valid.

A popular example of non-monotonicity is the suppression effect. Formal theorists
(Markovits, 1984, 1985; Rumain, Connell, & Braine, 1983) have shown that individuals
can be forced to reject the two fallacious inference forms, DA and AC, when a
conditional rule is accompanied with alternative antecedents. As the name suggests,
alternative antecedents are events different from the antecedent in the original major
premise that also allow for the consequent to be true. Consider Example 2 of the
DA inference form where the conclusion follows from the major and minor premise.
However once an alternative antecedent is introduced (the colored sentence), the
conclusion no longer holds, i.e., the DA inference has been suppressed.

Example 2. If she meets her friend then she will go to a play.
If she meets her family then she will go to a play.
She doesn’t meet her friend.

She will not go to a play.
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Byrne (1989) then shows that in a similar way, the valid inferences, MP and MT,
can also be suppressed by providing additional antecedents. They provide constraints
that might influence the effect of the major premise’s antecedent and would prevent
the consequent from coming true. Example 3 shows the MP inference form, where
the conclusion follows given the major and minor premises. However by providing an
additional antecedent (the colored sentence), the conclusion does not hold anymore,
i.e., the MP inference has been suppressed.

Example 3. If she has an essay to write then she will study late in the library.
If the library stays open then she will study late in the library.
She has an essay to write.

She will study late in the library.

Byrne (1989) showed the suppression effect on all inference forms in an experiment
where participants were divided in three groups – in the first one they were presented
with alternative antecedents, in the second one with additional antecedents, and the
last group did not get any extra information. The mean percentages of inferences
made by all three groups are shown in Figure 5, illustrating the suppression effect.

(a) Suppression of the fallacious inference
forms (DA, AC) by providing alternative
arguments.

(b) Suppression of the valid inference forms
(MP, MT) by providing additional argu-
ments.

Figure 5: Suppression Effect (Byrne, 1989)

Additionally, there are further reasoning properties closely related to the suppression
effect. They are also taken into consideration in this thesis and are explained in the
following sections.
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Varying Amounts of Disablers and Alternatives

Given a conditional “If X then Y”, disablers are events that prevent Y from happening,
even though X has occurred (expressed through the previously called additional
antecedents). Alternatives, on the other hand, are events that enable Y to happen,
even though X has not occurred (expressed through the previously called alternative
antecedents). Example 4 demonstrates an instance of both.

Example 4. Conditional: If the air conditioner is turned on, then you feel cold.
Disabler: You are wearing a very thick winter jacket.
Alternative: It’s winter and your window is open.

Conditional contents can vary in the amount of disablers and alternatives related
to them, influencing the individuals’ confidence in a conclusion. In this thesis, the
contrast is between ‘Few’ and ‘Many’ disablers/alternatives. This way of quantifying
the amount of disablers/alternatives can be thought of as a simplified or näıve way.
Additionally, it is not necessarily true that the subjective understanding of ‘Many’
for one conditional is the same as for another one, but it would be rather relative.
Simultaneously, it can obviously not be guaranteed that how one individual perceives
‘Many’ or ‘Few’ would match the opinion of another one. However, in terms of
available data and research, it is a good starting point.

In some of the experiments taken into consideration, conditionals with few disablers
and many alternatives are also called prological conditionals. On the other hand,
conditionals with many disablers and few alternatives are called counterlogical condi-
tionals. Conditionals with both many alternatives and disablers are called neutral
conditionals.

Validity and Plausibility Effect

MP and MT are logically valid inference forms, and AC and DA are not. Given a
prological conditional, both MP and MT are also plausible. On the other hand, when
given a counterlogical conditional, validity and plausibility are pitted against each
other, i.e., the valid inference forms MP and MT become implausible, but the invalid
ones, AC and DA, become plausible.

A stronger endorsement for logically valid but implausible inferences is called the
validity effect. A stronger endorsement for logically invalid but plausible inferences is
called the plausibility effect (Singmann & Klauer, 2011).
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3.1.2 Conditional Presentation Form

The presentation form of an inference task can affect how much people would rely on
their personal background knowledge, compared to being highly influenced by the
content of what is presented to them. Here, three different presentation forms are
relevant: reduced inference, conditional and biconditional.

In the reduced inference case, no rule/major premise is presented, only the minor
premise, followed by the conclusion, as shown in Example 5 (Singmann et al., 2016).

Example 5. This person drinks a lot of coke.

Therefore, the person will gain weight.

The conditional case is the “classical” inference task presentation, where a condi-
tional rule is presented as a major premise, followed by the minor premise and the
conclusion, as shown in Example 6 (Singmann et al., 2016).

Example 6. If a person drinks a lot of coke, then the person will gain weight.
This person drinks a lot of coke.

Therefore, the person will gain weight.

The biconditional case, as the name suggests, is a presentation form where the
major premise is a biconditional (“If and only if X then Y.”), followed by the minor
premise and the conclusion, as shown in Example 7 (Singmann et al., 2016).

Example 7. If and only if a person drinks a lot of coke, then the person will
gain weight.
This person drinks a lot of coke.

Therefore, the person will gain weight.

3.1.3 Deductive vs. Inductive Instructions

The fact that human reasoning does not conform to the standard deductive logic
rules has already been discussed extensively in Section 1.3. When individuals receive
deductive instructions they are asked to judge the conclusion from a logical validity
perspective (“How valid is the conclusion?”). In the case of inductive instructions
they are asked to judge the general likelihood of a conclusion (“How likely is the
conclusion?”). By manipulating the instructions the contrast between deductive and
inductive reasoning is shown.
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3.1.4 Speaker Expertise

Depending on the content of a conditional, individuals incorporate their background
knowledge on the relevant topic when reasoning. Some experiments manipulate the
degree to which an individual is expected to rely on their background knowledge
by stating that a conditional is uttered by an expert or a non-expert, as shown in
Examples 8 and 9 (Singmann et al., 2016). Generally, it is expected that when a
conditional is uttered by a non-expert, individuals would rely on their background
knowledge more, compared to when the conditional would be uttered by an expert.

Example 8. A nutrition scientist says: If Anne eats a lot of parsley then the level
of iron in her blood will increase.

Example 9. A drugstore clerk says: If Anne eats a lot of parsley then the level of
iron in her blood will increase.

3.2 Experiments

3.2.1 Experiments 1–4

These four experiments are presented in Singmann et al. (2016). The goal of their
work was to provide validation of the psychological interpretation of the Dual-
Source Model’s parameters. Additionally they aim to show that while the usage of
background knowledge when reasoning is supported, the conditional rule’s form also
plays a considerable role, irrespective of the content.
The motivation behind the experiments was to implement manipulations that

would influence the Dual-Source Model’s parameter values in a way that would aid
in the psychological interpretation validation.
For each experiment there are also two control groups (knowledge control group

and rule control group), to assess possible biases. The answers provided in the control
experiments were not taken into consideration in this thesis.

The experiments’ data files along with the authors’ analysis scripts and the online
appendix can be accessed at https://osf.io/zcdfq/.

Experiment 1

The main goal of this experiment was to contrast conditionals in their standard form,
“If X then Y”, with biconditionals, “If X then and only then Y”, and demonstrate this

27

https://osf.io/zcdfq/


Table 7: Task example for Experiment 1 (Singmann et al., 2016)

Conditional ContentPresentation Form

Reduced Inference A balloon is pricked with a needle.
How likely is it that it will pop?

Conditional
If a balloon is pricked with a needle then it will pop.
A balloon is pricked with a needle.
How likely is it that it will pop?

Biconditional

If a balloon is pricked with a needle then and only
then it will pop.
A balloon is pricked with a needle.
How likely is it that it will pop?

manipulation’s effect on the Dual-Source Model’s form-based component, the τ(x)

parameter.
The varying factors in this experiment are the conditional presentation form and

varying amounts of disablers and alternatives.
A total of 31 participants took part in this experiment. They gave estimates to four

inference forms and their converses for four different contents and three presentation
forms, making it a total of 96 answers per participant.
Table 7 provides an example of the question form that participants received in

all three conditional presentation forms. The content has few disablers and many
alternatives.

The contents of the conditionals used in this experiment can be found in Appendix
A.1.1.

Experiment 2

The main goal of this experiment was to manipulate the expertise with which a
conditional has been uttered. Singmann et al. (2016) demonstrate its effect on
the Dual-Source Model’s parameter λ, which is a weight given to the form-based
component versus the knowledge-based one.
The varying factors in this experiment are conditional presentation form and

speaker expertise.
A total of 47 participants took part in this experiment. They gave estimates to four

inference forms and their converses for six different contents (randomly selected out
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Table 8: Task example for Experiment 2 (Singmann et al., 2016)

Speaker Expertise Content

Non-Expert

A drugstore clerk says: If Anne eats a lot of parsley
then the level of iron in her blood will increase.
Anne eats a lot of parsley.
How likely is it that the level of iron in her
blood will increase?

Expert

A nutrition scientist says: If Anne eats a lot of parsley
then the level of iron in her blood will increase.
Anne eats a lot of parsley.
How likely is it that the level of iron in her
blood will increase?

of the pool of seven) and two presentation forms, adding up to a total of 96 answers
per participant.
Table 8 provides an example of the question form that participants received in

both speaker expertise types.
The contents of the conditionals used in this experiment can be found in Appendix

A.1.2.

Experiments 3 & 4

Experiments 3 and 4 are two independent replications of the same experiment. The
main goal of these experiments is to suppress the inference form endorsements, i.e.
to provoke the suppression effect, by providing additional information in the form of
disablers and alternatives.
The varying factors in this experiment are conditional presentation form, varying

amount of disablers and alternatives and inducing the suppression effect.
A total of 77 participants took part in Experiment 3 and 91 in Experiment 4. In

both experiments, participants were divided in three groups: ‘Baseline’, where they
responded to regular conditional tasks, ‘Disablers’ and ‘Alternatives’ where they
were provided with additional disablers or alternatives, respectively. They all gave
estimates to four inference forms and their converses for four different contents and
two presentation forms, making it a total of 64 answers per participant.

Table 9 provides an example of the question form that participants received in the
‘Disablers’ and ‘Alternatives’ groups.

The contents of the conditionals used in these experiments can be found in Appen-
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dices A.1.3 and A.1.4.

Table 9: Task example for Experiment 3 & 4 (Singmann et al., 2016)

Group Content

Disablers

If a person drinks a lot of coke then the person will gain weight.
A person drinks a lot of coke.
How likely is it that the person will gain weight?
Please note: A person only gains weight if:
- the metabolism of the person permits it,
- the person does not exercise as a compensation,
- the person does not only drink diet coke.

Alternatives

If a person drinks a lot of coke then the person will gain weight.
A person drinks a lot of coke.
How likely is it that the person will gain weight?
Please note: A person also gains weight if:
- the person eats a lot,
- the person has metabolic problems,
- the person hardly exercises.

3.2.2 Experiments 5–6

These two experiments are presented in Singmann and Klauer (2011). The goal
of their work was to determine whether responses under deductive and inductive
instructions can be explained by a single process or rather reflect two modes of
conditional reasoning.

The motivation behind the experiments was to establish double dissociation between
deductive and inductive instructions when validity and plausibility were pitted against
each other, simultaneously aiming to induce the validity and plausibility effects.

In order to test whether the validity and plausibility effects hold, Singmann and
Klauer (2011) examined the affirmation inferences (MP, AC) separately from the
denial ones (MT, DA). Only counterlogical conditionals are taken into consideration.
Under deductive instructions they expected that MP is endorsed more strongly than
AC and MT is endorsed more strongly than DA (validity effect). Under inductive
instructions, they expected that AC is endorsed more strongly than MP, and DA is
endorsed more strongly than MT (plausibility effect).
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When looking at the affirmation problems (MP, AC) they found that under de-
ductive instructions participants showed stronger endorsements for the valid but
implausible MP than the invalid but plausible AC. So, the validity effect holds.
However, for the denial problems (MT, DA), the validity effect did not seem to hold,
i.e. participants showed stronger endorsements for the invalid but plausible DA than
the valid but implausible MT.

Under inductive instructions, the plausibility effect takes place in both affirmation
and denial problems. Participants showed higher endorsements for the invalid but
plausible AC than for the valid but implausible MP and for the invalid but plausible
DA than for the valid but implausible MT.

In both experiments, some of the participants received deductive instructions and
were asked to assume the truth of the premises and disregard background knowledge
when judging the validity of the conclusion. The others received inductive instructions
and were encouraged to use background knowledge when judging the probability of
the conclusion. Additionally, it has been explicitly stated that the conditional rules
have to be perceived as unidirectional.

Experiment 5

In this experiment participants were provided with two prological conditionals (few
disablers and many alternatives). In order to pit validity and plausibility against each
other, the authors constructed counterlogical conditionals by reversing the antecedent
and consequent in the prological conditionals.

The varying factors in this experiment are prological vs. counterlogical conditionals
and deductive vs. inductive instructions.

A total of 40 participants took part in this experiment. They gave estimates to
four inference forms for four different contents, adding up to a total of 16 answers
per participant. Half of the participants (20) received deductive instructions and the
other half (20) inductive.

Table 10 provides an example of the question form that participants received under
deductive and inductive instructions.

The contents of the conditionals used in this experiment can be found in Appendix
A.1.5.
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Table 10: Task example for Experiment 5 & 6 (Singmann & Klauer, 2011)

Instructions Content

Deductive
If a campfire goes out, then water has been poured on it.
A campfire goes out.
How valid is the conclusion that water has been poured on it?

Inductive
If a campfire goes out, then water has been poured on it.
A campfire goes out.
How likely is it that water has been poured on it?

Experiment 6

The goal of this experiment is to replicate the results of the previous experiment, and
to rule out possible alternative explanations for the findings. This time, the contents
for the prological and counterlogical conditionals are different, and furthermore, they
also introduced neutral conditionals.

The varying factors in this experiment are prological vs. counterlogical vs. neutral
conditionals and deductive vs. inductive instructions.

A total of 55 participants took part in this experiment. They gave estimates to
four inference forms for nine different contents, adding up to a total of 36 answers per
participant. 27 of the participants received deductive instructions and 28 inductive.

Table 10 provides an example of the question form that participants received under
deductive and inductive instructions.

The contents of the conditionals used in this experiment can be found in Appendix
A.1.6.

3.2.3 Experiments 7–8

These two experiments are presented in Singmann et al. (2014). The goal of their
work was to present the results of an empirical test of normative standards in the new
paradigm and examine which of the following three: conditional probability P(Y|X),
conjunctive probability P(X∧Y) or probability of the material conditional P(¬X∨Y),
provides unique variance to predicting the probability of the conditional P(“If X then
Y”) .

The motivation behind the first experiment is to develop a novel probabilized
conditional task which provides more insight into individuals’ subjective beliefs
compared to tasks focusing on inference form endorsements. The participants’ answers
are then used to obtain the knowledge-based components of the Dual-Source Model
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when using the alternative approach. The second experiment, on the other hand,
presents a deductive task and is used for the form-based components of the Dual-
Source Model in the alternative approach.

Experiment 7

This is the probabilized conditional inference task where participants were presented
with highly-believable everyday conditionals and asked for various subjective proba-
bilities. In total there were 16 conditionals, each participant worked on four randomly
selected ones, and performed only one inference per conditional.
A total of 29 participants took part in this experiment. They gave estimates to 8

different probabilities for four different contents, making it a total of 32 answers per
participant.
In this experiment, the correlations between parameter values and subjective

probability estimates of the conditional and material conditional are examined.
Table 11 provides an example of the questions that participants had to answer for

one task.
It is important to emphasize that in this article the authors differentiate between

inference form endorsement and conditional probability and ask for both of them in
a different way, as shown in Table 11. The approach I am taking in this thesis does
not follow their assumptions, but rather follows the supposition that inference form
endorsements are expressed as conditional probability of the conclusion given the
minor premise, as it is most common in the Bayesian paradigm.

The contents of the conditionals used in this experiment can be found in Appendix
A.1.7.

Experiment 8

This is the deductive conditional inference task. Participants were presented with a
conditional with abstract content and then instructed to judge the logical validity of
the arguments.
A total of 29 participants took part in this experiment. They gave estimates to

four inference forms for two different contents, adding up to a total of 8 answers per
participant.
Table 12 provides an example of the question form that participants received.
The contents of the conditionals used in this experiment can be found in Appendix

A.1.8.
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Table 11: Task example for Experiment 7 (Singmann et al., 2014)

Probability Content

“If X then Y” If Greece leaves the Euro then Italy will too.
In your opinion, how probable is the above statement?

Minor Greece will leave the Euro.
Premise In your opinion, how probable is it that the above event occurs?

Inference Form

If Greece leaves the Euro then Italy will too.
Greece will leave the Euro.
Under these premises, how probable is that Italy will leave the
Euro, too?

Conditional How probable is that Italy will leave the Euro should Greece
leave the Euro?

Conjunctive
Greece will leave the Euro and simultaneously Italy will leave
the Euro.
In your opinion, how probable is it that the above event occurs?

Material Greece will NOT leave the Euro or Italy will leave the Euro.
Conditional In your opinion, how probable is it that the above event occurs?

Alternatives How probable is that Italy will leave the Euro should Greece
NOT leave the Euro?

Conclusion Italy will leave the Euro.
In your opinion, how probable is it that the above event occurs?

Table 12: Task example for Experiment 8 (Singmann et al., 2014)

Content
If the letter is a B then the number is a 7.
The letter is a B.
How valid is the conclusion that the number is a 7 from a logical perspective?
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4 Benchmark

This Chapter presents the benchmark I developed for this thesis. First, I give an
overview of the implemented models’ formalizations and the equations used for
data fitting. All of the models’ theoretical background was provided in Chapter 2.
Following is a description of the evaluation methods the benchmark uses in different
settings and how they were implemented. Finally, the chapter is concluded with a
brief overview of the benchmark program functionality.

The implementation can be found at https://gkigit.informatik.uni-freiburg
.de/todoroviks/conditional-reasoning-benchmark.

4.1 Implemented Models

All of the models presented in Chapter 2 are implemented in the benchmark. They
are fit to data by optimizing their endorsement equations, to have a minimal RMSE
(definition and equation in the following Section 4.2). The optimization is done with
Python’s scipy.optimize.minimize1 using the SLSQP method which allows for
constraints and bounds.

The first two theories are the Mental Model Theory and the Suppositional Theory.
The formalizations used in this benchmark are provided by Oberauer (2006). All three
MMT variants and the two Suppositional Theory ones are included. Originally, he
applied those models to aggregated data, but they are easily applicable to individual
data as well, as done in this benchmark.

Endorsement expressions can be easily derived from the MPTs provided by Oberauer
(2006), which were depicted in Chapter 2. In the following I will provide an example
of the derivations and then the final equations.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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For example, in the case of MMT, let’s focus on the following possible mental
representation:

X Y
¬X ¬Y
¬X Y
X ¬Y

Based on the MPT, this representation supports the acceptance of the MP and
MT inference forms. The probability with which this decision path can be taken is
r · f · a · (1− e). The parameters describe the probabilities of adding models to the
representation. r is the probability of adding the model X Y, f for the model ¬X
¬Y, a for ¬X Y, and finally, e for X ¬Y.

In order to derive endorsement expressions for each inference form separately, the
probabilities of all possible paths leading to accepting that inference form will be
summed up and simplified. Example 10 shows a detailed derivation of the expression
representing the endorsement of the Modus Ponens (MP) inference form. Similarly,
expressions for the other inference forms are derived. The complete derivations of
endorsement expressions for this and all following models formalized using MPTs can
be found in Appendix A.3.

Example 10. Deriving an expression representing endorsement of the Modus Ponens
(MP) inference form based on MMT.

E(MP ) =[r · f · a · (1− e)] + [r · f · (1− a) · (1− e)]+

[r · (1− f) · a · (1− e)] + [r · (1− f) · (1− a) · (1− e)]

=r · (1− e) · [f · a+ f · (1− a) + (1− f) · a+ (1− f) · (1− a)]

=r · (1− e) · [f · (a+ 1− a) + (1− f) · (a+ 1− a)]

=r · (1− e) · [f · 1 + (1− f) · 1]

=r · (1− e) · [f + 1− f ]

=r · (1− e) · 1

=r · (1− e)
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The final forms of the inference form endorsement expressions, according to MMT,
as used in the implementation, are:

MP: r · (1− e) DA: r · f · (1− a)

AC: r · (1− a) MT: r · f · (1− e)

By setting the parameter e to 0, the strictly deductive variant (MMT Deductive)
is obtained, leading to the following inference form endorsement expressions:

MP: r DA: r · f · (1− a)

AC: r · (1− a) MT: r · f

Finally, the last MMT variant is MMT with Directionality which uses the
following derived inference form endorsement expressions:

MP: r · (1− e) DA: r · f · (1− a)

AC: r · (1− a) · d MT: r · f · (1− e) · d

The new parameter d describes the probability of reversing the directionality.

I derived the endorsement expressions for the Suppositional Theory variants using
the same approach as for the MMT variants. For Suppositional Sequential the
following expressions are used:

MP: b DA: b · (c · s∗ · (1− i) + i)

AC: b · c MT: b · ((1− s) · (2 · c · i− c2 · i2) + s)

The parameter b describes the belief in the conditional X→Y, c is the probability
of the converse to be added (Y→X) and i, the inverse (¬X→ ¬Y). s is the probability
of the suppositional proof using X and the original conditional to succeed and s∗ for
the proof using Y and the converse.
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For Suppositional Exclusive, on the other hand, I derived the following endorse-
ment expressions:

MP: b DA: b ·m · i

AC: b ·m · c MT: b · (m · c · i · (2− c · i) + (1−m) · s)

The new parameter m describes the probability of System 1 being used. The rest
of the parameters are the same as in the Sequential variant, without the possibility
for a suppositional proof using Y and the converse.

Following are the three models from the Bayesian paradigm. First, there is the
Oaksford-Chater Probabilistic Model, followed by the Logistic Regression Model, and
finally, the extension of Oaksford-Chater – the Dual-Source Model.

The endorsement expressions that the Oaksford-Chater model uses are the ones
presented in Chapter 2:

MP: P(Y|X) = 1− ε DA: P(¬Y|¬X) =
1− b− a · ε

1− a

AC: P(X|Y) =
a(1− ε)

b
MT: P(¬X|¬Y) =

1− b− a · ε
1− b

The parameter a describes the probability of the antecedent, P(X), b is the proba-
bility of the consequent, P(Y) and ε is the probability of the exception, P(¬Y|X).

Additionally, based on the parameters’ definitions, I extended the model to represent
participants’ answers that are not only inference form endorsements. The other
subjective probabilities that participants in some of the experiments are asked for
are modeled by Oaksford-Chater in the following way:

Conjunctive Probability
P(X∧Y) = a · (1− ε)

Probability of Alternatives

P(Y|¬X) = b− a · (1− ε)
1− a

Probability of the Material Conditional
P(¬X∨Y) = 1− a · ε
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P(minor premise)
MP: P(X) = a DA: P(¬X) = 1− a

AC: P(Y) = b MT: P(¬Y) = 1− b
P(conclusion)

MP: P(Y) = b DA: P(¬Y) = 1− b

AC: P(X) = a MT: P(¬X) = 1− a

Logistic Regression uses the following endorsement expressions, as presented in
Chapter 2:

MP: P(Y|X) = 1

1 + e−(b0+b1)
DA: P(¬Y|¬X) = 1

1 + eb0

AC: P(X|Y) = 1

1 + e−(b∗0+b1)
MT: P(¬X|¬Y) = 1

1 + eb
∗
0

eb0 and eb∗0 are the intercepts of the logistic regression line when X is a predictor of
Y and Y is a predictor of X respectively and eb1 is the slope in both cases.

Finally, the Dual-Source Model is applied as explained in Chapter 2. En-
dorsement of reduced inference x with content C is represented with the following
expression:

Er(C, x) = ξ(C, x)

Then, endorsement of the full inference x with content C is represented as:

Ef (C, x) = λ{τ(x) + (1− τ(x)) · ξ(C, x)}+ (1− λ)ξ(C, x)

The parameters ξ(C, x) are the knowledge-based parameters for content C and
inference form x, τ(x) are the form-based parameters for inference form x and λ is a
weight given to the form-based parameter.
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The ξ(C, x) parameters are obtained by using Oaksford et al. (2000)’s equations,
as follows:

MP: ξ(C, MP) = 1− ε DA: ξ(C, DA) =
1− b− a · ε

1− a

AC: ξ(C, AC) =
a(1− ε)

b
MT: ξ(C, MT) =

1− b− a · ε
1− b

The parameters τ(x) and λ cannot be uniquely estimated, only their products
are obtained. When fitting, the largest product λ · τ(x) is set to be λ, and then by
dividing with it the τ(x) values are obtained, and the largest τ(x) is set to 1.

Table 13 shows the number of free parameters each model needs to model one task.
The DSM is not included since it is not able to simply model one singular task, but
rather models individuals directly. For the rest of the models, the number of free
parameters to model one individual depends on the type of experiment and to how
many tasks participants had to provide answers. That number is reported for each
model for each data set separately in the analysis (Chapter 6).

Table 13: Number of free parameters each model needs to fit one task

Model # Free Parameters
MMT 4

MMT Deductive 3
MMT with Directionality 5
Suppositional Sequential 5
Suppositional Exclusive 5

Oaksford-Chater 3
Logistic Regression 3

From all of these implemented models, only Oaksford-Chater is able to represent
probabilities other than the inference form endorsements. The formalizations based
on MPTs (the MMT and Suppositional variants) are specifically made to model
inference forms only. Due to the fact that logistic regression in general is used to
predict a dependent variable using one or more independent variables, the Logistic
Regression model is only applicable to the conditional inference task, i.e. it can
be used to model only inference form endorsements, as confirmed via personal com-
munication with Skovgaard-Olsen. The Dual-Source Model has a very attractive
theoretical assumption on how people reason by disentangling form and content.
However, a significant limitation is that it can only be fit to data that provides
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independent information for the knowledge-based and form-based components, as
confirmed via personal communication with Singmann. Unfortunately, the only such
data in the benchmark is from the experiments presented in Singmann et al. (2016),
making it difficult to fairly compare it to other models.

4.2 Evaluation Methods

The benchmark performs two different kinds of evaluation. Firstly, we are interested in
the models’ performance on the data. In order to assess that, three different goodness-
of-fit measures are calculated and compared. Furthermore, ε-MMT’s parameters
are statistically analyzed in order to determine whether the model can successfully
account for the manipulated properties and effects in the experiments and additionally
to provide insight into how humans reason with conditionals.

4.2.1 Goodness-of-Fit Measures

In order to be able to compare the performance of the different models, their goodness
of fit is determined through various measures. In this thesis, the following are used:
Root Mean Square Error (RMSE), the Adjusted Root Mean Square Error (RMSEadj)
and the Coefficient of Determination (R2). Their definitions are provided below.

In this thesis, the fitting of the models is done per individual, in contrast to aggregate
data fitting. Riesterer, Brand, and Ragni (2020) propose a model evaluation setting
focusing on the individual, i.e. determines the model’s ability to “cover” the response
of individual reasoners. They argue that if models are capable of accurately reflecting
cognitive processing, the individuals’ behavior should be captured with the model’s
parameterization. That said, the goodness-of-fit measures in this benchmark are
used for coverage analysis, in order to reveal whether the models manage to provide
parameters that can capture the differences between individuals.

Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a common measure of accuracy that considers
the differences between observed true values and values predicted by a model. The
optimization of the models in the benchmark is done by minimizing the RMSE for
every individual. A lower RMSE value indicates better predictions and therefore
better model performance.
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The RMSE measure is implemented as shown in Eq. 3, where N is the number of
data points, truei is the i-th true answer, predi is the i-th predicted answer.

RMSE =

√∑N
i=0(truei − predi)2

N
(3)

Adjusted Root Mean Square Error (RMSEadj)

Given that all of the models in this benchmark have different number of free pa-
rameters, the Adjusted Root Mean Square Error (RMSEadj) is also considered here.
In contrast to RMSE, RMSEadj also takes the model’s number of parameters into
account, and punishes models with a larger number of parameters. A lower RMSEadj

value indicates better predictions and therefore better model performance.
The RMSEadj measure is implemented as shown in Eq. 4, where N is the number

of data points, p is the number of parameters, truei is the i-th true answer, predi is
the i-th predicted answer.

RMSEadj =

√∑N
i=0(truei − predi)2

N − p
(4)

In some of the experiments the RMSEadj measure provides either ∞ or nan values
for a number of models. ∞ means that the model needs as many free parameters as
data points that it needs to fit (division by 0). nan means that it needs more free
parameters than provided data points (negative value under square root). Taking into
consideration that in most cases these models’ RMSE values are not competitive to
begin with, the RMSEadj measure confirms that the substantial amount of necessary
free parameters is absolutely not justified.

Coefficient of Determination (R2)

Used by Singmann et al. (2016) to determine the goodness-of-fit of the Dual-Source
Model, the Coefficient of Determination (R2) is part of this benchmark as well. The
data in the benchmark manipulates various reasoning properties and exploits effects,
often leading to large variance in the participants’ answers. It is valuable to find
out whether the models can successfully account for that variance. The statistic R2

provides the percentage of variance in the true values that is predictable by the model.
Depending on the definition, the range interval of R2 differs. Here, the interval is
[-∞, 1]. An R2 value of 1 means that the model can account for 100% of the variance,
an R2 value of 0 means that the model predictions are as accurate as using the mean
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of the observed values as a predictor. A value below 0 means that the predictions are
worse than just taking the mean of the data. A higher R2 value indicates a better
grasp of the data variance and therefore better model performance.

The R2 measure is implemented as shown in Eq. 5, where N is the number of data
points, truei is the i-th true answer, predi is the i-th predicted answer, true is the
average of the true answers.

R2 = 1−
∑N

i=0(truei − predi)2∑N
i=0(truei − true)2

(5)

Removal of Participants Unfortunately, in some cases participants provided the
same exact answer to every single question, which obviously means that there was
no variance to be accounted for in their data. In such a case, the denominator in
Eq. 5 evaluates to 0, making the division impossible, and the final R2 value, nan.
In order to properly analyze the models’ abilities to account for variance in the
participants’ answers, with complete data, one participant (Participant ID: U18U)
has been completely removed from Singmann et al. (2014), Exp. 1 & 2 (in this thesis
Exp. 7 & 8).

4.2.2 Parameter Analysis Methods

Two kinds of statistical analysis are performed: significance of parameter value changes
and correlation between parameters and various perceived factor values. In both
cases p-values are calculated, significant values are p < .05.

Parameter Value Changes Analysis

By analyzing the statistical significance of the differences in the parameter values for
different tasks, the ability of the new model ε-MMT to account for certain effects is
shown.

Based on how the different tasks in the experiment are distributed among partici-
pants, the parameter value analysis is done in two ways:

1. Within participants

2. Between participants

When analyzing the parameter values within participants, the Wilcoxon signed-
rank test (Wilcoxon, 1945) is used, as implemented in Python’s scipy.stats library2.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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Since the parameter values are paired, the reported difference is the mean of the
differences between each pair.
When analyzing the parameter values between participants, the Mann-Whitney

U test (Mann & Whitney, 1947) is used, as implemented in Python’s scipy.stats
library3. The two sets of parameter values are independent and of different sizes. The
reported difference is obtained by bootstrapping – 10 000 iterations of picking as many
random samples from the larger of the two sets as the smaller set has, calculating
their mean difference, and finally reporting the mean of all obtained differences.

Correlation Analysis

Taking into consideration the definition of ε-MMT’s parameters provided in the follow-
ing Chapter, the correlation between their values and various subjective probability
estimates given by participants can be used to get a better insight into how humans
interpret conditionals.
When calculating correlation, the Kendall rank correlation coefficient (Kendall,

1938) is used, as implemented in Python’s scipy.stats library4.

4.3 Benchmark Program Functionality

The Benchmark Program is an interactive program that allows the user to fit models
on different data and analyze the results, specifically ε-MMT’s parameters behavior.
The program provides the following options:
Data Information: This part of the program can give the user information about

the data: the names of the datasets, reasoning properties, number of free parameters
each model needs to fit an individual in a specific experiment, number of participants
and the experiment’s varying factors.
Fit: The user can choose the model(s) they would like to fit on all of the data or

one specific dataset of their own choosing. When a model is done fitting a dataset,
the corresponding mean RMSE, RMSEadj and R2 are then printed on the screen.
Plot: The program can produce different plots. The user can choose between

plotting RMSE/RMSEadj/R2 values overall, or per dataset. Additionally, it can
provide plots of the parameter values for different varying factors in experiments.
Goodness of Fit: By running this part of the program, a .CSV file is created

with every model’s mean RMSE, RMSEadj and R2 for every data set that it can fit.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
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Analysis: The user can choose the experiment they’d like to focus on, whether they
would like to perform parameter value analysis or correlation analysis (if applicable).
For the former, the Wilcoxon signed-rank test is done for within participant analysis,
and, the Mann-Whitney U test for between participant analysis. For the latter, the
Kendall rank correlation coefficient is calculated.
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5 ε-MMT

ε-semantics is described by Pearl (1991) as a ‘formal framework for belief revision’,
where belief statements are interpreted as statements of high probability and belief
revision shapes current beliefs on newly available evidence.
ε-semantics differentiates between two types of sentences:

1. Sentences describing truths and general tendencies (e.g., ‘Birds fly.’)

2. Sentences describing observations specific to a given situation (e.g., ‘All blocks
on this table are green.’)

This distinction is highly relevant because it is reflected in the natural language
when using the word ‘If’. For example, saying ‘If it is a bird then it flies’ is legitimate,
whereas ‘If this block were on this table, it would be green’ is not.

The following is an important definition provided by Pearl (1991, pg. 5) that lays
basis for the probabilistic aspect of the new model:

Let L be the language of propositional formulas, and let a truth-valuation
for L be a function t, that maps the sentences in L to the set {1, 0}, (1 for
‘true’, 0 for ‘false’). To define a probability assignment over the sentences
in L, we regard each truth valuation t as a world w and define P(w) such
that

∑
w P(w) = 1. This assigns a probability measure to each sentence l

of L.

The development of ε-MMT is inspired by the shift to a new paradigm of reasoning
– making inferences depends on our subjective degrees of belief and there is a certain
degree of uncertainty in the premises, rather than assuming that inferences are simply
either true or false. Simultaneously, uncertainty also varies from person to person,
based on their individual experiences and background knowledge that could lead to
potential biases. Therefore ε-MMT will be used to model people individually, and
with that offer a better insight in certain patterns or differences between individuals.

Schroyens et al.’s (2001) revision of the MMT is not a theory of deductive reasoning
because it allows for the X ¬Y model to be retrieved from long-term memory. Since
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the interest is to model realistic data where individuals integrate their background
knowledge when reasoning, similarly to Schroyens et al. (2001)’s revision, the ε-MMT
model takes the mental model representation of all the conditional’s propositions’
truth state combinations, or as they will be called from now on – possible worlds.
Finally, ε-MMT applies Pearl’s (1991) definition to them, i.e. defines a probability
distribution over all worlds.
The concept of possible worlds has already been explored in philosophy by Lewis

(1973) and Stalnaker (1968) for the counterfactual conditional (“If X had happened,
then Y would have happened”). Based on their account, the conditional does not
depend on the way the world is, but rather on possible ways the world might be, or, in
philosophical terms, it is not extensional, but intensional (Oaksford & Chater, 2007).
Stalnaker’s (1968) idea of possible worlds and closeness between them was discussed in
Section 1.3 when introducing the history of characterization of conditionals. ε-MMT’s
approach does not explicitly consider closeness between worlds. However, it does
use the notion of representing a conditional with possible worlds and parameterizes
it. Thus, a variety of subjective beliefs considering the conditional’s world can be
expressed in order to gain more insight into how humans interpret conditionals and
ultimately reason.

Given a premise containing two propositions, X and Y, all possible worlds described
by the premise along with the corresponding probability values are shown in Table
14.

Table 14: The possible worlds described by a premise containing two prepositions,
X and Y, the probability distribution P and probability values pi,
i ∈ (1, 2, 3, 4).

X Y P

0 0 p1

0 1 p2

1 0 p3

1 1 p4

For example, given a conditional “If it is a bird, then it flies”, the probability value
assigned to the world where it is a bird, and it is not flying (X = 1, Y = 0) is p3.
This specific world is generally not considered in theories that adhere to the material
implication interpretation of conditionals, like the original version of the Mental
Model Theory (Johnson-Laird & Byrne, 1991) itself.
Previous accounts in the Bayesian paradigm (Chan & Chua, 1994; Stevenson &
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Over, 2001; Liu, Lo, & Wu, 1996; Oaksford et al., 2000) assume that an individual’s
endorsement of an inference form can be expressed as a conditional probability of the
conclusion given the minor premise. ε-MMT follows the same approach.

P(β|α) =
P(α ∧ β)

P(α)
(6)

Equation 6 shows the definition of conditional probability, from which Bayes’
theorem may be derived. Following Eq. 6, the four equations shown below are
obtained. They describe the endorsement of the four inference forms through the
probability distribution P of the conditional’s worlds (Table 14):

MP: P(Y|X) = p4
p3 + p4

DA: P(¬Y|¬X) = p1
p1 + p2

AC: P(X|Y) = p4
p4 + p2

MT: P(¬X|¬Y) = p1
p1 + p3

Hadjichristidis et al. (2001) conducted a study whose results suggest that when
reasoning, individuals construct an imaginary world where the antecedent of the
conditional holds and then consider the likelihood of the consequent also holding in
the same world. Even though they are analyzing the interpretation of P(“If X then
Y”) through conditional probability, their conclusions are still relevant here. They
point out the need for the world X ¬Y to be (at least implicitly) considered due to
the fact that it is necessary to formulate the conditional probability. Here, that is
applicable specifically to the MP and MT inference forms.

Besides inference form endorsements, participants of some experiments have been
asked for different subjective probabilities which ε-MMT is able to model with the
following equations:

Conjunctive Probability
P(X∧Y) = p4

Probability of Alternatives
P(Y|¬X) = p2

p1 + p2

Probability of the Material Conditional
P(¬X∨Y) = p1 + p2 + p4
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P(minor premise)
MP: P(X) = p3 + p4 DA: P(¬X) = p1 + p2

AC: P(Y) = p4 + p2 MT: P(¬Y) = p1 + p3

P(conclusion)
MP: P(Y) = p2 + p4 DA: P(¬Y) = p1 + p3

AC: P(X) = p4 + p3 MT: P(¬X) = p1 + p2

With these equations participants can be modeled individually, by fitting the
parameters p1, p2, p3 and p4 to their answers, i.e. obtaining their subjective probability
distribution that describes the conditional’s world, according to the individual’s beliefs.
The parameters are bound by their sum,

∑
i pi = 1, meaning that the number of

free parameters for modeling one task with this model is three. The total number of
parameters to model one individual therefore depends on the number of tasks that
they have to complete.

5.1 Related Work

Pearl (1988) explored the use of probability theory as a semantic basis for conditional
reasoning using ε-semantics. He is following the interpretation of the probability
of a conditional rule, P(“If X then Y”), to be equal to the conditional probability
P(C|A), when being infinitesimally distant from 0 or from 1. Similarly, he applies the
probability distribution definition stated above to possible worlds. However, his focus
is on whether a conclusion is plausible enough to be accepted. For example, given a
conditional “If X then Y”, a conclusion would be accepted if P(Y|X)≥ 1 - ε, where ε
is an arbitrarily small value, short of being zero. As Pearl (1988) points out, extreme
probabilities, i.e. probabilities that are infinitesimally close to 0 and 1 are rare in the
real world. The proposed model ε-MMT differs from Pearl’s (1988) approach as it
is not concerned with extreme probabilities nor with acceptance of conclusions, but
their likelihood.
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6 Analysis

This Chapter presents the benchmark’s analysis results.
First, we will evaluate the models’ fit on all data. A point of interest is to also

look at the theories that had multiple variants implemented and make a comparison
between them.
Afterwards, the focus is on ε-MMT. First it is established how ε-MMT competes

with other models in the benchmark for each experiment separately. Then, an analysis
is performed on how ε-MMT’s parameters are influenced by manipulations of different
reasoning properties and effects, along with the psychological interpretation of the
value changes.

6.1 Benchmark Model Performance

In order to fairly compare the general models’ performances across all datasets, only
a reduced set of seven experiments is considered. The eliminated one is Experiment 7
(the probabilized conditional task presented in Singmann et al. (2014)) because it
asks for probabilities that only ε-MMT and the Oaksford-Chater Probabilistic Model
can represent with their parameters. Additionally, the Dual-Source Model is not
included in this comparison, due to the fact that it is only applied to experiments 1 –
4, whose fitting results are discussed in their respective analysis sections.

The results are presented in Table 15. The models are ordered by their RMSE
values, from best to worst. Overall, the best performing models are ε-MMT and
Oaksford-Chater with an equal RMSE of 0.054 and RMSEadj of 0.108. Oaksford-
Chater’s R2 is only slightly better, 0.925, compared to ε-MMT’s 0.924. However,
given that both values are considerably high, the minor difference is negligible –
both models account for more than an impressive 92% of data variance, on average.
Both of the models need only three free parameters to model one task. The Logistic
Regression Model is a close competitor to the two models, taking into consideration
that it also needs only three parameters to model one task, and its RMSE value is
only slightly worse, 0.073.
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Out of the three MMT variants, the MMT with Directionality has the best perfor-
mance with an RMSE of 0.091 and R2 of 0.834. The deductive variant has the worst
performance not only within these three models, but overall, with an RMSE value of
0.151 which is almost three times higher than the one of ε-MMT and Oaksford-Chater,
and quite a low R2 of 0.600.

When looking at the variants of the Suppositional Theory models, the Sequential
variant performs a lot better than the Exclusive one, with an RMSE of 0.082 and
R2 of 0.819 compared to 0.124 and 0.694. However, the Sequential model needs 5
parameters to model one task, which is too many compared to the leading models
ε-MMT and Oaksford-Chater that need only 3.

Table 15: Fitting results for each model on all datasets (fair comparison). ‘Free’
- Number of free parameters needed to model one task. The missing
RMSEadj values mean that the model gets either nan or ∞ values for
some datasets.

Model RMSE RMSEadj R2 Free
ε-MMT 0.054 0.108 0.924 3

Oaksford-Chater 0.054 0.108 0.925 3
Logistic Regression 0.073 0.146 0.800 3

Suppositional Sequential 0.082 – 0.819 5
MMT with Directionality 0.091 – 0.834 5

MMT 0.116 – 0.754 4
Suppositional Exclusive 0.124 – 0.694 5

MMT Deductive 0.151 0.301 0.600 3

6.2 Experiments Analysis

The main goal in the following is to analyze ε-MMT’s abilities to account for the various
properties and effects that are manipulated in the chosen experiments and present
how they affect its parameters while providing an explanation from a psychological
point of view.

Where applicable, if other models have been applied to this data and their results
have been published elsewhere, they will also be reported here.

6.2.1 Experiments 1–4

These are the experiments presented in Singmann et al. (2016) and Section 3.2.1.
Their goal was to show the importance of background knowledge as well as the
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conditional rule’s form when reasoning.
Opposed to the fitting approach used in this benchmark, Singmann et al. (2016)

used weighted least-squares in order to estimate the Dual-Source Model’s parameters,
where the weight is 1 - |s - 1|, s being the sum of the inference form endorsement and
its converse in a [0, 1] interval. They combined the two responses into one estimate:
E(inf)+(1−E(conv(inf)))

2 . Given the parameter optimization approach in my benchmark,
combining the responses is not applicable. Ultimately, we are interested in the exact
individual’s answers and the models’ capabilities to capture them, therefore this
benchmark takes only the original inference form endorsements into consideration.
Singmann et al. (2016) also provide a goodness-of-fit meta-analysis where they

compare the performance of the Dual-Source Model to other probabilistic models,
including Oaksford et al.’s (2000) model, for which they adopted a different approach
than the one used in this thesis. Moreover, they excluded some conditions from their
experiments due to the fact that it has not been entirely clear how to model certain
manipulations with the competitor models. The modifications for their meta-analysis
diverge from the approach taken in this benchmark, so their results will not be
reported or discussed any further as they are not relevant.

Experiment 1

Models Fits All of the models are able to fit this experiment’s data. The goodness
of fit measures values for each model are presented in Table 16.
In Table 16, the number of free parameters to model one individual is reported.

ε-MMT needs three free parameters to model one task (4 data points per task). Given
12 tasks, the total number of free parameters to model an individual is 3 × 12 = 36.
The DSM on the other hand fits 12 ξ(C, x) parameters and 2 × 4 λτ parameters →
20 parameters in total per individual.

The best performing models are ε-MMT and the Oaksford-Chater Probabilistic
Model with an RMSE of 0.035, an RMSEadj of 0.071, and a significantly high R2

value of 0.967 (ε-MMT) and 0.966 (Oaksford-Chater). Both models need the same
amount of free parameters, which is three per task, or, 36 per individual.

Using the different fitting approach, Singmann et al. (2016) reported a R2 value of
0.900, compared to the value of 0.795 obtained here, but no other measure values are
provided. The DSM needs only 20 parameters, which is the least out of all models.
Howbeit, its performance is not on a level with the two best-performing models,
as shown by a RMSEadj value of 0.127, compared to 0.071 for both ε-MMT and
Oaksford-Chater.
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Table 16: Fitting results for each model on experiment 1. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.035 0.071 0.967 36

Oaksford-Chater 0.035 0.071 0.966 36
Logistic Regression 0.083 0.166 0.769 36
Dual-Source Model 0.097 0.127 0.795 20

MMT 0.084 ∞ 0.853 48
MMT Deductive 0.146 0.291 0.586 36

MMT with Directionality 0.072 nan 0.889 60
Suppositional Sequential 0.107 nan 0.770 60
Suppositional Exclusive 0.138 nan 0.625 60

Conditional Presentation Form In this experiment the conditional presentation
form varies between reduced inference, conditional and biconditional. It is expected
that when individuals are presented with a conditional or a biconditional their
confidence in the rule will increase, compared to a reduced inference. That leads to an
assumption that the value of the p4 parameter will be higher in the conditional and
biconditional cases. In order to determine whether the differences between parameter
values are significant, a Wilcoxon signed-rank test was performed. Table 17 presents
the results of p4’s value changes analysis. When comparing reduced inference to
conditional, a significant increase of p4 is present in the ‘Many/Few’ and ‘Many/Many’
tasks (p < .001 for both). On the other hand, when comparing reduced inference
to biconditional, there is also a significant increase of p4 in the ‘Few/Many’ task (p
< .001) along with the ‘Many/Few’ (p = .001) and ‘Many/Many’ (p = .004) tasks.
However, no significant change is encountered in the p4 values when comparing the
conditional and biconditional cases.

Singmann et al. (2016) report a significant (p < .001) effect on DSM’s form-
parameters τ(x) when contrasting conditional and biconditional inferences.

Varying Amount of Disablers and Alternatives When presented with a reduced
inference individuals rely more on their background knowledge. Therefore, that
is the only conditional presentation form taken into consideration here. Given a
conditional “If X then Y”, the p2 parameter describes the probability of the world
¬X Y, which is interpreted as the impact of alternatives. On the other hand, p3
describes the probability of the world X ¬Y, which is interpreted as the impact of
disablers. Taking that into account, an increase in the amount of alternatives would
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Table 17: Experiment 1, Conditional Presentation Form: Mean percentages of the
individuals’ values for p4. Means of the differences between individuals’
values for p4. (‘D’ - Disablers, ’A’ - Alternatives, ‘F’ - Few, ‘M’ - Many,
‘Form’ - Conditional Presentation Form, ‘Red’ - Reduced Inference, ‘Cnd’
- Conditional, ‘Bcnd’ - Biconditional, ‘pi’ - Parameter)

D/A Form pi Mean

F/F
Red

p4

51.39
Cnd 60.01
Bcnd 51.53

F/M
Red

p4

30.28
Cnd 42.61
Bcnd 52.30

M/F
Red

p4

20.22
Cnd 52.70
Bcnd 42.82

M/M
Red

p4

29.69
Cnd 45.72
Bcnd 47.38

(a) Mean values of p4.

D/A Form 1 Form 2 pi Mean ∆ p-value

F/F
Red Cnd

p4

-8.61 .075
Red Bcnd -0.14 .891
Cnd Bcnd 8.47 .060

F/M
Red Cnd

p4

-12.33 .117
Red Bcnd -22.03 < .001
Cnd Bcnd -9.69 .327

M/F
Red Cnd

p4

-32.47 < .001
Red Bcnd -22.60 .001
Cnd Bcnd 9.87 .117

M/M
Red Cnd

p4

-16.03 < .001
Red Bcnd -17.69 .004
Cnd Bcnd -1.66 .570

(b) Means of the differences between values of p4. Significant
p-values are marked in bold.

lead to an increase of p2’s value and similarly an increase in the amount of disablers
would lead to an increase of p3’s value. Therefore, it is expected that in the case of
‘Many’ alternatives/disablers the values of p2/p3 would be larger in comparison to
‘Few’.

Firstly, it should be noted that the task with ‘Many’ disablers and ‘Few’ alternatives,
whose content is “If a girl has sexual intercourse then she will be pregnant” can be
thought of as slightly controversial. There are some discrepancies and unexpected
results in the analysis when looking at this specific task only.

In order to determine whether the differences between parameter values are signifi-
cant, a Wilcoxon signed-rank test was performed. The results can be found in Table
18. It is immediately noticeable that all of the expected parameter value changes are
present and statistically significant.

Previous Work Todorovikj, Friemann, and Ragni (2019) took the first step towards
establishing this new cognitive model for reasoning with conditionals, ε-MMT. The
goal was to show that this model can account for the effect of various amounts of
disablers and alternatives, and for the conditional presentation form effect. That

55



Table 18: Experiment 1, Varying Amounts of Disablers and Alternatives: Mean
percentages of the individuals’ values for p2 and p3 in the reduced inference
case. Means of the differences between individuals’ values for p2 and p3.
(‘D’ - Disablers, ‘A’ - Alternatives, ‘F’ - Few, ‘M’ - Many, pi - Parameter)

D/A pi Mean

F/F p2 5.10
p3 3.42

F/M p2 15.41
p3 4.11

M/F p2 0.50
p3 46.70

M/M p2 19.24
p3 18.15

(a) Mean values of p2 and p3.

D/A 1 D/A 2 pi Mean ∆ p-value

F/F F/M p2 -10.31 .001
p3 -0.69 .012

F/F M/F p2 4.60 < .001
p3 -43.28 < .001

F/F M/M p2 -14.14 < .001
p3 -14.74 < .001

F/M M/F p2 14.91 < .001
p3 -42.59 < .001

F/M M/M p2 -3.83 .100
p3 -14.05 < .001

M/F M/M p2 -18.74 < .001
p3 28.55 < .001

(b) Means of the differences between values of p2
and p3. Significant p-values are marked in
bold.

was done by modeling this exact experiment. However, the fitting of the model was
done per task. Here, the focus is on individual fitting, i.e. fitting on all the tasks
that an individual has answered at once. Therefore, this experiment is taken into
consideration once again. Either way, the conclusions made based on the analysis
results do not differ.

Experiment 2

Models Fits All of the models are able to fit this experiment’s data. The goodness
of fit measures values for each model are presented in Table 19.
In Table 19, the number of free parameters to model one individual is reported.

ε-MMT needs three free parameters to model one task (4 data points per task). Given
12 tasks, the total number of free parameters to model an individual is 3 × 12 = 36.
The DSM on the other hand fits 18 ξ(C, x) parameters and 2 × 4 λτ parameters →
26 parameters in total per individual.

The best performing models are ε-MMT and the Oaksford-Chater Probabilistic
Model with an RMSE of 0.050 and 0.049 respectively, an RMSEadj of 0.101 and 0.098
respectively, and high R2 values of 0.928 and 0.930 respectively. Both models need
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the same amount of free parameters, which is three per task, or, 36 per individual.
Using a different fitting approach, Singmann et al. (2016) reported a R2 value of

0.820, compared to the value of 0.726 obtained here, but, again, no other measure
values are provided. The DSM needs 26 parameters, which is the least out of all
models. Even so, its performance is not as good as the two best-performing models,
based on its RMSEadj value of 0.155 (compared to 0.101 and 0.098 for ε-MMT and
Oaksford-Chater).

Table 19: Fitting results for each model on experiment 2. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.050 0.101 0.928 36

Oaksford-Chater 0.049 0.098 0.930 36
Logistic Regression 0.057 0.113 0.908 36
Dual-Source Model 0.105 0.155 0.726 26

MMT 0.107 ∞ 0.729 48
MMT Deductive 0.125 0.251 0.638 36

MMT with Directionality 0.091 nan 0.804 60
Suppositional Sequential 0.079 nan 0.839 60
Suppositional Exclusive 0.109 nan 0.724 60

Conditional Presentation Form In this experiment the conditional presentation
form varies between reduced inference and conditional. It is expected that when
individuals are presented with a reduced inference they will rely more on their
background knowledge and think of scenarios that are alternative to the one described
by a rule, compared to when they are presented with a conditional. Therefore, the
hypothesis is that there will be an increase in the value of p4 in the conditional case.

In order to determine whether the differences between parameter values are signifi-
cant, a Wilcoxon signed-rank test was performed. The results in Table 20 show that
the increase of the p4 parameter, in both speaker expertise cases, is significant (p <
.001), which confirms the hypothesis.

Speaker Expertise Stevenson and Over (2001) have shown that individuals tend to
perceive a conclusion’s likelihood as greater when it has been stated that a major or a
minor premise has been uttered by an expert, in contrast to a non-expert. Singmann
et al. (2016) only do the speaker expertise manipulation on the major premise, i.e.
the conditional rule. However, they report that they could not find the effect on all
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Table 20: Experiment 2, Conditional Presentation Form: Mean percentages of the
individuals’ values for p4. Means of the differences between individuals’
values for p4. (‘Speak’ - Speaker Expertise, ‘Non’ - Non-expert, ‘Exp’ - Ex-
pert, ‘Form’ - Conditional Presentation Form, ‘Red’ - Reduced Inference,
‘Cnd’ - Conditional, ‘pi’ - Parameter)

Speak Form pi Mean

Non Red
p4

31.49
Cnd 41.18

Exp Red
p4

31.20
Cnd 42.11

(a) Mean values of p4.

Speak Form 1 Form 2 pi Mean ∆ p-value
Non Red Cnd p4 -9.69 < .001
Exp Red Cnd p4 -10.91 < .001

(b) Means of the differences between values of p4. Significant
p-values are marked in bold.

inference forms. In general, here, it is expected that the belief in the X Y world will
become stronger when the rule has been uttered by an expert, meaning an increase
in the p4 parameter in the ‘Expert’ case.

Table 21: Experiment 2, Speaker Expertise: Mean percentages of the individuals’
values for p3 and p4 in the conditional case. Means of the differences
between individuals’ values for p3 and p4. (‘Speak’ - Speaker Expertise,
‘Non’ - Non-expert, ‘Exp’ - Expert, pi - Parameter)

Speak pi Mean

Non p3 11.40
p4 41.18

Exp p3 9.04
p4 42.11

(a) Mean values of p3 and p4.

Speak 1 Speak 2 pi Mean ∆ p-value

Non Exp p3 2.36 .004
p4 -0.93 .628

(b) Means of the differences between values of p3 and
p4. Significant p-values are marked in bold.

In order to determine whether the differences between parameter values are signifi-
cant, a Wilcoxon signed-rank test was performed. There is a very small increase in
the p4 parameter by only 0.04, however it is not statistically significant (p = .628).
On the other hand, as the results in Table 21 show, a significant decrease in the p3
parameter is present (p = .004).

Singmann et al. (2016) report a significant (p = .010) effect on DSM’s weight
parameter λ, more specifically, its mean value is higher in the ‘Expert’ case, meaning
that more weight is given to the form-based component, compared to the knowledge-
based one.
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Experiments 3 & 4

Models Fits All of the models are able to fit these experiments’ data. The goodness
of fit measures values for each model are presented in Table 22 (Exp. 3) and 23 (Exp.
4).

In Table 22 and 23, the number of free parameters to model one individual is
reported. ε-MMT needs three free parameters to model one task (4 data points per
task). Given eight tasks, the total number of free parameters to model an individual
is 3 × 8 = 24. The DSM on the other hand fits 12 ξ(C, x) parameters and 4 λτ
parameters → 16 parameters in total per individual.
The best performing models are ε-MMT and the Oaksford-Chater Probabilistic

Model with an RMSE of 0.052 (Exp. 3) and 0.051 (Exp. 4), an RMSEadj of 0.103
(Exp. 3) and 0.102 (Exp. 4), and high R2 values of 0.943 (Exp. 3) and 0.947 (Exp.
4). Both models need the same amount of free parameters, which is three per task,
or, 24 per individual.

Since the pattern of the results between the two experiments was not distinguishable,
Singmann et al. (2016) did not provide separate analysis, but combined the two in
one. Using a different fitting approach, they reported a combined R2 value of 0.890,
compared to a combined value of 0.663 obtained in this benchmark – 0.670 for exp.
3 and 0.657 for exp. 4. Again, no other measure values are provided. To make the
comparison complete, the combined R2 for each ε-MMT and Oaksford-Chater is 0.945.
The DSM needs 16 parameters, which is the least out of all models. However, its
performance is not as good as the two best-performing models, based on its RMSEadj

value of 0.191 for Exp. 3, compared to 0.103 for ε-MMT and Oaksford-Chater), and
0.200 for Exp. 4, compared to 0.102 for ε-MMT and Oaksford-Chater.

Table 22: Fitting results for each model on experiment 3. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.052 0.103 0.943 24

Oaksford-Chater 0.052 0.103 0.943 24
Logistic Regression 0.070 0.141 0.816 24
Dual-Source Model 0.135 0.191 0.670 16

MMT 0.099 ∞ 0.825 32
MMT Deductive 0.164 0.328 0.566 24

MMT with Directionality 0.084 nan 0.871 40
Suppositional Sequential 0.119 nan 0.755 40
Suppositional Exclusive 0.152 nan 0.616 40
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Table 23: Fitting results for each model on experiment 4. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.051 0.102 0.947 24

Oaksford-Chater 0.051 0.102 0.947 24
Logistic Regression 0.068 0.136 0.896 24
Dual-Source Model 0.142 0.200 0.657 16

MMT 0.109 ∞ 0.799 32
MMT Deductive 0.161 0.321 0.579 24

MMT with Directionality 0.094 nan 0.845 40
Suppositional Sequential 0.148 nan 0.638 40
Suppositional Exclusive 0.147 nan 0.637 40

Conditional Presentation Form The participants of these experiments were divided
in three groups: ‘Baseline’, ‘Disablers’ and ‘Alternatives’, where the last two were
provided with additional information in the form of disablers and alternatives, re-
spectively, in order to provoke the Suppression Effect. There is no expected impact
of the conditional presentation form in those two groups, therefore in the following
only the ‘Baseline’ group will be taken into consideration.

In these experiments the conditional presentation form varies between reduced
inference and conditional. The assumption is that when individuals are presented
with a reduced inference they use their background knowledge more and will find
alternative scenarios to the one described by a rule easier than when they are presented
with the conditional. That leads to a hypothesis stating that the p4 value should
increase in the conditional case.

In order to determine whether the differences between parameter values are signifi-
cant, a Wilcoxon signed-rank test was performed. The results for both experiments
can be found in Table 24 and it can be easily seen that they confirm the findings
in the analysis of Experiment 1. First, we have the ‘Few/Few’ task, which again
lacks significant changes. Furthermore, in both experiments the ‘Many/Few’ and
‘Many/Many’ tasks have a significant increase in the conditional case (exp. 3: p =
.002 and p = .034; exp.4: p = .001, p = .016). Experiment 3 also repeats the lack
of significance in the parameter change for the ‘Few/Many’ task as it was the case
in Experiment 1, however in Experiment 4 a significant increase (p = .028) can be
observed.
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Table 24: Experiment 3 & 4, Conditional Presentation Form: Mean percentages
of the individuals’ values for p4 in the ‘Baseline’ group. Means of the
differences between individuals’ values for p4. (‘D’ - Disablers, ’A’ -
Alternatives, ‘F’ - Few, ‘M’ - Many, ‘Form’ - Conditional Presentation
Form, ‘Red’ - Reduced Inference, ‘Cnd’ - Conditional, ‘pi’ - Parameter)

D/A Form pi Mean

F/F Red
p4

55.50
Cnd 54.23

F/M Red
p4

51.87
Cnd 48.31

M/F Red
p4

18.86
Cnd 40.03

M/M Red
p4

27.54
Cnd 39.06

(a) Exp. 3: Mean values of p4.

D/A Form 1 Form 2 pi Mean ∆ p-value
F/F Red Cnd p4 1.27 .770
F/M Red Cnd p4 3.56 .469
M/F Red Cnd p4 -21.17 .002
M/M Red Cnd p4 -11.53 .034

(b) Exp. 3: Means of the differences between values of p4.
Significant p-values are marked in bold.

D/A Form pi Mean

F/F Red
p4

57.85
Cnd 53.81

F/M Red
p4

33.75
Cnd 46.74

M/F Red
p4

18.45
Cnd 49.16

M/M Red
p4

37.72
Cnd 47.88

(c) Exp. 4: Mean values of p4.

D/A Form 1 Form 2 pi Mean ∆ p-value
F/F Red Cnd p4 4.04 .482
F/M Red Cnd p4 -12.99 .028
M/F Red Cnd p4 -30.71 .001
M/M Red Cnd p4 -10.16 .016

(d) Exp. 4: Means of the differences between values of p4.
Significant p-values are marked in bold.
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Varying Amount of Disablers and Alternatives In this part of the analysis all three
groups of participants (‘Baseline’, ‘Disablers’ and ‘Alternatives’) will be taken into
consideration. The idea behind including all of them is to examine whether providing
additional information overpowers the influence of the knowledge that individuals
already possess, i.e. whether the expected parameter changes take place in all three
groups.

As in Experiment 1, the only conditional presentation form taken into consideration
is the reduced inference. Given a conditional “If X then Y” the probability of the world
¬X Y (alternatives) is described by p2. The probability of the world X ¬Y (disablers)
is described by p3. It is expected that when the amount of alternatives increases, so
will the value of p2, and similarly, when the amount of disablers increases, so will the
value of p3. Therefore the values of p2/p3 in the case of ‘Many’ alternatives/disablers
should be larger in comparison to ‘Few’.

A reminder that the task with ‘Many’ disablers and ‘Few’ alternatives, whose
content is “If a girl has sexual intercourse then she will be pregnant”, can be thought
of as slightly controversial, which leads to some discrepancies and unexpected results
in the analysis related to this task.

In order to determine whether the differences between parameter values are sig-
nificant, a Wilcoxon signed-rank test was performed. For the ‘Baseline’ groups of
both experiments, the results can be found in Table 25. With the exception of the
unexpected lack of an increase in p2’s value when comparing the task ‘Few/Few’
with ‘Few/Many’, the rest of the results in both experiments coincide with what
was concluded in Experiment 1 – the expected parameter changes are statistically
significant. The results of the ‘Disablers’ groups of both experiments are presented
in Table 26. All of the expected parameter changes can be observed as statistically
significant. Finally, the results of the ‘Alternatives’ groups of both experiments are
presented in Table 27. In Experiment 3, all of the expected parameter changes are
present and statistically significant. In Experiment 4, on the other hand, a significant
increase of p2 when comparing ‘Few/Few’ and ‘Few/Many’ is once again lacking.
A special point of interest is the comparison between ‘Few/Few’ and ‘Many/Many’
where a significant increase in both parameters is expected, however one is lacking
for the disablers parameter, p2. The rest of the expected parameter changes, though,
still do take place and are significant.
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Table 25: Experiment 3 & 4, Varying Amounts of Disablers and Alternatives: Mean
percentages of the individuals’ values for p2 and p3 in the reduced inference
case in the ‘Baseline’ group. Means of the differences between individuals’
values for p2 and p3. (‘D’ - Disablers, ‘A’ - Alternatives, ‘F’ - Few, ‘M’ -
Many, pi - Parameter)

D/A pi
Exp. 3 Exp. 4

Mean

F/F p2 5.24 4.93
p3 4.09 3.40

F/M p2 11.81 9.57
p3 3.16 4.83

M/F p2 2.31 2.20
p3 46.56 32.40

M/M p2 24.79 13.26
p3 19.18 37.72

(a) Mean values of p2 and p3.

D/A 1 D/A 2 pi
Exp. 3 Exp. 4

Mean ∆ p-value Mean ∆ p-value

F/F F/M p2 -6.57 .066 -4.64 .206
p3 0.93 .485 -1.43 .991

F/F M/F p2 2.93 .025 2.73 .001
p3 -42.47 < .001 -29.00 < .001

F/F M/M p2 -19.55 < .001 -19.18 < .001
p3 -15.10 < .001 -9.86 < .001

F/M M/F p2 9.50 .005 7.37 .005
p3 -43.40 < .001 -27.57 < .001

F/M M/M p2 -12.99 .013 -14.54 < .001
p3 -16.02 < .001 -8.43 .002

M/F M/M p2 -22.49 < .001 -21.91 < .001
p3 27.38 < .001 19.13 < .001

(b) Means of the differences between values of p2 and p3. Significant p-values are marked in
bold.
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Table 26: Experiment 3 & 4, Varying Amounts of Disablers and Alternatives: Mean
percentages of the individuals’ values for p2 and p3 in the reduced inference
case in the ‘Disablers’ group. Means of the differences between individuals’
values for p2 and p3. (‘D’ - Disablers, ‘A’ - Alternatives, ‘F’ - Few, ‘M’ -
Many, pi - Parameter)

D/A pi
Exp. 3 Exp. 4

Mean

F/F p2 6.17 3.70
p3 8.58 8.48

F/M p2 13.67 8.48
p3 5.67 7.79

M/F p2 2.96 3.11
p3 54.42 41.0

M/M p2 19.78 21.69
p3 16.09 17.94

(a) Mean values of p2 and p3.

D/A 1 D/A 2 pi
Exp. 3 Exp. 4

Mean ∆ p-value Mean ∆ p-value

F/F F/M p2 -7.51 .009 -4.78 .006
p3 2.92 .136 0.69 .557

F/F M/F p2 3.20 .021 0.59 .096
p3 -45.83 < .001 -32.57 < .001

F/F M/M p2 -13.61 < .001 -17.99 < .001
p3 -7.51 .012 -9.46 .001

F/M M/F p2 10.71 < .001 5.37 .002
p3 -48.75 < .001 -33.26 < .001

F/M M/M p2 -6.11 .044 -13.21 < .001
p3 -10.42 .001 -10.15 < .001

M/F M/M p2 -16.82 < .001 -18.58 < .001
p3 38.33 < .001 23.11 < .001

(b) Means of the differences between values of p2 and p3. Significant p-values are marked in
bold.
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Table 27: Experiment 3 & 4, Varying Amounts of Disablers and Alternatives: Mean
percentages of the individuals’ values for p2 and p3 in the reduced infer-
ence case in the ‘Alternatives’ group. Means of the differences between
individuals’ values for p2 and p3. (‘D’ - Disablers, ‘A’ - Alternatives, ‘F’ -
Few, ‘M’ - Many, pi - Parameter)

D/A pi
Exp. 3 Exp. 4

Mean

F/F p2 15.58 23.15
p3 5.31 5.05

F/M p2 25.01 21.61
p3 4.44 4.12

M/F p2 8.47 9.55
p3 43.38 37.68

M/M p2 23.69 31.18
p3 17.25 18.90

(a) Mean values of p2 and p3.

D/A 1 D/A 2 pi
Exp. 3 Exp. 4

Mean ∆ p-value Mean ∆ p-value

F/F F/M p2 -9.44 .006 1.54 .845
p3 0.87 .391 0.94 .088

F/F M/F p2 7.10 .006 13.60 .002
p3 -38.06 < .001 -32.63 < .001

F/F M/M p2 -8.11 .019 -8.03 .055
p3 -11.94 < .001 -13.85 < .001

F/M M/F p2 16.54 < .001 12.06 .001
p3 -38.94 < .001 -33.57 < .001

F/M M/M p2 1.33 .475 -9.56 .014
p3 -12.81 < .001 -14.78 < .001

M/F M/M p2 -15.22 < .001 -21.63 < .001
p3 26.12 < .001 18.78 .007

(b) Means of the differences between values of p2 and p3. Significant p-values are marked in
bold.
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Suppression Effect by Providing Disablers and Alternatives Participants in these
experiments are divided in three groups, similarly to Byrne’s (1989) experiment where
it was examined whether both fallacies and valid inference forms can be suppressed. It
should be noted that the presentation form in these experiments differs slightly from
the one that Byrne (1989) used. Alternative and additional arguments (alternatives
and disablers) were not given as conditional rules equivalent to the major premise’s
form, but rather as a list of multiple alternatives or disablers. Nevertheless, the
suppression effect was provoked successfully.

Participants in the ’Alternatives’ group are provided with alternatives or alternative
arguments that suppress the endorsements of the fallacies, DA and AC. The ones
in the ’Disablers’ group are provided with disablers or additional arguments that
suppress the endorsements of the valid inference forms, MP and MT.

All four of ε-MMT’s equations for inference form endorsement are of the form x
x+y :

MP: P(Y|X) = p4
p3 + p4

DA: P(¬Y|¬X) = p1
p1 + p2

AC: P(X|Y) = p4
p4 + p2

MT: P(¬X|¬Y) = p1
p1 + p3

Suppressing the endorsements means x
x+y should decrease. The value of that

fraction drops as y increases. In the case of MP and MT y is p3. Therefore, a
significant increase in p3 is expected in the ‘Disablers’ group where the aim is to
suppress MP and MT. Similarly, in previous disablers and alternatives analysis, p3
was the disablers parameter since it describes the probability of the world X ¬Y. In
the case of DA and AC y is p2. That means a significant increase in p2 is expected in
the ‘Alternatives’ group where DA and AC are suppressed. Additionally, p2 was the
alternatives parameter since it describes the probability of the world ¬X Y.

Participants in these experiments were provided with both reduced inference and
conditional. In the reduced inference case individuals rely more on their background
knowledge and are able to think of and integrate any possible disablers and alternatives
when giving an endorsement. Moreover, the general idea behind provoking the
suppression effect is to provide additional information to the one in the rule. Taking
that into consideration, this analysis is performed only for the conditional case.

In order to determine whether the differences between parameter values are signifi-
cant, a Mann-Whitney U test was performed. The analysis results of Experiment
3 are shown in Table 28. In the ‘Disablers’ group there is a significant increase in
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the p3 parameter, as expected, in three out of four cases, the exception being the
‘Many/Many’ task, where there is an increase but it is not significant (p = .153). In
the ‘Alternatives’ group there is a significant increase in the p2 parameter for every
task. The analysis results of Experiment 4 are presented in Table 29. It can be
immediately seen that for both groups, ‘Disablers’ and ‘Alternatives’, the expected
increases of p3 and p2 respectively are found and are statistically significant. Therefore
it can be concluded that the suppression of the fallacious and valid inference forms
can be accounted for by ε-MMT’s parameters.

6.2.2 Experiments 5–6

These are the experiments presented in Singmann and Klauer (2011) and Section 3.2.2.
Their goal was to establish a double dissociation between deductive and inductive
instructions when validity and plausibility are pitted against each other.

Experiment 5

Models Fits All of the models, except for the Dual-Source Model, are able to fit this
experiment’s data. The goodness of fit measures values for each model are presented
in Table 30.
In Table 30, the number of free parameters to model one individual is reported.

ε-MMT needs three free parameters to model one task (4 data points per task). Given
4 tasks, the total number of free parameters to model an individual is 3 × 4 = 12.

The best performing models are ε-MMT and the Oaksford-Chater Probabilistic
Model with an RMSE of 0.068 and 0.067, respectively, an RMSEadj of 0.136 and
0.135, respectively, and R2 values of 0.860 and 0.862, respectively. Both models need
the same amount of free parameters, which is three per task, or, 12 per individual.
Out of the models that have invalid RMSEadj values, the performance of the

Suppositional Sequential model is worth noting, with a RMSE value that matches
ε-MMT and Oaksford-Chater. However, the Suppositional model needs eight more
parameters to fit an individual (or two more per task).

Prological vs. Counterlogical Conditionals As it has been mentioned when ana-
lyzing parameter values for varying amounts of alternatives and disablers, the main
focus are the parameters p2 and p3. p2 describes the probability of the world ¬X Y
(alternatives) and p3 describes the probability of the world X ¬Y (disablers). That
said, in the case of prological conditionals, which have many alternatives, an increase
in the value of p2 is expected and for counterlogical conditionals, which have many
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Table 28: Experiment 3, Suppression Effect: Mean percentages of the individuals’
values for p2 and p3 in the conditional case. Means of the differences
between individuals’ values for p2 and p3. (‘D’/‘Dis’ - Disablers, ’A’/‘Alt’ -
Alternatives, ‘F’ - Few, ‘M’ - Many, ‘Supp’ - Suppression Effect Condition,
‘Base’ - Baseline, ‘pi’ - Parameter)

D/A Supp pi Mean

F/F

Base p2 4.68
p3 2.49

Dis p2 5.21
p3 7.50

Alt p2 13.64
p3 4.07

F/M

Base p2 8.12
p3 2.65

Dis p2 10.12
p3 5.04

Alt p2 22.19
p3 2.99

M/F

Base p2 1.90
p3 20.69

Dis p2 40.62
p3 19.86

Alt p2 23.99
p3 38.54

M/M

Base p2 15.16
p3 10.43

Dis p2 18.78
p3 13.44

Alt p2 28.37
p3 9.66

(a) Mean values of p2 and p3.

D/A Supp 1 Supp 2 pi Mean ∆ p-value

F/F
Base Dis p2 -0.53 .279

p3 -5.01 .005

Base Alt p2 -8.96 .001
p3 -1.57 .283

F/M
Base Dis p2 -2.00 .048

p3 -2.39 .019

Base Alt p2 -14.07 < .001
p3 -0.34 .367

M/F
Base Dis p2 -2.28 .475

p3 -19.92 .003

Base Alt p2 - 10.02 < .001
p3 -3.27 .297

M/M
Base Dis p2 -3.62 .084

p3 -3.01 .153

Base Alt p2 -13.21 .002
p3 0.77 .419

(b) Means of the differences between values of p2 and p3.
Significant p-values are marked in bold.
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Table 29: Experiment 4, Suppression Effect: Mean percentages of the individuals’
values for p2 and p3 in the conditional case. Means of the differences
between individuals’ values for p2 and p3. (‘D’/‘Dis’ - Disablers, ’A’/‘Alt’ -
Alternatives, ‘F’ - Few, ‘M’ - Many, ‘Supp’ - Suppression Effect Condition,
‘Base’ - Baseline, ‘pi’ - Parameter)

D/A Supp pi Mean

F/F Base p2 4.93
p3 3.40

Dis p2 3.70
p3 8.48

Alt p2 23.15
p3 5.05

F/M Base p2 9.57
p3 4.83

Dis p2 8.48
p3 7.79

Alt p2 21.61
p3 4.12

M/F Base p2 2.20
p3 32.40

Dis p2 3.11
p3 41.05

Alt p2 9.55
p3 37.68

M/M Base p2 24.10
p3 13.26

Dis p2 21.69
p3 17.94

Alt p2 31.18
p3 18.90

(a) Mean values of p2 and p3.

D/A Supp 1 Supp 2 pi Mean ∆ p-value

F/F
Base Dis p2 -0.69 .066

p3 -6.83 < .001

Base Alt p2 -15.90 < .001
p3 -3.77 .004

F/M
Base Dis p2 -1.20 .176

p3 -3.02 .001

Base Alt p2 -8.67 .002
p3 0.57 .071

M/F
Base Dis p2 -1.08 .176

p3 -22.38 .001

Base Alt p2 -9.89 .001
p3 -11.74 .078

M/M
Base Dis p2 -4.93 .015

p3 -10.44 .001

Base Alt p2 -14.80 < .001
p3 -2.03 .127

(b) Means of the differences between values of p2 and p3.
Significant p-values are marked in bold.
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Table 30: Fitting results for each model on experiment 5. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.068 0.136 0.860 12

Oaksford-Chater 0.067 0.135 0.862 12
Logistic Regression 0.086 0.172 0.582 12

MMT 0.126 ∞ 0.634 16
MMT Deductive 0.151 0.302 0.483 16

MMT with Directionality 0.084 nan 0.776 20
Suppositional Sequential 0.068 nan 0.759 20
Suppositional Exclusive 0.102 nan 0.652 20

disablers, an increase in the value of p3 is expected. In this experiment, participants
were divided in two groups, one of them received instructions to reason deductively,
and the other one - inductively. Only the latter group will be taken into consideration
here, given that deductive instructions suggest ignoring any background knowledge,
which is highly relevant for analyzing the effect of prological and counterlogical
conditionals.

Table 31: Experiment 5, Prological vs. Counterlogical Conditionals: Mean percent-
ages of the individuals’ values for p2 and p3 under inductive instructions.
Means of the differences between individuals’ values for p2 and p3. (‘Type’
- Conditional Type, ‘Pro’ - Prological, ‘Count’ - Counterlogical, ‘pi’ -
Parameter)

Type pi Mean

Pro p2 11.20
p3 1.79

Count p2 4.40
p3 16.04

(a) Mean values of p2 and p3.

Type 1 Type 2 pi Mean ∆ p-value

Pro Count p2 6.80 .001
p3 -14.24 < .001

(b) Means of the differences between values of p2
and p3. Significant p-values are marked in bold.

In order to determine whether the differences between parameter values are sig-
nificant, a Wilcoxon signed-rank test was performed. As Table 31 shows, p2 has a
significantly (p = .001) higher value in the prological case and p3 has a significantly
(p < .001) higher value in the counterlogical case, which confirms the hypothesis.

Deductive vs. Inductive Instructions The characterization of conditionals was
discussed in Section 1.3 and the material implication was introduced which focuses on
logical validity. Based on that interpretation of conditionals the world X ¬Y violates
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Table 32: Experiment 5, Deductive vs. Inductive Instructions: Mean percentages of
the individuals’ values for p3. Means of the differences between individuals’
values for p3. (‘Type’ - Conditional Type, ‘Pro’ - Prological, ‘Count’ -
Counterlogical, ’Instr’ - Instructions, ‘Ded’ - Deductive, ‘Ind’ - Inductive,
‘pi’ - Parameter)

Type Instr pi Mean

Pro Ded
p3

3.70
Ind 5.96

Count Ded
p3

1.79
Ind 16.04

(a) Mean values of p3.

Type Instr 1 Instr 2 pi Mean ∆ p-value
Pro Ded Ind p3 1.91 .042
Count Ded Ind p3 -10.07 < .001

(b) Means of the differences between values of p3. Significant
p-values are marked in bold.

the conditional and is therefore regarded as invalid. The probability of that world is
described by ε-MMT with the parameter p3. Under deductive instructions, individuals
are encouraged to prioritize logical validity over their background knowledge, therefore
a decrease in p3 is expected in contrast to inductive instructions.

In order to determine whether the differences in the parameter values are statistically
significant, a Mann-Whitney U test was performed. The results, as presented in Table
32 show that for prological conditionals, the expected change in p3 is not present,
instead there is a small but significant (p = .042) decrease. However, for counterlogical
conditionals, p3 is significantly (p < .001) smaller under deductive instructions, as
expected.

Experiment 6

Models Fits All of the models, except for the Dual-Source Model, are able to fit this
experiment’s data. The goodness of fit measures values for each model are presented
in Table 33.

In Table 33 the number of free parameters to model one individual is reported.
ε-MMT needs three free parameters to model one task (4 data points per task). Given
9 tasks, the total number of free parameters to model an individual is 3 × 9 = 27.

The best performing model is the Suppositional Model (Sequential Variant) with an
RMSE of 0.057, and R2 value of 0.922. However, the model needs five free parameters
per task, or, 45 per individual, which is more than the number of data points per
individual (thus the invalid RMSEadj value).

Out of the models that have a reasonable number of parameters, the two best
performing ones are ε-MMT and the Oaksford-Chater Probabilistic Model with an
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RMSE of 0.075 and 0.072, respectively, an RMSEadj of 0.150 and 0.143 respectively
and R2 values of 0.860 and 0.913 respectively. Both models need the same amount of
free parameters, which is three per task, or 27 per individual.

Table 33: Fitting results for each model on experiment 6. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.075 0.150 0.860 27

Oaksford-Chater 0.072 0.143 0.913 27
Logistic Regression 0.089 0.178 0.884 27

MMT 0.151 ∞ 0.769 36
MMT Deductive 0.170 0.340 0.696 27

MMT with Directionality 0.113 nan 0.864 45
Suppositional Sequential 0.057 nan 0.922 45
Suppositional Exclusive 0.124 nan 0.806 45

Prological vs. Counterlogical vs. Neutral Conditionals Similarly to the analysis
in Experiment 5, the effect of prological and counterlogical conditionals is analyzed
here. In this experiment a third type of conditionals is introduced, the neutral
conditional, which has both many disablers and alternatives. The same assumption
is made in this experiment – an increased value of p2 for the prological conditionals
is expected and an increased value of p3 for the counterlogical ones. Additionally, an
increased value for both p2 and p3 is expected for the neutral conditionals. As in
Experiment 5, participants were divided in two groups, one received instructions to
reason deductively and the other one inductively and only participants from the latter
group are taken into consideration, given that integration of background knowledge
is “allowed” only in inductive reasoning.
In order to determine whether the differences between parameter values are sig-

nificant, a Wilcoxon signed-rank test was performed, whose results are presented in
Table 34. When comparing prological to counterlogical conditionals the expected
decrease of p2 in the latter type is encountered (p = .034) along with an increase in p3
(p < .001). In the comparison between prological and neutral conditionals an increase
only in p3 would be expected, which is found (p < .001). However a decrease in p2 is
also present (p < .001). This is, however, not the case when comparing counterlogical
and netural conditionals, where the only expected change was an increase in p2 in
the neutral case, but what can be observed is an unexpected significant decrease (p
< .001). When looking at the mean value of p2 for neutral conditionals in Table
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34a it can be seen that it has a surprisingly low value. Simultaneously, p2 has an
inexplicably high mean value for counterlogical conditionals.

Table 34: Experiment 6, Prological vs. Counterlogical vs. Neutral Conditionals:
Mean percentages of the individuals’ values for p2 and p3 under inductive
instructions. Means of the differences between individuals’ values for
p2 and p3. (‘Type’ - Conditional Type, ‘Pro’ - Prological, ‘Count’ -
Counterlogical, ‘Neut’ - Neutral, ‘pi’ - Parameter)

Type pi Mean

Pro p2 29.20
p3 2.16

Count p2 19.86
p3 13.58

Neut p2 4.98
p3 17.02

(a) Mean values of p2 and p3.

Type 1 Type 2 pi Mean ∆ p-value

Pro Count p2 9.34 .034
p3 -11.42 < .001

Pro Neut p2 24.22 < .001
p3 -14.87 < .001

Count Neut p2 14.87 < .001
p3 -3.44 .672

(b) Means of the differences between values of p2 and p3.
Significant p-values are marked in bold.

Deductive vs. Inductive Instructions Similarly to experiment 5, based on the
material implication interpretation of conditionals, which focuses on logical validity,
it is expected that the parameter p3 will be smaller for participants taking part in
the group that received deductive instructions, in contrast to the one that received
inductive instructions.

In order to determine whether the differences in the parameter values are statistically
significant, a Mann-Whitney U test was performed. The results in Table 35 show that
for each conditional type, the decrease of p3 in the deductive case is indeed present
and significant (p = .009 for prological conditionals and p < .001 for the other two
types).

6.2.3 Experiments 7–8

These are the experiments presented in Singmann et al. (2014) and Section 3.2.3. Their
goal was to perform an empirical test of normative standards in the new paradigm
and analyze the interpretation of P(“If X then Y”) through a novel probabilized
conditional task.
As mentioned in Section 4.2.1, one participant has been removed from the data

(Participant ID: U18U), due to the lack of variance in their answers that leads to
NaN R2 values.
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Table 35: Experiment 6, Deductive vs. Inductive Instructions: Mean percentages of
the individuals’ values for p3. Means of the differences between individuals’
values for p3. (‘Type’ - Conditional Type, ‘Pro’ - Prological, ‘Count’ -
Counterlogical, ‘Neut’ - Neutral, ’Instr’ - Instructions, ‘Ded’ - Deductive,
‘Ind’ - Inductive, ‘pi’ - Parameter)

Type Instr pi Mean

Pro Ded
p3

1.78
Ind 2.16

Count Ded
p3

4.57
Ind 13.58

Neut Ded
p3

3.83
Ind 17.02

(a) Mean values of p3.

Type Instr 1 Instr 2 pi Mean ∆ p-value
Pro Ded Ind p3 -0.37 .009
Count Ded Ind p3 -9.01 < .001
Neut Ded Ind p3 -13.19 < .001

(b) Means of the differences between values of p3. Significant
p-values are marked in bold.

Experiment 7

Model Fits The only two models that can fit the experiment’s data are ε-MMT and
the Oaksford-Chater Probabilistic Model. The goodness of fit measures values for
both of them are presented in Table 36.

In Table 36 the number of free parameters to model one individual is reported.
ε-MMT needs three free parameters to model one task (participants provided eight
answers per task, however only six of them are used when fitting the models). Given
4 tasks, the total number of free parameters to model an individual is 3 × 4 = 12.

The best performing model is ε-MMT with an RMSE of 0.189, an RMSEadj of 0.268
and a R2 value of 0.497. It needs three free parameters per task, as its competitor,
the Oaksford-Chater Probabilistic Model.

Table 36: Fitting results for each model on experiment 7. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.189 0.268 0.497 12

Oaksford-Chater 0.260 0.367 0.045 12
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P(Conditional) and P(Material Conditional) The participants in this experiment
provided estimates to the probability of the conditional P(“If X then Y”) and to the
probability of the material conditional, in its logically equivalent form P(¬X ∨ Y).

Evans et al. (2003) conducted an experimental study in order to determine whether
individuals equate the probability of a conditional, P(“If X then Y”) with: (1) that
one of the material conditional, 1 - P(X∧¬Y); (2) conditional probability, P(Y|X);
and (3) conjunctive probability, P(X∧Y). They concluded that the first hypothesis
can be rejected, whereas half of the participants provided support for the second
one and the other half for the third one. Based on that, the following is taken into
consideration: the conditional probability, expressed with ε-MMT parameters as

p4
p3+p4

, and, the conjunctive probability, expressed with ε-MMT’s p4 parameter. Their
correlation with the individuals’ answers to P(“If X then Y”) is analyzed.

On the other hand, given the definition of the material conditional, where the world
X ¬Y, falsifies the rule. That world is described with the parameter p3, and a negative
correlation between it and the individuals’ answers to P(Material Conditional) is
expected.

The Kendall rank correlation coefficients can be found in Table 37. It can be
immediately observed that every single correlation coefficient is significant. In the
case of P(Conditional), both the p4 parameter and the conditional probability, p4

p3+p4

have a positive correlation (p < .001 for both) which confirms the assumptions above.
In the case of the material conditional, the p3 parameter has a negative correlation
which also confirms the assumption.

Table 37: Analysis of correlation between parameter values and subjective esti-
mates of P(Conditional) and P(Material Conditional) in experiment 7.
Significant p-values are marked in bold. (‘pi’ - Parameter)

Probability pi τ p-value

Conditional p4 0.465 < .001
p4

p3+p4
0.578 < .001

Material
p3 -0.525 < .001Conditional
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Experiment 8

Model Fits All of the models, except for the Dual-Source Model, are able to fit this
experiment’s data. The goodness of fit measures values for each model are presented
in Table 38.
In Table 38 the number of free parameters to model one individual is reported.

ε-MMT needs three free parameters to model one task (4 data points per task). Given
2 tasks, the total number of free parameters to model an individual is 3 × 2 = 6.

The best performing model is the Suppositional Model (Sequential Variant) with an
RMSE of 0.031 and R2 value of 0.917. However, the model needs five free parameters
per task, or ten per individual, which is more than the number of data points per
individual (thus the invalid RMSEadj value).
Out of the models that have a reasonable number of parameters, the two best

performing ones are ε-MMT and the Oaksford-Chater Probabilistic Model with an
RMSE of 0.054 and 0.051, an RMSEadj of 0.107 and 0.101 and R2 of 0.910 and 0.911,
respectively. Both models need the same amount of free parameters, which is three
per task, or six per individual.

Table 38: Fitting results for each model on experiment 8. ‘Free’ - Number of free
parameters needed to model one individual.

Model RMSE RMSEadj R2 Free
ε-MMT 0.054 0.107 0.910 6

Oaksford-Chater 0.051 0.101 0.911 6
Logistic Regression 0.059 0.118 0.743 6

MMT 0.136 nan 0.669 8
MMT Deductive 0.138 0.277 0.654 6

MMT with Directionality 0.100 nan 0.787 10
Suppositional Sequential 0.031 nan 0.917 10
Suppositional Exclusive 0.095 nan 0.794 10

Inductive vs. Deductive Reasoning

It is expected when individuals are instructed to judge the logical validity of a rule
that their interpretation of the conditional would match the material implication
definition. The fact that the world X ¬Y makes the conditional invalid, leads to a
hypothesis that the p3 parameter should have a lower value in the deductive case, in
contrast when individuals are reasoning inductively.

In order to determine whether the differences between parameter values are signifi-
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cant, a Mann-Whitney U test was performed. The results presented in Table 39 show
that p3 is significantly lower (p < .001) under deductive instructions, which confirms
the hypothesis.

Table 39: Experiment 7 and 8, Deductive vs. Inductive Instructions: Mean percent-
ages of the individuals’ values for p3. Means of the differences between
individuals’ values for p3. (‘Instr’ - Instructions, ‘Ded’ - Deductive, ‘Ind’
- Inductive, pi - Parameter)

Instr pi Mean
Ded p3 1.68
Ind p3 32.00

(a) Mean values of p3.

Instr 1 Instr 2 pi Mean ∆ p-value
Ded Ind p3 -30.28 < .001

(b) Means of the differences between values of p3.
Significant p-values are marked in bold.
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7 Discussion

To summarize, in this thesis, a conditional reasoning benchmark was developed, the
performance of various cognitive models was evaluated, a new model was proposed and
its performance, as well as its parameters’ psychological interpretation and capability
of accounting for effects, was analyzed.

Benchmark Form The benchmark I developed aims to test the models’ limits
in terms of adapting to many reasoning properties while maintaining a satisfying
performance. In order to achieve that, I included data from experiments that
manipulate the degree of background knowledge integration and induce various
reasoning effects, leading to non-uniformity in the individuals’ answers. Apart from
that, experiments that focus on deductive reasoning were also included which shed
some light on the limitations of the normally best-performing probabilistic models.
Simultaneously, the benchmark also provides performance analysis for each experiment
separately, showing how a model’s performance can vary given different experiment
scenarios. Now, focusing on the models – including theories from both the deductive
and the Bayesian paradigm is also essential. Even though probabilistic models are
considered state-of-the-art and often outperform their deductive rivals, that does not
make all assumptions and approaches from the deductive paradigm invalid. Aside
from that, some of the theories had multiple variants that were included which offers
the possibility to investigate how models can be improved and how important or valid
some of their assumptions are. Finally, this benchmark uses the same, very simple
fitting approach for all models. It optimizes the models’ prediction equations so that
they achieve a minimal RMSE. This way all of the models are compared in a fair
way and not one model is favored because of the way it has been fit.

Model Performance In the benchmark six different theories were included, out of
which one had three model variants (MMT) and one had two (Suppositional Theory),
totaling up to nine models. When focusing on the overall performance, the Dual-
Source Model is unfortunately excluded, as it can be fit to only half of the available
data, leaving us with eight models to focus on. The best performing models in the
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benchmark are ε-MMT and Oaksford-Chater. When inspecting only models from the
deductive paradigm, the best performance is achieved by the Suppositional Sequential
model. The goodness-of-fit was also analyzed for each experiment separately. All
eight models can be applied to 7 out of 8 experiments. In 4 out of those 7, ε-MMT
and Oaksford-Chater had the best performance. The Suppositional Sequential model
tied with them in Experiment 5, and in other two (Experiment 6 and 8) it actually
outperformed the probabilistic models. Interestingly, the experiments where the
Suppositional Sequential model dominates are related to deductive reasoning. In
Experiment 5 and 6 (around) half of the participants were instructed to determine
logical validity and ignore background knowledge. The same instructions to judge
logical validity were provided to all participants in Experiment 8 and additionally the
conditional contents were abstract, i.e. no possible background knowledge would be
integrated. While ε-MMT’s and Oaksford-Chater’s performance in those experiments
is still satisfactory, it is quite valuable to learn how they do not manage to represent
and fit data from a deductive experiment as good as a model from the deductive
paradigm. Participants in Experiment 7 were asked to provide subjective probabilities
other than inference form endorsements and only ε-MMT and Oaksford-Chater
were able to represent them. In that scenario, ε-MMT actually surpasses its main
competitor. Both models have the same number of free parameters (3), however
ε-MMT has one more dependent parameter which seems to aid when expressing a
larger number of various types of probabilities. Given that conditional reasoning
research has been largely focused on inference form endorsements, representing other
subjective probabilities has not been a major focus or requirement when developing
cognitive models. However, seeing as those probabilities offer yet another perspective
on how individuals interpret conditionals it is certainly a useful model feature. The
Dual-Source Model could be applied in Experiment 1 – 4, however it did not perform
as well as ε-MMT and Oaksford-Chater. It should be pointed out that Singmann
et al. (2016) report a more satisfying performance of the model, however they used
a different fitting approach. In this benchmark, a uniform and very simple way of
fitting was used that should not give advantage to any model. It is likely that different
fitting approaches would benefit some models more than others and would maybe
expose some undiscovered potential, however, right now, that was not a goal when
developing this benchmark.

Model Variants Comparison Another objective was to analyze the difference be-
tween variants of the same theory. In the case of MMT, the Directionality variant
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had the best performance, meaning that directionality from the antecedent to the
consequent is indeed something that should be taken into consideration. As a matter
of fact, the mean value of the parameter d that determines whether directional-
ity will be reversed or not, across all data is 0.90 (median: 0.99) – in 90% of the
cases, individuals actually reverse the directionality. The deductive variant has the
worst performance out of all three variants and out of all models in the benchmark,
demonstrating the real necessity of the X ¬Y model. It is noteworthy that even
in experiments where deductive reasoning played a role, MMT Deductive was still
the worst performing model. On the other hand, we have the Suppositional Theory
variants, where the Sequential model’s performance definitely exceeds the Exclusive
one. Therefore, it can be inferred that given the assumption that humans use System
1 and System 2 when reasoning, it is more likely that those two systems interact,
rather than individuals using either one or the other.

ε-MMT Performance In this thesis I proposed a new cognitive computational
model, ε-MMT. I took the intuitive representations of conditional’s propositions of the
Mental Model Theory, interpreted them as possible worlds and applied a probability
distribution to them, following Pearl’s (1991) ε-semantics framework. Interpreting
inference form endorsement as the conditional probability of the consequent given
the antecedent makes this model belong to the state-of-the-art Bayesian paradigm.
Its performance is competent, having the best results in the benchmark together with
the Oaksford-Chater Probabilistic Model and outperforming the other two included
state-of-the-art models, the Logistic Regression Model and DSM. As already discussed
above, ε-MMT is also capable of representing subjective probabilities other than
inference form endorsements, giving it the possibility to fit a larger variety of data
that provides insight into how humans reason and interpret conditionals.

ε-MMT: Suppression Effect The benchmark contains data from experiments that
manipulate a variety of reasoning properties and effects. Starting with the suppression
effect – it can be confidently said that through its parameters, ε-MMT is able
to represent the presence of this effect from various perspectives. There are two
experiments, Experiment 3 and 4, which explicitly aim to induce the suppression
effect by providing additional information to the participants. The parameters p2
and p3, which describe the probabilities of the worlds ¬X Y and X ¬Y respectively,
account for the presence of alternative and additional information.
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ε-MMT: Varying Amounts of Disablers and Alternatives In five experiments (Exp.
1, 3, 4, 5 and 6) the contents presented to the participants had varying amounts of
disablers and alternatives. Similarly, through p2 and p3 the amount of alternatives and
disablers can be shown. A high p2 value indicates the presence of many alternatives,
whereas a high p3 value indicates many disablers. An interesting question in this
situation is what does ‘Few’ or ‘Many’ mean for different contents. It is possible that
an individual can think of 20 alternatives to one conditional rule and 40 to another
yet both would be considered as ‘Many’ alternatives. However, in the latter case it
is possible that the individual’s subjective probability of the world ¬X Y would be
much higher compared to the first one. When the results were analyzed, it was noted
that in some cases when a significant change was expected in only one of these two
parameters, one was found in both. For example, when going from a task with ‘Few’
disablers and ‘Few’ alternatives to one with ‘Few’ disablers and ‘Many’ alternatives,
only p2 is expected to increase. However, a change is found in p3 as well. That leads
to a possible difference in interpretation of what ‘Few’ disablers means for these two
different contents. An alternative perspective is a potential relationship between the
two. Following the same example, by introducing content with many alternatives,
the confidence in those few disablers decreases, causing a significant decrease in p2,
where no change was expected.

In Experiment 3 and 4 participants were divided into three groups: ‘Baseline’,
‘Disablers’ and ‘Alternatives’, where the last two groups were provided with additional
information. The influence of varying amounts of disablers and alternatives was
investigated in all three groups. In the ‘Disablers’ group, it can be concluded
that providing additional disablers does not affect the influence of the individuals’
background knowledge, every expected change in the alternatives parameter, p2 still
takes place. Interestingly, there is one case, in Experiment 4 when comparing the task
‘Few/Few’ with ‘Many/Few’ where providing additional information led to having
only an increase in p3 and no change in p2, as it actually is expected, contrary to
every single result presented before where both parameters would have a significant
change. A prevention of an unexpected parameter to have a significant change by
providing additional information can be observed in the ‘Alternatives’ group as well
when comparing the task ‘Few/Many’ with ‘Many/Many’ and the only expected and
encountered change is an increase in p3. Additionally, in the ‘Alternatives’ group
of Experiment 4, when comparing ‘Few/Few’ with ‘Many/Many’ and both p2 and
p3 are expected to increase, only p3 does, which is logical due to the fact that the
additional information presented to this group are alternatives. Similarly, when
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comparing ‘Few/Few’ with ‘Few/Many’ in the same group, the p2 parameter did not
have the expected significant change. Explicitly providing alternative information
might impact the influence of the ‘Few’ alternatives in the first task, leading to lack
of significant changes.

ε-MMT: Conditional Presentation Form Following is the conditional presentation
form, which was manipulated in four experiments (Exp. 1, 2, 3, 4). When presented
with a reduced inference individuals are expected to rely more on their background
knowledge compared to when they are presented with a rule. In terms of ε-MMT’s
parameters, a stronger belief in the world X Y is expected when a rule is present.
Experiment 2 was the only one that did not have contents with varying amounts
of disablers and alternatives and a significant change in p4 was found. In the other
three experiments, an interesting finding is that for contents with ‘Few’ disablers
and alternatives p4 did not change significantly. The lack of significant changes is
logical given that in such a task there would not be a great deal of contradicting
background knowledge that would be either integrated when reasoning with a reduced
inference or suppressed when presented with a conditional rule. That leads to a
high belief in the world X Y, already in the reduced inference case. Additionally, in
Experiment 1 and 3, p4 lacked a significant change also for tasks with ‘Few’ disablers
and ‘Many’ alternatives. Previously it was discussed how the presence of disablers and
alternatives is successfully accounted for through the parameters p2 and p3, including
this specific task. That means the high amount of alternatives is recognized by the
individuals, yet the belief in the world X Y does not change significantly once they are
presented with a rule. On one hand, this can be interpreted as a lack of influence of
the alternatives. Their large amount is acknowledged, however, they are not powerful
enough to significantly lower the belief in the world X Y. On the other hand, it is
possible that individuals think of the specific antecedent as an event with a high
probability and even if there are many possible alternatives, the world X Y is still
very likely to happen.

In Experiment 1 a third conditional presentation form was included – the bicondi-
tional. Significant increases in p4 were encountered between reduced inference and
biconditional for every task except, once again, the one with ‘Few’ disablers and
alternatives. The explanation for the lack of significant change in this task when
analyzing reduced inference and conditional is applicable now as well. Interestingly,
a significant change of p4 when comparing conditional and biconditional forms was
not found. That means once an individual has been presented with a conditional
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rule the belief in the world X Y becomes as strong as possible and therefore is not
strengthened when presented with a biconditional.

ε-MMT: Deductive vs. Inductive Instructions Next is the analysis of the effect
of a particularly interesting manipulation – deductive vs. inductive instructions
(Exp. 5, 6, 7, 8). In the experiments, participants under deductive instructions are
directed to judge logical validity of a conclusion and ignore any background knowledge
whereas under inductive instructions they are asked for the likelihood of conclusions
and are encouraged to integrate their background knowledge. Under deductive
instructions an indication of a material conditional implication was found – the p3
parameter, describing the probability of the world X ¬Y (which falsifies a conditional),
is significantly smaller in the deductive cases. This discovery provides support for
the material characterization of conditionals in the deductive paradigm. On the other
hand, it simultaneously supports the abandonment of the characterization in the
Bayesian paradigm when focusing on everyday content and taking integration of
background knowledge into consideration. Ultimately, it shows that in this scenario
there is no ‘right’ or ‘wrong’, but rather things are relative. In Experiment 5, for
prological conditionals (‘Many’ alternatives and ‘Few’ disablers), the increase in p3 was
not found. As a matter of fact, a very small but significant decrease was encountered.
It is likely that contents with ‘Few’ disablers induce very low p3 values under inductive
instructions and that could overshadow the effect of deductive instructions.

ε-MMT: Speaker Expertise The final property whose effect is analyzed is speaker
expertise. In Experiment 2 participants received contents either uttered by an expert
or a non-expert. The original assumption was that the belief in the world X Y will be
stronger in the expert case, i.e. higher values of p4 were expected. That was not the
case, however, a very interesting outcome was a significant decrease of p3 (X ¬Y) in
the expert case. As discussed previously, low p3 values are associated with material
implication and logical validity. So, this result suggests that when contents have
said to be uttered by experts individuals reason more deductively. Simultaneously,
the conditionals’ contents should also be taken into consideration. Singmann et al.
(2016) pointed out: “Note that we nevertheless did not use abstract materials, but
everyday contents for which participants prior knowledge was assumed to be rather
vague. This ensured that the manipulation of speaker expertise could overshadow
participants’ prior knowledge.”. It can be easily assumed that whether a non-expert
or an expert has uttered a certain rule, given the lack of background knowledge about
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the topic, individuals’ belief in the world X Y (described by the parameter p4) would
be on the same level, as the results have indeed indicated.

ε-MMT: Correlation Analysis Additionally, the correlation between parameter
values and individuals’ subjective probabilities for the conditional and material
conditional was examined in Experiment 7. For P(“If X then Y”), the focus was on
the conjunction P(X∧Y) expressed through p4 and on the conditional probability
P(Y|X), expressed as p4

p3+p4
, both of which showed a significant positive correlation.

A crucial fact here is that when fitting the parameters, the values of P(“If X then
Y”) were not used. The probability distribution of the conditional’s possible worlds
was obtained through numerous other subjective probabilities. Nonetheless, ε-MMT
still provides insight into the individuals’ interpretation of the conditional from other
perspectives, specifically – its probability. For the material conditional, the focus is
on the parameter p3, describing the probability of the world X ¬Y, and the expected
negative correlation was found – the stronger the belief in the material conditional,
the lower the probability of the logically incorrect world X ¬Y.

Number of Free Parameters When analyzing the models’ performances in some
cases invalid RMSEadj values were obtained, either ∞ or nan. In the case of ∞ the
models needed as many free parameters as provided data points in a task. nan was
obtained when the models needed more parameters than available data points. This
is not entirely an issue solely because of the RMSEadj measure. Rather, the fact that
a model would need as many parameters as data points, or even more, to represent
one single task is questionable. This concern is relevant when fitting per individual,
in contrast to fitting on aggregate data. Most of the available experimental data
provides endorsements to the four inference forms. That automatically gives models
needing at least four parameters to fit one task a disadvantage. The insistence on
individual fitting is due to the differences between individuals. Factors like background
knowledge or education level can contribute to variation in their answers.

Data The experiments whose data is used in this thesis have 50 participants on
average. While a decent basis for conditional reasoning research is provided, having a
larger and more diverse pool of people would allow for better insight into response
patterns and variation. Generally, the amount of available data that can be used in
such benchmarks is rather limited. Some experiments ask very few questions per task
and cannot be properly modeled by the implemented models. An example of that
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are the experiments presented by Skovgaard-Olsen, Singmann, and Klauer (2016).
Participants only gave three answers per task and therefore an accurate parameter
value analysis was unattainable.

Finally, an important question is – does manipulating effects always produce the
expected results? Consider, for instance, how Singmann and Klauer (2011) showed
that the validity effect was not encountered in denial problems, even though it was
expected. But, what does that tell us? Are higher endorsements of valid inference
forms under deductive instructions not producible by human reasoning processes?
Or, did the experiment’s contents fail to trigger the effect? Increasing the amount of
data with varying content could help answer questions of this nature.

7.1 Future Work

The benchmark I implemented provided very useful analysis for this thesis, but it is
still in its early stages of development. The first expansion step is implementing more
models from both, the deductive and the Bayesian paradigms. Additionally, including
even more variants of the same theory is also beneficial in order to determine the
strengths and weaknesses of a model – improvement being the ultimate goal. Then,
the next step is to find and add more data. Including experiments that manipulate
other reasoning properties and effects will give us even more insight into how humans
interpret conditionals. Another interesting option could be to look into experimental
data from the deductive paradigm. In those experiments participants either accept
or refute a conclusion, in contrast to giving endorsements. Finally, augmenting the
analysis options would definitely be a helpful feature. For now, the analysis is focused
on the models’ performances and ε-MMT’s parameters. The next step would be to
also provide an option to analyze the data.

In terms of fitting capabilities the only true competitor to ε-MMT is the Oaksford-
Chater Probabilistic Model, both of them achieving the same results. However, the
Oaksford-Chater model is rather mathematical and does not necessarily provide an
account of how this theory would be implemented in the mind. As Oaksford and
Chater (2003a) state themselves, they doubt that people actually perform those
calculations when reasoning, however they are asking the question whether such a
probabilistic, computational account provides a better computational level theory of
the reasoning performance compared to logic. ε-MMT, on the other hand, provides
a finer basis for psychological interpretation. However, given the mathematical
definition of ε-MMT’s and Oaksford-Chater’s parameters their representation of
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subjective probabilities can actually be brought to the same level (see Appendix A.4).
An extensive comparison between these two models is an interesting direction for
further research.

Todorovikj et al. (2019) explored the possibility to reduce the number of ε-MMT’s
parameters. Focusing on varying amounts of disablers and alternatives and conditional
presentation form, constant changes of parameter values between two tasks were
established and used to predict parameter values when modeling one task after having
fitted another. In this thesis a significant change of parameter values was discovered
for various reasoning properties which lays basis for a deeper investigation of ε-MMT’s
predictive capabilities. Starting by reducing the number of parameters within single
experiments, it would be of interest to achieve a universal predictive ability in the
long run.
When introducing Experiment 5 and 6 it was mentioned that Singmann and

Klauer (2011) examined the presence of the validity and plausibility effects. With
the exception of the validity effect in denial problems, their expectations were met,
the effects were found. An interesting next step would be to explore and get more
insight into why the validity effect was not encountered using ε-MMT.
In this thesis, the effect of contents with varying amounts of alternatives and

disablers was analyzed in multiple experiments. The main focus was on ε-MMT’s
parameters p2 and p3 which represent the probabilities of the worlds ¬X Y and X
¬Y, respectively. On multiple occasions, the results showed that when changing
the quantifier of only one, disablers or alternatives, a significant change in both
parameters was present, instead of one. I discussed the disadvantages of using only
the quantifiers ‘Few’ and ‘Many’ as they can be perceived differently for different
contents. It would be beneficial if this measure is done in a more precise way.
Obviously it is not possible to state an exact number. However, perhaps conducting
a pre-study where individuals would rank the amounts for specific contents would
aid with refining this quantification. Another perspective that I offered was that
changing the amount of one impacts the influence of the other. The validity of
this suggestion can be examined with more experimental data that uses even more
different contents. Additionally, it is very curious how the occasional lack of expected
significant parameter value changes only occurred when alternatives were relevant, in
contrast to disablers. Further research on how disablers and alternatives are perceived
by individuals and additionally the difference in their influences on the belief in the
X Y world would be of great interest.
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8 Conclusion

In this final chapter, I will use the main points of the discussion to answer my research
questions.
RQ 1: What would be a good form of a benchmark?

While working on this thesis, my idea of a good benchmark was one that would be
able to answer a lot more questions rather than just “Which model performs the best
overall?”. I achieved that by:

• including data whose content is not uniform – exploiting various reasoning
properties creates a bigger challenge for the models to adapt to atypical answers
and we learn more about their potential and limitations.

• including models from both paradigms – even though in present day research
the focus is on probabilistic models, deductive theories and their psychological
assumptions are still relevant and should not be dismissed so swiftly.

• analyzing experiments separately – determining which model performs the
best overall does not imply that it truly manages to capture every aspect of
reasoning, it is useful to see where certain models fall short to learn how to
potentially improve them.

• including variants of models that focus on different theoretical assumptions
and/or improve the theories – by comparing the performance of these variants we
learn whether certain assumptions actually help explain the reasoning processes
and discover ways in which the theories can be improved.

• using the same fitting approach for all models – this way all models get the same
treatment and are compared in a fair manner. Certainly a fitting approach can
be adapted in a way that one model can benefit from it in contrast to others.
That would be useful when trying to unveil the full potential of a theory alone.
However, that idea does not coincide with the objective of my benchmark,
which is a fair and equal comparison of models.
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RQ 2: How do various cognitive models perform when evaluated on
sensible data?

Out of four probabilistic and five deductive models, the two best performing ones
are ε-MMT and Oaksford-Chater, both belonging to the Bayesian paradigm. The
Suppositional Sequential model is a close competitor, sometimes even outpeforming
the two in experiments related to deductive reasoning. So, while the probabilistic
models excel at representing reasoning with everyday content, their performance
does not stand out when dealing with abstract materials and/or deductive reasoning
instructions. Ultimately, the conclusion is that no single theory or approach explored
here was able to explain all reasoning processes in all scenarios.
RQ 3: Can ε-MMT compete with state-of-the-art models?
Yes. The benchmark results show that its fitting capabilities match the ones

of the Oaksford-Chater Probabilistic Model. Moreover, its parameter definitions
and psychological interpretations provide a valuable opportunity for investigating
and learning about the human reasoning processes. Given that this is the initial
theoretical basis for ε-MMT, with further research, improvements that would enhance
its performance can be achieved, making it a valuable competitor among state-of-the-
art models.
RQ 4: Can ε-MMT account for various reasoning effects and properties,

and, provide insight into human reasoning and interpretation of condi-
tionals?
Yes. The suppression effect was accounted for from various points of view in five

different experiments. The goal in two of them was specifically to provoke the effect
by providing additional information. In all five the effect of contents with varying
amount of disablers and alternatives was shown with ε-MMT’s parameters. In one
the validity and plausibility effect (or lack thereof) were also accounted for through
parameter value rankings. The effect of background knowledge dominance when
providing individuals with a reduced inference in contrast to a rule is also expressed
through ε-MMT parameters. Also, we gained insight into how people interpret
conditional tasks when speaker expertise was manipulated. Most interestingly, with
parameter value analysis it was also shown that when humans reason deductively
the material implication interpretation of conditionals is actually valid compared to
inductive reasoning. Additionally ε-MMT’s parameters correlate to the subjective
probabilities of the conditional and material conditional.
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A.1 Contents in Experiments

A.1.1 Experiment 1

The relevant details of this experiment are provided in Section 3.2.1. For more, see
Singmann et al. (2016): Experiment 1, and, https://osf.io/zcdfq/.
In the experiment four different contents were presented in German. Both the

original German version and the corresponding translations in English follow:

1. Few Disablers/Few Alternatives: If a predator is hungry then it will search for
prey. (Wenn ein Raubtier Hunger hat, dann geht es auf Suche nach Beute.)

2. Few Disablers/Many Alternatives: If a balloon is pricked with a needle then it
will pop. (Wenn ein Ballon mit einer Nadel gestochen wurde, dann platzt er.)

3. Many Disablers/Few Alternatives: If a girl has sexual intercourse then she
will be pregnant. (Wenn ein Mädchen Geschlechtsverkehr hat, dann ist es
schwanger.)

4. Many Disablers/Many Alternatives: If a person drinks a lot of coke then the
person will gain weight. (Wenn eine Person viel Cola trinkt, dann nimmt sie an
Gewicht zu.)

A.1.2 Experiment 2

The relevant details of this experiment are provided in Section 3.2.1. For more, see
Singmann et al. (2016): Experiment 2, and, https://osf.io/zcdfq/.
In the experiment six different contents (out of total seven) were presented in

German. Both the original German version and the corresponding translations in
English follow:

1. A nutrition scientist (expert) / drugstore clerk (non-expert) says: If Anne
eats a lot of parsley then the level of iron in her blood will increase. (Ein
Ernährungswissenschaftler (expert) / eine Drogerieangestellte (non-expert) sagt:
Wenn Anne viel Petersilie isst, dann verbessert sich ihr Eisenwert im Blut.)

2. A ballet dancer (expert) / ballet audience member (non-expert) says: If Kathe-
rina grows 10 cm then her ballet partner will fail to perform the lifting routine
with her. (Ein Balletttänzer (expert) / Ballettbesucher (non-expert) sagt: Wenn
Katharina 10 cm wächst, dann scheitert ihr Balletpartner an der Hebefigur mit
ihr.)
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3. A manager (expert) / cashier (non-expert) says: If the shampoo “Fresh and
Soft” is removed from the assortment then the yearly volume of sales will
decrease. (Ein Filialleiter (expert) / ein Kassierer (non-expert) sagt: Wenn
das Haarshampoo “Fresh and Soft” aus dem Sortiment der Drogerie genommen
wird, dann sinken die Jahresumsatzzahlen.)

4. A pilot (expert) / passenger (non-expert) says: If the Airbus A380 flies through
turbulences then its voltage level will fluctuate. (Ein Pilot (expert) / Fluggast
(non-expert) sagt: Wenn der Airbus A380 durch Turbulenzen fliegt, dann
schwankt die Spannung im Stromnetz der Maschine.)

5. A(n) environmental scientist (expert) / newspaper reader (non-expert) says:
If individuals in industrialized nations continue to emit similar amounts of
CO2 then the Gulf stream will stop. (Ein Umweltwissenschaftler (expert) /
Zeitungsleser (non-expert) sagt: Wenn die Menschen in den Industrienatio-
nen weiterhin so viel CO2 ausstoßen, dann wird der Golfstrom zum Erliegen
kommen.)

6. A(n) asset consultant (expert) / bank teller (non-expert) says: If Lisa invests in
hedge funds then she will lose all the invested money. (Ein Vermögensberater
(expert) / Banklehrling (non-expert) sagt: Wenn Lisa in Hedgefonds investiert
hat, dann verliert sie ihr investiertes Geld.)

7. A medical attendant of the German national football team (expert) / journalist
(non-expert) says: If Miroslav Klose’s lactat level is within the norm then he
plays all games for the German national football team. (Der ärztliche Betreuer
der Nationalmannschaft sagt (expert) / ein Journalist (non-expert) sagt: Wenn
Miroslav Kloses Lactatwert im Normbereich ist, dann spielt er jedes Spiel der
Fußballnationalmannschaft.)

A.1.3 Experiment 3

The relevant details of this experiment are provided in Section 3.2.1. For more, see
Singmann et al. (2016): Experiment 3a, and, https://osf.io/zcdfq/.
In the experiment four different contents were presented in German, whether by

themselves, or with additional alternatives or disablers. Both the original German
version and the corresponding translations in English follow:

1. If a predator is hungry then it will search for prey. (Wenn ein Raubtier Hunger
hat, dann geht es auf Suche nach Beute.)

102

https://osf.io/zcdfq/


Disablers: A predator can search for prey only when (Ein Raubtier kann nur
dann auf Suche nach Beute gehen, wenn):

• it lives in the wild. (es in freier Wildbahn lebt.)

• it is not heavily injured. (es nicht zu schwer verletzt ist.)

• it does not have to protect its cub. (es nicht gerade Junge verteidigen
muss.)

Alternatives: A predator can search for prey also when (Ein Raubtier kann
auch auf Suche nach Beute gehen, wenn):

• it has to supply food to its cub. (es Junge versorgen muss.)

• it wants to stock up. (es einen Vorrat anlegen will.)

• it just wants to hunt. (es gerade Lust am Jagen hat.)

2. If a balloon is pricked with a needle then it will quickly lose air. (Wenn ein
Ballon mit einer Nadel gestochen wurde, dann verliert er schnell an Luft.)

Disablers: A balloon can quickly lose air only when (Ein Ballon kann nur dann
schnell an Luft verlieren, wenn):

• it is not made out of tear-resistant material. (er nicht aus reißfestem
Material besteht.)

• it is not already empty to begin with. (er nicht schon vorher leer ist.)

• it is not filled with something else than air. (er nicht mit etwas anderem
als Luft gefüllt ist.)

Alternatives: A balloon can quickly lose air also when (Ein Ballon kann auch
dann schnell an Luft verlieren, wenn):

• it is pricked with something else than a needle. (er mit etwas anderem als
einer Nadel gestochen wird.)

• it is not knotted and it is released. (er nicht zugeknotet ist und losgelassen
wird.)

• it is inflated too much and bursts. (er zu fest aufgeblasen ist und platzt.)

3. If a girl has sexual intercourse with her boyfriend then she will be pregnant.
(Wenn ein Mädchen Geschlechtsverkehr mit ihrem Freund vollzogen hat, dann
ist es schwanger.)

Disablers: A girl can be pregnant only when (Ein Mädchen kann nur dann
schwanger sein, wenn):
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• she doesn’t use contraceptives. (es keine Verhütungsmittel benutzt hat.)

• she is not infertile. (es nicht unfruchtbar ist.)

• her partner is not infertile. (sein Partner nicht unfruchtbar ist.)

Alternatives: A girl can be pregnant also when (Ein Mädchen kann auch dann
schwanger sein, wenn):

• she is impregnated by another man. (es von einem anderen Mann geschwängert
wurde.)

• she is artificially fertilized. (es künstlich befruchtet wurde.)

• she carries a child as a surrogate mother. (es als Leihmutter ein fremdes
Kind austrägt)

4. If a person drinks a lot of coke then the person will gain weight. (Wenn eine
Person viel Cola trinkt, dann nimmt sie an Gewicht zu.)

Disablers: A person can gain weight only when (Eine Person kann nur dann an
Gewicht zunehmen, wenn):

• they have a genetic predisposition to it. (sie eine genetische Veranlagung
dazu hat.)

• they do not move enough. (sie sich nicht genug bewegt.)

• the coke is not sugar-free. (die Cola nicht zuckerfrei ist.)

Alternatives: A person can gain weight also when (Eine Person kann auch dann
an Gewicht zunehmen, wenn):

• they eat a lot. (sie viel isst.)

• they are still growing. (sie sich noch in Wachstum befindet.)

• they drink a lot of other drinks with sugar. (sie viel andere zuckerhaltige
Getränke trinkt.)

A.1.4 Experiment 4

The relevant details of this experiment are provided in Section 3.2.1. For more, see
Singmann et al. (2016): Experiment 3b, and, https://osf.io/zcdfq/.
In the experiment four different contents were presented in German, whether by

themselves, or with additional alternatives or disablers. Both the original German
version and the corresponding translations in English follow:
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1. If a predator is hungry then it will search for prey. (Wenn ein Raubtier Hunger
hat, dann geht es auf Suche nach Beute.)

Disablers: A predator can search for prey only when (Ein Raubtier kann nur
dann auf Suche nach Beute gehen, wenn):

• it is physically capable. (es körperlich dazu in der Lage ist.)

• it lives in the wild. (es in freier Wildbahn lebt.)

• it does not have any more prey. (es keine Beute mehr hat.)

Alternatives: A predator can search for prey also when (Ein Raubtier kann
auch auf Suche nach Beute gehen, wenn):

• it has to supply food to its cub. (es Junge versorgen muss.)

• it wants to stock up. (es einen Vorrat anlegen will.)

• it is driven by its hunting instinct. (es der Jagdinstinkt dazu treibt.)

2. If a balloon is pricked with a needle then it will quickly lose air. (Wenn ein
Ballon mit einer Nadel gestochen wurde, dann verliert er schnell an Luft.)

Disablers: A balloon can quickly lose air only when (Ein Ballon kann nur dann
schnell an Luft verlieren, wenn):

• it was inflated before. (er vorher aufgeblasen war.)

• the balloon bursts at the puncture site, e.g. there is no adhesive tape over
it. (die Ballonhaut an der Stichstelle platzt, z.B. kein Tesa darüber)

• it is not filled with something else than air. (er nicht mit etwas anderem
als Luft gefüllt ist.)

Alternatives: A balloon can quickly lose air also when (Ein Ballon kann auch
dann schnell an Luft verlieren, wenn):

• it has a hole because of another reason, e.g. a sharp stone. (er aus einem
anderen Grund, z.B. spitzer Stein, ein Loch hat.)

• it is not knotted properly. (er nicht richtig zugemacht ist.)

• it comes into contact with a hot object and bursts. (er mit einem heißen
Gegenstand in Berührung kommt und platzt.)

3. If a girl has sexual intercourse with her boyfriend then she will be pregnant.
(Wenn ein Mädchen Geschlechtsverkehr mit ihrem Freund vollzogen hat, dann
ist es schwanger.)
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Disablers: A girl can be pregnant only when (Ein Mädchen kann nur dann
schwanger sein, wenn):

• she doesn’t use contraceptives. (es keine Verhütungsmittel benutzt hat.)

• neither of them is not infertile. (keiner von beiden unfruchtbar ist.)

• she is not in an infertile phase of her cycle. (sie sich nicht in einer
unfruchtbaren Phase ihre Zyklus befand.)

Alternatives: A girl can be pregnant also when (Ein Mädchen kann auch dann
schwanger sein, wenn):

• she is impregnated by another man. (es von einem anderen Mann geschwängert
wurde.)

• she is artificially fertilized. (es künstlich befruchtet wurde.)

• she carries a child as a surrogate mother. (es als Leihmutter ein fremdes
Kind austrägt)

4. If a person drinks a lot of coke then the person will gain weight. (Wenn eine
Person viel Cola trinkt, dann nimmt sie an Gewicht zu.)

Disablers: A person can gain weight only when (Eine Person kann nur dann an
Gewicht zunehmen, wenn):

• their metabolism allows it. (es ihr Stoffwechsel erlaubt.)

• they don’t do sports to compensate for drinking cola. (sie als Ausgleich
zum Colatrinken keinen Sport treibt.)

• they don’t drink only diet cola. (sie nicht ausscließlich Diätcola trinkt.)

Alternatives: A person can gain weight also when (Eine Person kann auch dann
an Gewicht zunehmen, wenn):

• they eat a lot. (sie viel isst.)

• they have metabolism issues. (sie Stoffwechselprobleme hat.)

• they are barely moving. (sie sich kaum bewegt.)

A.1.5 Experiment 5

The relevant details of this experiment are provided in Section 3.2.2. For more, see
Singmann and Klauer (2011): Experiment 1.
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In the experiment there were four different contents for the prological conditionals.
The counterlogical conditionals have the same contents, but the antecedent and the
consequent are reversed.
Prological conditionals:

1. If a person’s food went down the wrong way, then the person has to cough.

2. If a person fell into a swimming pool, then the person is wet.

3. If water was poured on a campfire, then the fire goes out.

4. If a person ate a lot of salt, then the person is thirsty.

Counterlogical conditionals:

1. If a person has to cough, then the person’s food went down the wrong way.

2. If a person is wet, then the person fell into a swimming pool.

3. If a campfire goes out, then water was poured on this campfire.

4. If a person is thirsty, then the person ate a lot of salt.

A.1.6 Experiment 6

The relevant details of this experiment are provided in Section 3.2.2. For more, see
Singmann and Klauer (2011): Experiment 2.

In the experiment nine different contents were presented, for three prological, three
neutral, and, three counterlogical conditionals.
Prological conditionals:

1. If a person fell into a swimming pool, then the person is wet.

2. If a dog has fleas, then it will scratch itself from time to time.

3. If you prick a soap-bubble, then it will pop.

Neutral conditionals:

1. If a person studies hard, then the person will get a good grade in the test.

2. If a person has turned on the air conditioner, then the person feels cool.

3. If a person drinks a lot of coke, then the person will gain weight.
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Counterlogical conditionals:

1. If you water a plant well, then the plant stays green.

2. If a person brushes his/her teeth, then the person will not get cavities.

3. If a girl had sexual intercourse, then she is pregnant.

A.1.7 Experiment 7

The relevant details of this experiment are provided in Section 3.2.3. For more, see
Singmann et al. (2014): Probabilized conditional inference task.

In the experiment four different contents out of the following 16 were presented in
German. Both the original German version and the corresponding translations in
English follow:

1. If oil prices continue to rise then German petrol prices will rise. (Wenn der
Ölpreis weiter steigt, dann wird der Sprit in Deutschland teurer werden.)

2. If car ownership increases then traffic congestion will get worse. (Wenn die
Anzahl der Autobesitzer steigt, dann nimmt die Anzahl der Staus zu.)

3. If more people use protective sun cream then cases of skin cancer will be reduced.
(Wenn mehr Menschen Sonnencreme benutzen, dann gibt es weniger Fälle von
Hautkrebs.)

4. If kindergarten teachers’ salaries are improved then the recruitment of kinder-
garten teachers will increase. (Wenn die Löhne in Kindergärten steigen, dann
werden mehr Erzieher und Erzieherinnen ausgebildet werden.)

5. If jungle deforestation continues then Gorillas will become extinct. (Wenn die
Abholzung der Regenwälder fortschreitet, dann werden Gorillas aussterben.)

6. If student grants are raised then university entries will increase. (Wenn der
BAföG Satz erhöht wird, wird es mehr Studienbewerber geben.)

7. If the industrialized nations reduce their CO2 emissions then global warming
will be reduced. (Wenn die Industrienationen den Ausstoss von CO2 reduzieren,
dann wird die globale Erwärmung abgeschwächt).

8. If student fees are brought back then the number of students will drop. (Wenn
Studiengebühren wieder eingeführt werden, dann wird die Anzahl der Studieren-
den sinken.)
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9. If primary school class sizes are reduced then the national education level will
improve. (Wenn die Klassengrösse in der Grundschule reduziert wird, dann
wird das allgemeine Bildungsniveau ansteigen.)

10. If immigration laws are made stricter then the number of immigrants in Germany
will decrease. (Wenn die Asylgesetze verscärft werden, dann wird die Anzahl
der Imigranten in Deutschland abnehmen.)

11. If the cost of fruit and vegetables is subsidised then people will eat more healthily.
(Wenn die Preise für Obst un Gemüse subventioniert werden, dann werden die
Menschen sich gesünder ernähren.)

12. If German troops remain in Afghanistan then acts of terrorism in Germany
will increase. (Wenn deutsche Soldaten in Afghanistan blieben dann wird es in
Deutschland mehr terroristische Anschläge geben.)

13. If genetic research continues then a cure for any cancer will be found. (Wenn
die Genforschung fortgesetzt wird, dann wird es eine Behandlung für jeden
Krebs geben.)

14. If the cost of fuel increases then more people in Freiburg will use bicycles.
(Wenn di Spritpreise weiter steigenm dann werden mehr Menschen in Freiburg
Fahrrad fahren.)

15. If global warning continues then Hamburg will be flooded. (Wenn die globale
Erwärmung weiter anhält, dann wird Hamburg überschwemmt werden.)

16. If Greece leaves the Euro then Italy will too. (Wenn Griechenland den Euro
verlässt, dann wird Italien den Euro verlassen.)

A.1.8 Experiment 8

The relevant details of this experiment are provided in Section 3.2.3. For more, see
Singmann et al. (2014): Deductive conditional inference task.
In the experiment two different contents were presented in German. Both the

original German version and the corresponding translations in English follow:

1. If the letter is a B then the number is a 7. (Wenn der Buchstabe ein B ist,
dann ist die Zahl eine 7.)

2. If the number is a 4 then the letter is an E. (Wenn die Zahl eine 4 ist, dann ist
der Buchstabe ein E.)
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A.2 Logistic Regression Model Theory

A.2.1 Ranking Theory

Ranking theory quantifies disbelief expressed by negative ranking functions κ.

Assume a non-empty set W containing mutually exclusive and jointly exhaustive
possibilities, and an algebra A over W . Then κ is a negative ranking function for A,
iff κ(A)→ N ∪ {∞}, such that for all A,B ∈ A:

κ(W ) = 0 and κ(∅) =∞

κ(A ∪B) = min{κ(A), κ(B)}

where κ(A) is called the negative rank of A.

Conditional rank of B, given A, representing conditional beliefs:

κ(B|A) = κ(A ∩B)− κ(A)

κ(A) = 0 represents that A is not disbelieved. κ(A) = n, n > 0 represents that A
is disbelieved to the n-th degree.

Positive ranking functions β expressing degrees of belief :

β(A) = κ(Ā)

such that for all A,B ∈ A:

β(W ) =∞ and β(∅) = 0

β(A ∪B) = min{β(A), β(B)}

β(B|A) = β(Ā ∪B)− β(Ā)

The conditional degree of belief in B, β(B|A), represents the degree of belief in
the material implication, where Ā represents the false antecedent case, where the
material implication is satisfied trivially.

Two-sided ranking functions:

τ(A) = β(A)− κ(A) = κ(Ā)− κ(A)

τ(B|A) = β(B|A)− κ(B|A) = κ(B̄|A)− κ(B|A)
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Translation from probabilities to negative ranks is possible (Spohn, 2009; Skovgaard-
Olsen, 2016).

A.2.2 Logistic Regression

Probability that the dependent variable Y will take the value 1, i.e. ‘True’:

P (Y = 1|X1, . . . , Xn) =
z

1 + z

where z = eb0+b1·X1+...bn·Xn , and bi are indexed weights which express how much the
indexed predictor Xi contributes to reducing the variance in the depending variable.

Simplification:

P (Y = 1|X1, . . . , Xn) =
1

1 + 1
z

Transformations, in order to summarize the effect of Xi by a single coefficient:

Conditional Odds:
Oi =

P (Y = 1|X1, . . . , Xn)

1− P (Y = 1|X1, . . . , Xn)

Oi = z = eb0+b1·X1+...bn·Xn

Logged Odds:
ln(Oi) = b0 + b1 ·X1 + . . . bn ·Xn

(parallels multiple linear regression)

A.2.3 Logistic Regression and Ranking Theory

Two-sided ranking functions are the logged odds of a proposition not taking the value
‘true’.

τ(A) = β(A)− β(Ā) = κ(Ā)− κ(A)

κ(A) ≈ loga(P (X = 1)), where 0 < a < 1

τ(A) ≈ loga(P (X = 0))− loga(P (X = 1)) = loga

(
P (X = 0)

P (X = 1)

)
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Table 40: Skovgaard-Olsen’s derived expressions for determining individuals’ infer-
ence endorsements

MP: P (Y = 1|X = 1) =
1

1 + e−(b0+b1)
DA: P (Y = 0|X = 0) =

1

1 + eb0

AC: P (X = 1|Y = 1) =
1

1 + e−(b∗0+b1)
MT: P (X = 0|Y = 0) =

1

1 + eb
∗
0

The parallel between ranking theory and logistic regression can be made closer by
considering the logged odds format of the equations in Table 40, as shown in Table
41.

Table 41: Logged odds format of Skovgaard-Olsen’s derived expressions for deter-
mining individuals’ inference endorsements

MP: ln

(
P (Y = 1|X = 1)

P (Y = 0|X = 1)

)
= b0 + b1 DA: ln

(
P (Y = 0|X = 0)

P (Y = 1|X = 0)

)
= −b0

AC: ln

(
P (X = 1|Y = 1)

P (X = 0|Y = 1)

)
= b∗0 + b1 MT: ln

(
P (X = 0|Y = 0)

P (X = 1|Y = 0)

)
= −b∗0

The two-sided ranking function τ for conditional probability (Appendix A.2.1) can
be obtained by inverting the logarithm’s base in the expressions in Table 41, as shown
in Table 42.

Table 42: Two-sided ranking function τ expressed through logged odds format of
the derived expressions.

ln

(
P (Y = 1|X = 1)

P (Y = 0|X = 1)

)
= log 1

e

(
P (Y = 0|X = 1)

P (Y = 1|X = 1)

)
= τ(C|A)

ln

(
P (X = 1|Y = 1)

P (X = 0|Y = 1)

)
= log 1

e

(
P (X = 0|Y = 1)

P (X = 1|Y = 1)

)
= τ(A|C)

ln

(
P (Y = 0|X = 0)

P (Y = 1|X = 0)

)
= log 1

e

(
P (Y = 1|X = 0)

P (Y = 0|X = 0)

)
= τ(C̄|Ā)

ln

(
P (X = 0|Y = 0)

P (X = 1|Y = 0)

)
= log 1

e

(
P (X = 1|Y = 0)

P (X = 0|Y = 0)

)
= τ(Ā|C̄)
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From Tables 41 and 42, simple inference endorsements expressions using the two-
sided ranking function can be derived, as shown in Table 43.

Table 43: Expressions for determining individuals’ inference endorsements through
the two-sided ranking function

MP: τ(C|A) = b0 + b1 DA: τ(C̄|Ā) = −b0

AC: τ(A|C) = b∗0 + b1 MT: τ(Ā|C̄) = −b∗0

A.3 Derivation of Endorsement Expressions

In the following, the complete derivations of the endorsement expressions for the
models, as formalized by Oberauer (2006), presented in Section ??, Mental Model
Theory (Original and Directionality Variants), and, Suppositional Theory (Sequential
and Exclusive Variants), are shown.

A.3.1 Mental Model Theory

Original Variant

MP : r · f · a · (1− e) + r · f · (1− a) · (1− e)

+ r · (1− f) · a · (1− e) + r · (1− f) · (1− a) · (1− e)

= r · f · (1− e) · (a+ 1− a) + r · (1− f) · (1− e) · (a+ 1− a)

= r · f · (1− e) + r · (1− f) · (1− e)

= r · (1− e) · (f + 1− f)

= r · (1− e)

(7)

AC : r · f · (1− a) · e+ r · f · (1− a) · (1− e)

+ r · (1− f) · (1− a) · e+ r · (1− f) · (1− a) · (1− e)

= r · (1− a) · [f · e+ f · (1− e) + (1− f) · e+ (1− f) · (1− e)]

= r · (1− a) · [f · (e+ 1− e) + (1− f) · (e+ 1− e)]

= r · (1− a)

(8)
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DA : r · f · (1− a) · e+ r · f · (1− a) · (1− e) = r · f · (1− a) · (e+ 1− e)

= r · f · (1− a)
(9)

MT : r · f · a · (1− e) + r · f · (1− a) · (1− e) = r · f · (1− e) · (a+ 1− a)

= r · f · (1− e)
(10)

Directionality Variant

MP : r · f · a · (1− e) · d+ r · f · a · (1− e) · (1− d)

+ r · f · (1− a) · (1− e) · d+ r · f · (1− a) · (1− e) · (1− d)

+ r · (1− f) · a · (1− e) + r · (1− f) · (1− a) · (1− e) · d

+ r · (1− f) · (1− a) · (1− e) · (1− d)

= r · f · (1− e) · (a · d+ a− a · d+ d− a · d+ 1− d− a+ a · d)

+ r · (1− f) · (1− e) · (a+ d− d · a+ 1− d− a+ d · a)

= r · f · (1− e) + r · (1− f) · (1− e) = r · (1− e) · (f + 1− f)

= r · (1− e)

(11)

AC : r · f · (1− a) · e · d+ r · f · (1− a) · (1− e) · d

+ r · (1− f) · (1− a) · e · d+ r · (1− f) · (1− a) · (1− e) · d

= r · f · (1− a) · d · (e+ 1− e) + r · (1− f) · (1− a) · d · (e+ 1− e)

= r · d · (1− a) · (f + 1− f)

= r · (1− a) · d

(12)

DA : r · f · (1− a) · e · d+ r · f · (1− a) · e · (1− d)

+ r · f · (1− a) · (1− e) · d+ r · f · (1− a) · (1− e) · (1− d)

= r · f · (1− a) · e · (d+ 1− d) + r · f · (1− a) · (1− e) · (d+ 1− d)

= r · f · (1− a) · e+ r · f · (1− a) · (1− e)

= r · f · (1− a) · (e+ 1− e)

= r · f · (1− a)

(13)
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MT : r · f · a · (1− e) · d+ r · f · (1− a) · (1− e) · d

= r · f · (1− e) · d · (a+ 1− a)

= r · f · (1− e) · d

(14)

A.3.2 Suppositional Theory

Sequential Variant

MP : b · c · i+ (1− i) · c+ b · c · i · (1− c) · (1− i) · s

+ b · c · i · (1− c) · (1− i) · (1− s) + b · c · (1− i) · (1− i) · (1− s) · (1− s∗)

+ b · c · (1− i) · (1− i) · (1− s) · s∗ + b · c · (1− i) · (1− i) · s · (1− s∗)

+ b · c · (1− i) · (1− i) · s · s∗ + b · c · (1− i) · i · (1− s∗)

+ b · c · (1− i) · i · s∗ + b · (1− c) · (1− i) · (1− s)

+ b · (1− c) · (1− i) · s+ b · (1− c) · i · (1− c) · (1− s)

+ b · (1− c) · i · (1− c) · s+ b · (1− c) · i · c

= b · c · i · [i+ c− c · i+ (1− i− c+ c · i) · (s+ 1− s)
+ (1− i) · (s∗ + 1− s∗) + (1− c)]

+ b · c · (1− i) · (1− i) · [(1− s) · (1− s∗ + s∗) + s · (1− s∗ + s∗)]

+ b · (1− c) · [(1− i) · (1− s+ s) + (i− c · i) · (1− s+ s)]

= b · c · i · (3− i− c) + b · c · (1− 2 · i+ i2) + b · (1− c · i− c+ c2 · i)

= 3 · b · c · i− b · c · i2 − b · c2 · i+ b · c− 2 · b · c · i+ b · c · i2 + b

− b · c · i− b · c+ b · c2 · i

= b

(15)
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AC : b · c · i · (i+ (1− i) · c) + b · c · i · (1− c) · (1− i) · s

+ b · c · i · (1− c) · (1− i) · (1− s) + b · c · (1− i) · (1− i) · (1− s) · (1− s∗)

+ b · c · (1− i) · (1− i) · s · (1− s∗) + bvc · (1− i) · (1− i) · s · (1− s∗)

+ b · c · (1− i) · (1− i) · s · s∗ + b · c · (1− i) · i · (1− s∗)

+ b · c · (1− i) · i · s∗

= b · c · i[i+ c− c · i+ (1− i− c+ c · i) · (s+ 1− s) + (1− i) · (1− s∗ + s∗)]

+ b · c · (1− i) · (1− i) · [(1− s) · (1− s∗ + s∗) + s · (1− s∗ + s∗)]

= b · c · i · (2− i) + b · c · (1− 2 · i+ i2)

= b · c
(16)

DA : b · c · i · (i+ (1− i) · c) + b · c · i · (1− c) · (1− i) · s

+ b · c · i · (1− c) · (1− i) · (1− s) + b · c · (1− i) · (1− i) · (1− s) · s∗

+ b · c · (1− i) · (1− i) · s · s∗ + b · c · (1− i) · i · s∗

+ b · (1− c) · i · (1− c) · (1− s) + b · (1− c) · i · (1− c) · s

+ b · (1− c) · i · c

= b · c · i · [i+ c− c · i+ (1− i− c+ c · i) · (s+ 1− s)]

+ b · c · (1− i) · s∗ · (1− s− i+ s · i+ s− s · i+ i)

+ b · (1− c) · i · (1− s− c+ c · s+ s− c · s+ c)

= b · c · i+ b · c · (1− i) · s∗ + b · (1− c) · i

= b · (c · i+ c · s∗ − c · s∗ · i+ i− c · i)

= b · (c · s∗ · (1− i) + i)

(17)
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MT : b · c · i · (i+ (1− i) · c) + b · c · i · (1− c) · (1− i) · s

+ b · c · (1− i) · (1− i) · s · (1− s∗) + b · c · (1− i) · (1− i) · s · s∗

+ b · c · (1− i) · i · (1− s∗) + b · c · (1− i) · i · s∗

+ b · (1− c) · (1− i) · s+ b · (1− c) · i · (1− c) · s

+ b · (1− c) · i · c

= b · c · i · [i+ (1− i) · c+ (1− i) · (1− s∗) + (1− i) · s∗ + (1− c)]

+ b · s · [c · i · (1− c) · (1− i) + c · (1− i) · (1− i) · (1− s∗)
+ c · (1− i) · (1− i) · s∗ + (1− c) · (1− i) + (1− c) · (1− c) · i]

= b · c · i · [i+ c− c · i+ (1− i) · (1− s∗ + s∗) + 1− c]

+ b · s[c · i · (1− i− c+ c · i) + c · (1− 2 · i+ i2) · (1− s∗ + s∗)

+ 1− i− c+ ci̇+ i · (1− 2 · c+ c2)]

= b · c · i · (2− c · i)

+ b · s · (c · i− c · i2 − c2 · i+ c2 · i2 + c− 2 · c · i+ c · i2+
1− i− c+ c · i+ i− 2 · c · i+ c2 · i)

= b · c · i · (2− c · i) + b · s · (1− 2 · c · i+ c2 · i2)

= b · [c · i · (2− c · i) + s · (1− 2 · c · i+ c2 · i2)]

= b · (2 · c · i− c2 · i2 + s− 2 · c · i · s+ s · c2 · i2)

= b · [2 · c · i · (1− s)− c2 · i2 · (1− s) + s]

= b · [(1− s) · (2 · c · i− c2 · i2) + s]

(18)

Exclusive Variant

AC : b ·m · c · i · (i+ (1− i) · c) + b ·m · c · i · (1− c) · (1− i)

+ b ·m · c · (1− i) · (1− i) + b ·m · c · (1− i) · i

= b ·m · c · i · (i+ c− c · i+ 1− i− c+ c · i)

+ b ·m · c · (1− i) · (1− i+ i)

= b ·m · c · i+ b ·m · c · (1− i) = b ·m · c · i+ b ·m · c− b ·m · c · i

= b ·m · c

(19)

117



MP : b ·m · c · i · (i+ (1− i) · c) + b ·m · c · i · (1− c) · (1− i)

+ b ·m · c · (1− i) · (1− i) + b ·m · c · (1− i) · i

+ b ·m · (1− c) · (1− i) + b ·m · (1− c) · i · (1− c)

+ b ·m · (1− c) · i · c+ b · (1−m) · (1− s)

+ b · (1−m) · s

= b ·m · c · i · (i+ c− c · i+ 1− i− c+ c · i) + b ·m · c · (1− i) · (1− i+ i)

+ b ·m · (1− c) · (1− i+ i− i · c+ i · c) · b · (1−m) · (1− s+ s)

= b ·m · c · i+ ·b ·m · c · (1− i) + b ·m · (1− c) + b · (1−m)

= b ·m · c · i+ b ·m · c− b ·m · c · i+ b ·m− b ·m · c+ b− b ·m

= b

(20)

DA : b ·m · c · i · (i+ (1− i) · c) + b ·m · c · i · (1− c) · (1− i)

+ b ·m · (1− c) · i · (1− c) + b ·m · (1− c) · i · c

= b ·m · c · i · (i+ c− c · i+ 1− i− c+ c · i) + b ·m · (1− c) · i · (1− c+ c)

= b ·m · c · i+ b ·m · i · (1− c) = b ·m · c · i+ b ·m · i− b ·m · c · i

= b ·m · i
(21)

MT : b ·m · c · i · (i+ (1− i) · c) + b ·m · c · (1− i) · i

+ b ·m · (1− c) · i · c+ b · (1−m) · s

= b ·m · c · i · (i+ c− c · i+ 1− i+ 1− c) + b · (1−m) · s

= b ·m · c · i · (2− c · i) + b · (1−m) · s

= b · [m · c · i(2− c · i) + (1−m) · s]

(22)
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A.4 ε-MMT and Oaksford-Chater

Table 44: Representation of Oaksford-Chater Probabilistic Model parameters using
ε-MMT parameters

Oaks. Probability ε-MMT
a P(X) p3 + p4

b P(Y) p2 + p4

ε P(¬X|Y) p3
p3+p4

MP 1− ε = 1− p3
p3 + p4

= �
�p3 + p4 −��p3
p3 + p4

=
p4

p3 + p4

DA
1− b− a · ε

1− a
=

1− (p2 + p4)− (���
�p3 + p4) · p3

���p3+p4

1− (p3 + p4)

=
1− p2 − p4 − p3

1− p3 − p4
=

p1
p1 + p2

AC
a · (1− ε)

b
=

(p3 + p4) · (1− p3
p3+p4

)

p2 + p4
)

=
���

��(p3 + p4) ·��p3+p4−��p3
���p3+p4

p2 + p4
=

p4
p2 + p4

MT
1− b− a · ε

1− b
=

1− (p2 + p4)−���
��(p3 + p4) · p3

���p3+p4

1− (p2 + p4)

=
1− p2 − p4 − p3

1− p2 − p4
=

p1
p1 + p3

P(Y|¬X)
b− a · (1− ε)

1− a
=
p2 + p4 − (p3 + p4) · (1− p3

p3+p4
)

1− (p3 + p4)

=
p2 + p4 −(((((

((((
((

(p3 + p4) · (��p3+p4−��p3
���p3+p4

)

1− p3 − p4
=
p2 +��p4 −��p4
1− p3 − p4

=
p2

p1 + p2

P(¬X∨Y) 1− a · ε = 1−���
��(p3 + p4) ·

p3

���
�p3 + p4

= 1− p3 = p1 + p2 + p4

119



P(X∧Y) a · (1− ε) = (p3 + p4) · (1 =
p3

p3 + p4
) =���

��(p3 + p4) · (��
p3 + p4 −��p3
���

�p3 + p4
) = p4

A.5 Main Analysis Tables

In the following, the tables showing all of the analysis results are presented. In
Chapter 6 and 7 only the relevant parameter value analysis results were displayed
and discussed.

Table 46: Mean percentages of the individuals’ parameter values in experiment 1.
(‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Bicond’ - Biconditional,
‘Form’ - Conditional Presentation Form, ‘D’ - Disablers, ‘A’ - Alternatives,
‘F’ - Few, ‘M’ - Many, ‘Par’ - Parameter)

Form Form
D/A Par Red Cond Bicond D/A Par Red Cond Bicond

F/F

p1 40.07 35.42 44.85

M/F

p1 32.58 37.49 37.53
p2 5.10 3.32 1.41 p2 0.50 1.54 1.28
p3 3.42 1.25 2.21 p3 46.70 8.27 18.36
p4 51.39 60.01 51.53 p4 20.22 52.70 42.82

F/M

p1 50.22 46.10 41.70

M/M

p1 32.92 31.21 44.36
p2 15.41 9.49 4.47 p2 19.24 16.23 4.32
p3 4.11 1.79 1.52 p3 18.15 6.85 3.94
p4 30.28 42.61 52.30 p4 29.69 45.72 47.38
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Table 47: Analysis of the change in parameter values, within participants in experi-
ment 1, for different conditional presentation forms, for each combination
of varying amounts of disablers and alternatives. Significant p-values are
marked in bold. (‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Bicond’
- Biconditional, ‘Form’ - Conditional Presentation Form, ‘1’ and ‘2’ - Two
different tasks, ‘Mean’ - Mean of the differences between parameter values
expressed as a percentage, ‘D’ - Disablers, ‘A’ - Alternatives, ‘F’ - Few,
‘M’ - Many, ‘Par’ - Parameter)

Form 1 - Form 2

D/A Par
Red - Cond Red - Bicond Cond - Bicond

Mean p-value Mean p-value Mean p-value

F/F

p1 4.66 .433 -4.77 .147 -9.43 .020
p2 1.78 .034 3.69 < .001 1.91 .006
p3 2.17 < .001 1.21 .063 -0.96 .445
p4 -8.61 .075 -0.14 .891 8.47 .060

F/M

p1 4.11 .891 8.51 .112 4.40 .422
p2 5.91 .023 10.94 < .001 5.02 .004
p3 2.32 .036 2.59 .009 0.27 .281
p4 -12.33 .117 -22.03 < .001 -9.69 .327

M/F

p1 -4.91 .217 -4.95 .308 -0.04 .724
p2 -1.04 .638 -0.78 .078 0.26 .610
p3 38.43 < .001 28.34 < .001 -10.09 .044
p4 -32.47 < .001 -22.60 .001 9.87 .117

M/M

p1 1.71 .624 -11.44 .023 -13.15 .052
p2 3.01 .290 14.92 < .001 11.91 < .001
p3 11.30 < .001 14.22 < .001 2.92 .005
p4 -16.03 < .001 -17.69 .004 -1.66 .570
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Table 48: Analysis of the change in parameter values, within participants in ex-
periment 1, for varying amounts of disablers and alternatives, for each
conditional presentation form. Significant p-values are marked in bold.
(‘D’ - Disablers, ‘A’ - Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ -
Two different tasks, ‘Mean’ - Mean of the differences between parameter
values expressed as a percentage, ‘Form’ - Conditional Presentation Form,
‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Bicond’ - Biconditional,
‘Par’ - Parameter)

D/A 1 - D/A 2

Form Par
F/F - F/M F/F - M/F F/F - M/M

Mean p-value Mean p-value Mean p-value

Red

p1 -10.14 .147 7.49 .126 7.15 .183
p2 -10.31 .001 4.60 < .001 -14.14 < .001
p3 -0.69 .012 -43.28 < .001 -14.74 < .001
p4 21.12 .002 31.17 < .001 21.70 .001

Cond

p1 -10.68 .092 -2.08 .624 4.21 .681
p2 -6.18 .018 1.78 .001 -12.91 < .001
p3 -0.54 .289 -7.02 .069 -5.60 < .001
p4 17.40 .014 7.31 .224 14.29 .046

Bicond

p1 3.15 .481 7.31 .240 0.49 .210
p2 -3.06 .754 0.13 .217 -2.91 .264
p3 0.69 .673 -16.15 < .001 -1.73 .441
p4 -0.77 .544 8.71 .100 4.16 .256

F/M - M/F F/M - M/M M/F - M/M

Red

p1 17.63 .017 17.30 .004 -0.34 .984
p2 14.91 < .001 -3.83 .100 -18.74 < .001
p3 -42.59 < .001 -14.05 < .001 28.55 < .001
p4 10.05 .030 0.59 .829 -9.46 .014

Cond

p1 8.61 .153 14.89 .020 6.29 .281
p2 7.95 < .001 -6.73 .004 -14.69 < .001
p3 -6.48 .018 -5.07 < .001 1.41 .308
p4 -10.09 .042 -3.11 .570 6.98 .389

Bicond

p1 4.17 .290 -2.66 .367 -6.83 .036
p2 3.19 .055 0.15 .272 -3.04 .011
p3 -16.84 .005 -2.42 .704 14.42 .003
p4 9.48 .028 4.93 .769 -4.55 .544
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Table 49: Mean percentages of the individuals’ parameter values in experiment
2. Analysis of parameters for different conditional presentation forms,
for each speaker expertise case. Significant p-values are marked in bold.
(‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Form’ - Conditional
Presentation Form, ‘Speak’ - Speaker Expertise, ‘Non’ - Non-Expert,
‘Exp’ - Expert, ‘1’ and ‘2’ - Two different tasks, ‘Mean’ - Mean of the
differences between parameter values expressed as a percentage, ‘Par’ -
Parameter)

Form
Speak Par Red Cond

Non

p1 34.71 36.17
p2 16.10 11.04
p3 17.60 11.40
p4 31.49 41.18

Exp

p1 34.42 38.77
p2 16.49 10.01
p3 17.72 9.04
p4 31.20 42.11

Form 1 - Form 2

Speak Par
Red - Cond

Mean p-value

Non

p1 -1.46 .286
p2 5.06 < .001
p3 6.19 < .001
p4 -9.69 < .001

Exp

p1 -4.34 .063
p2 6.48 < .001
p3 8.68 < .001
p4 -10.91 < .001

Table 50: Analysis of the change in parameter values, within participants in ex-
periment 2, for different speaker expertise cases, for each conditional
presentation form. Significant p-values are marked in bold (‘Speak’ -
Speaker Expertise, ‘Non’ - Non-Expert, ‘Exp’ - Expert, ‘1’ and ‘2’ - Two
different tasks, ‘Mean’ - Mean of the differences between parameter values
expressed as a percentage, ‘Red’ - Reduced Inference, ‘Cond’ - Conditional,
‘Form’ - Conditional Presentation Form, ‘Par’ - Parameter)

Speak 1 - Speak 2

Form Par
Non - Exp

Mean p-value

Cond

p1 -2.60 .178
p2 1.03 .123
p3 2.36 .004
p4 -0.93 .628
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Table 51: Mean percentages of the individuals’ parameter values in experiment
3, for different conditional presentation forms, for each combination of
varying amount of disablers and alternatives, and, each suppression effect
condition. (‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Form’ -
Conditional Presentation Form, ‘D’/‘Dis’ - Disablers, ‘A’/‘Alt’ - Alterna-
tives, ‘F’ - Few, ‘M’ - Many, ‘Supp’ - Suppression Effect Condition, ‘Base’
- Baseline, ‘Par’ - Parameter)

Form Form
Supp D/A Par Red Cond Supp D/A Par Red Cond

Base

F/F

p1 35.18 38.60

Dis

F/F

p1 26.25 32.16
p2 5.24 4.68 p2 6.17 5.21
p3 4.09 2.49 p3 8.58 7.50
p4 55.50 54.23 p4 59.01 55.12

F/M

p1 33.16 40.92

F/M

p1 41.36 41.48
p2 11.81 8.12 p2 13.67 10.12
p3 3.16 2.65 p3 5.67 5.04
p4 51.87 48.31 p4 39.30 43.36

M/F

p1 32.27 37.38

M/F

p1 25.13 35.34
p2 2.31 1.90 p2 2.96 4.18
p3 46.56 20.69 p3 54.42 40.62
p4 18.86 40.03 p4 17.49 19.86

M/M

p1 28.48 35.35

M/M

p1 35.91 34.02
p2 24.79 15.16 p2 19.78 18.78
p3 19.18 10.43 p3 16.09 13.44
p4 27.54 39.06 p4 28.22 33.76

Alt

F/F

p1 35.44 27.35

Alt

M/F

p1 22.13 25.55
p2 15.58 13.64 p2 8.47 11.92
p3 5.31 4.07 p3 43.38 23.99
p4 43.67 54.95 p4 26.02 38.54

F/M

p1 44.96 36.04

M/M

p1 32.29 30.69
p2 25.01 22.19 p2 23.69 28.37
p3 4.44 2.99 p3 17.25 9.66
p4 25.59 38.77 p4 26.77 31.28

124



Table 52: Analysis of the change in parameter values, within participants in experi-
ment 3, for different conditional presentation forms, for each combination
of varying amount of disablers and alternatives, and, each suppression
effect condition. Significant p-values are marked in bold. (‘Red’ - Re-
duced Inference, ‘Cond’ - Conditional, ‘Form’ - Conditional Presentation
Form, ‘1’ and ‘2’ - Two different tasks, ‘Mean’ - Mean of the differences
between parameter values expressed as a percentage, ‘D’/‘Dis’ - Disablers,
‘A’/‘Alt’ - Alternatives, ‘F’ - Few, ‘M’ - Many, ‘Supp’ - Suppression Effect
Condition, ‘Base’ - Baseline, ‘Par’ - Parameter)

Form 1 - Form 2 Form 1 - Form 2

Supp D/A Par
Red - Cond

Supp D/A Par
Red - Cond

Mean p-value Mean p-value

Base

F/F

p1 -3.43 .485

Dis

F/F

p1 -5.92 .581
p2 0.56 .248 p2 0.95 .374
p3 1.59 .144 p3 1.08 .548
p4 1.27 .770 p4 3.88 .517

F/M

p1 -7.77 .280

F/M

p1 -0.12 .885
p2 3.68 .316 p2 3.55 .442
p3 0.52 .269 p3 0.63 .648
p4 3.56 .469 p4 -4.06 .501

M/F

p1 -5.11 .280

M/F

p1 -10.22 .203
p2 0.41 .990 p2 -1.21 .737
p3 25.87 < .001 p3 13.80 .034
p4 -21.17 .002 p4 -2.37 .981

M/M

p1 -6.87 .341

M/M

p1 1.88 .648
p2 9.64 .026 p2 1.00 .904
p3 8.76 .012 p3 2.66 .486
p4 -11.53 .034 p4 -5.54 .337

Alt

F/F

p1 8.09 .153

Alt

M/F

p1 -3.42 .391
p2 1.94 .189 p2 -3.45 .013
p3 1.25 .110 p3 19.39 .009
p4 -11.27 .072 p4 -12.52 .015

F/M

p1 8.92 .253

M/M

p1 1.60 .819
p2 2.82 .493 p2 -4.68 .219
p3 1.45 .153 p3 7.59 .011
p4 -13.19 .059 p4 -4.51 .179
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Table 53: Analysis of the change in parameter values, within participants in ex-
periment 3, for varying amounts of disablers and alternatives, for each
conditional presentation form, and, each suppression effect condition (1/2).
Significant p-values are marked in bold. (‘D’/‘Dis’ - Disablers, ‘A’/‘Alt’
- Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ - Two different tasks,
‘Mean’ - Mean of the differences between parameter values expressed as
a percentage, ‘Form’ - Conditional Presentation Form, ‘Red’ - Reduced
Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression Effect Condition,
‘Base’ - Baseline, ‘Par’ - Parameter)

D/A 1 - D/A 2

Supp Form Par
F/F - F/M F/F - M/F F/F - M/M

Mean p-value Mean p-value Mean p-value

Base

Red

p1 2.02 .770 2.90 .354 6.69 .159
p2 -6.57 .066 2.93 .025 -19.55 < .001
p3 0.93 .485 -42.47 < .001 -15.10 < .001
p4 3.63 .585 36.64 < .001 27.96 < .001

Cond

p1 -2.32 .620 1.22 .732 3.25 .191
p2 -3.45 .395 2.78 .086 -10.48 < .001
p3 -0.15 .469 -18.20 < .001 -7.93 < .001
p4 5.92 .517 14.20 .043 15.17 .010

Dis

Red

p1 -15.11 .055 1.12 .810 -9.66 .124
p2 -7.51 .009 3.20 .021 -13.61 < .001
p3 2.92 .136 -45.83 < .001 -7.51 .012
p4 19.70 .007 41.51 < .001 30.79 < .001

Cond

p1 -9.32 .136 -3.18 .773 -1.86 .923
p2 -4.91 .013 1.04 .084 -13.57 < .001
p3 2.46 .113 -33.11 < .001 -5.93 .010
p4 11.76 .456 35.26 < .001 21.37 .007

Alt

Red

p1 -9.52 .189 13.31 .013 3.15 .668
p2 -9.44 .006 7.10 .006 -8.11 .019
p3 0.87 .391 -38.06 < .001 -11.94 < .001
p4 18.09 .002 17.65 .008 16.90 .018

Cond

p1 -8.69 .063 1.80 .627 -3.34 .304
p2 -8.56 .004 1.72 .549 -14.73 < .001
p3 1.08 .331 -19.93 < .001 -5.60 .005
p4 16.17 .010 16.40 .004 23.67 < .001
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Table 54: Analysis of the change in parameter values, within participants in ex-
periment 3, for varying amounts of disablers and alternatives, for each
conditional presentation form, and, each suppression effect condition (2/2).
Significant p-values are marked in bold. (‘D’/‘Dis’ - Disablers, ‘A’/‘Alt’
- Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ - Two different tasks,
‘Mean’ - Mean of the differences between parameter values expressed as
a percentage, ‘Form’ - Conditional Presentation Form, ‘Red’ - Reduced
Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression Effect Condition,
‘Base’ - Baseline, ‘Par’ - Parameter)

D/A 1 - D/A 2

Supp Form Par
F/M - M/F F/M - M/M M/F - M/M

Mean p-value Mean p-value Mean p-value

Base

Red

p1 0.89 .929 4.67 .809 3.79 .603
p2 9.50 .005 -12.99 .013 -22.49 < .001
p3 -43.40 < .001 -16.02 < .001 27.38 < .001
p4 33.01 < .001 24.33 .005 -8.68 .036

Cond

p1 3.54 .849 5.57 .551 2.03 .869
p2 6.23 .004 -7.03 .004 -13.26 < .001
p3 -18.05 < .001 -7.78 .001 10.27 .381
p4 8.28 .151 9.24 .151 0.97 .949

Dis

Red

p1 16.23 .049 5.45 .810 -10.78 .034
p2 10.71 < .001 -6.11 .044 -16.82 < .001
p3 -48.75 < .001 -10.42 .001 38.33 < .001
p4 21.81 .002 11.08 .072 -10.73 .006

Cond

p1 6.14 .178 7.46 .130 1.32 .648
p2 5.94 .002 -8.67 .003 -14.61 < .001
p3 -35.58 < .001 -8.40 < .001 27.18 .001
p4 23.50 .002 9.61 .097 -13.90 .011

Alt

Red

p1 22.83 .006 12.67 .072 -10.16 .076
p2 16.54 < .001 1.33 .475 -15.22 < .001
p3 -38.94 < .001 -12.81 < .001 26.12 < .001
p4 -0.44 .710 -1.18 .954 -0.75 .954

Cond

p1 10.50 .092 5.35 .253 -5.15 .346
p2 10.27 .032 -6.17 .014 -16.45 < .001
p3 -21.00 .001 -6.67 < .001 14.33 .059
p4 0.23 .819 7.50 .886 7.27 .219
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Table 55: Analysis of the change in parameter values, between participants in exper-
iment 3, for different suppression effect conditions, for each conditional
presentation form, and, each combination of varying amounts of disablers
and alternatives (1/2). Significant p-values are marked in bold. (‘D’/‘Dis’
- Disablers, ‘A’/‘Alt’ - Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ -
Two different tasks, ‘Mean’ - Mean of the differences between parameter
values expressed as a percentage, ‘Form’ - Conditional Presentation Form,
‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression
Effect Condition, ‘Base’ - Baseline, ‘Par’ - Parameter)

Supp 1 - Supp 2

Form D/A Par
Base - Dis Base - Alt Dis - Alt

Mean p-value Mean p-value Mean p-value

Red

F/F

p1 8.93 .017 -0.25 .496 -9.19 .067
p2 -0.93 .270 -10.33 < .001 -9.41 .001
p3 -4.49 .043 -1.22 .310 3.28 .161
p4 -3.50 .180 11.82 .025 15.31 .009

F/M

p1 -8.18 .126 -11.80 .043 -3.60 .315
p2 -1.87 .111 -13.22 .001 -11.34 .019
p3 -2.51 .064 -1.28 .367 1.23 .105
p4 12.57 .093 26.29 .003 13.74 .040

M/F

p1 7.13 .111 10.14 .066 3.00 .245
p2 -0.66 .482 -6.17 .018 -5.51 .032
p3 -7.85 .129 3.18 .303 11.05 .086
p4 1.37 .391 -7.16 .222 -8.55 .127

M/M

p1 -7.42 .095 -3.80 .277 3.59 .206
p2 5.00 .175 1.10 .389 -3.91 .147
p3 3.10 .066 1.95 .324 -1.16 .175
p4 -0.68 .433 0.77 .227 1.43 .329
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Table 56: Analysis of the change in parameter values, between participants in exper-
iment 3, for different suppression effect conditions, for each conditional
presentation form, and, each combination of varying amounts of disablers
and alternatives (2/2). Significant p-values are marked in bold. (‘D’/‘Dis’
- Disablers, ‘A’/‘Alt’ - Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ -
Two different tasks, ‘Mean’ - Mean of the differences between parameter
values expressed as a percentage, ‘Form’ - Conditional Presentation Form,
‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression
Effect Condition, ‘Base’ - Baseline, ‘Par’ - Parameter)

Supp 1 - Supp 2

Form D/A Par
Base - Dis Base - Alt Dis - Alt

Mean p-value Mean p-value Mean p-value

Cond

F/F

p1 6.44 .108 11.23 .009 4.79 .289
p2 -0.53 .279 -8.96 .001 -8.42 .005
p3 -5.01 .005 -1.57 .283 3.43 .020
p4 -0.89 .405 -0.71 .367 0.17 .378

F/M

p1 -0.57 .351 4.92 .412 5.43 .315
p2 -2.00 .048 -14.07 < .001 -12.08 .008
p3 -2.39 .019 -0.34 .367 2.04 .025
p4 4.94 .166 9.51 .109 4.59 .089

M/F

p1 2.04 .461 11.82 .098 9.78 .444
p2 -2.28 .475 -10.02 < .001 -7.75 < .001
p3 -19.92 .003 -3.27 .297 16.61 .015
p4 20.17 < .001 1.50 .360 -18.71 .001

M/M

p1 1.32 .412 4.68 .210 3.33 .322
p2 -3.62 .084 -13.21 .002 -9.58 .020
p3 -3.01 .153 0.77 .419 3.77 .143
p4 5.32 .115 7.79 .128 2.50 .481
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Table 57: Mean percentages of the individuals’ parameter values in experiment
4, for different conditional presentation forms, for each combination of
varying amount of disablers and alternatives, and, each suppression effect
condition. (‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Form’ -
Conditional Presentation Form, ‘D’/‘Dis’ - Disablers, ‘A’/‘Alt’ - Alterna-
tives, ‘F’ - Few, ‘M’ - Many, ‘Supp’ - Suppression Effect Condition, ‘Base’
- Baseline, ‘Par’ - Parameter)

Form Form
Supp D/A Par Red Cond Supp D/A Par Red Cond

Base

F/F

p1 33.82 43.34

Dis

F/F

p1 33.49 39.72
p2 4.93 1.94 p2 3.70 2.63
p3 3.40 0.91 p3 8.48 7.75
p4 57.85 53.81 p4 54.34 49.90

F/M

p1 51.86 44.06

F/M

p1 44.25 38.38
p2 9.57 6.46 p2 8.48 7.65
p3 4.83 2.73 p3 7.79 5.75
p4 33.75 46.74 p4 39.49 48.21

M/F

p1 46.96 35.53

M/F

p1 35.35 29.80
p2 2.20 1.68 p2 3.11 2.75
p3 32.40 13.64 p3 41.05 36.03
p4 18.45 49.16 p4 20.49 31.42

M/M

p1 24.91 33.58

M/M

p1 28.27 28.90
p2 24.10 11.72 p2 21.69 16.66
p3 13.26 6.82 p3 17.94 17.27
p4 37.72 47.88 p4 32.10 37.18

Alt

F/F

p1 21.42 20.25

Alt

M/F

p1 33.49 29.40
p2 23.15 17.84 p2 9.55 11.57
p3 5.05 4.68 p3 37.68 25.37
p4 50.38 57.23 p4 19.28 33.67

F/M

p1 50.71 40.57

M/M

p1 23.16 32.84
p2 21.61 15.14 p2 31.18 26.51
p3 4.12 2.16 p3 18.90 8.85
p4 23.56 42.13 p4 26.76 31.81
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Table 58: Analysis of the change in parameter values, within participants in experi-
ment 4, for different conditional presentation forms, for each combination
of varying amount of disablers and alternatives, and, each suppression
effect condition. Significant p-values are marked in bold. (‘Red’ - Re-
duced Inference, ‘Cond’ - Conditional, ‘Form’ - Conditional Presentation
Form, ‘1’ and ‘2’ - Two different tasks, ‘Mean’ - Mean of the differences
between parameter values expressed as a percentage, ‘D’/‘Dis’ - Disablers,
‘A’/‘Alt’ - Alternatives, ‘F’ - Few, ‘M’ - Many, ‘Supp’ - Suppression Effect
Condition, ‘Base’ - Baseline, ‘Par’ - Parameter)

Form 1 - Form 2 Form 1 - Form 2

Supp D/A Par
Red - Cond

Supp D/A Par
Red - Cond

Mean p-value Mean p-value

Base

F/F

p1 -9.51 .150

Dis

F/F

p1 -6.23 .327
p2 2.99 .001 p2 1.07 .318
p3 2.49 .002 p3 0.73 .922
p4 4.04 .482 p4 4.43 .583

F/M

p1 7.80 .177

F/M

p1 5.86 .378
p2 3.10 .177 p2 0.82 .217
p3 2.10 .058 p3 2.04 .158
p4 -12.99 .028 p4 -8.72 .153

M/F

p1 11.43 .191

M/F

p1 5.55 .610
p2 0.52 .103 p2 0.35 .799
p3 18.76 .001 p3 5.03 .308
p4 -30.71 .001 p4 -10.93 .096

M/M

p1 -8.67 .090

M/M

p1 -0.63 .829
p2 12.38 .011 p2 5.03 .012
p3 6.45 .009 p3 0.68 .739
p4 -10.16 .016 p4 -5.08 .131

Alt

F/F

p1 1.17 .829

Alt

M/F

p1 4.09 .754
p2 5.31 .122 p2 -2.02 .347
p3 0.38 .875 p3 12.32 .015
p4 -6.85 .318 p4 -14.39 .044

F/M

p1 10.14 .122

M/M

p1 -9.68 .023
p2 6.48 .023 p2 4.67 .164
p3 1.95 .378 p3 10.05 .002
p4 -18.57 .010 p4 -5.04 .829
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Table 59: Analysis of the change in parameter values, within participants in ex-
periment 4, for varying amounts of disablers and alternatives, for each
conditional presentation form, and, each suppression effect condition (1/2).
Significant p-values are marked in bold. (‘D’/‘Dis’ - Disablers, ‘A’/‘Alt’
- Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ - Two different tasks,
‘Mean’ - Mean of the differences between parameter values expressed as
a percentage, ‘Form’ - Conditional Presentation Form, ‘Red’ - Reduced
Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression Effect Condition,
‘Base’ - Baseline, ‘Par’ - Parameter)

D/A 1 - D/A 2

Supp Form Par
F/F - F/M F/F - M/F F/F - M/M

Mean p-value Mean p-value Mean p-value

Base

Red

p1 -18.03 .033 -13.14 .247 8.91 .239
p2 -4.64 .206 2.73 .001 -19.18 < .001
p3 -1.43 .991 -29.00 < .001 -9.86 < .001
p4 24.10 .004 39.40 < .001 20.13 .018

Cond

p1 -0.72 .721 7.80 .456 9.76 .482
p2 -4.52 .068 0.27 .157 -9.78 < .001
p3 -1.82 .275 -12.73 .001 -5.91 .001
p4 7.07 .304 4.65 .510 5.93 .315

Dis

Red

p1 -10.76 .131 -1.86 .829 5.22 .318
p2 -4.78 .006 0.59 .096 -17.99 < .001
p3 0.69 .557 -32.57 < .001 -9.46 .001
p4 14.85 .034 33.84 < .001 22.23 .001

Cond

p1 1.34 .814 9.92 .075 10.82 .010
p2 -5.03 .004 -0.12 .096 -14.03 < .001
p3 2.00 .028 -28.28 < .001 -9.52 < .001
p4 1.69 .481 18.49 .010 12.72 .005

Alt

Red

p1 -29.29 < .001 -12.07 .217 -1.74 .456
p2 1.54 .845 13.60 .002 -8.03 .055
p3 0.94 .088 -32.63 < .001 -13.85 < .001
p4 26.82 < .001 31.10 < .001 23.61 < .001

Cond

p1 -20.32 .007 -9.15 .122 -12.59 .002
p2 2.70 .256 6.27 .004 -8.67 .020
p3 2.51 .038 -20.69 < .001 -4.17 .016
p4 15.10 .040 23.57 .001 25.43 < .001
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Table 60: Analysis of the change in parameter values, within participants in ex-
periment 4, for varying amounts of disablers and alternatives, for each
conditional presentation form, and, each suppression effect condition (2/2).
Significant p-values are marked in bold. (‘D’/‘Dis’ - Disablers, ‘A’/‘Alt’
- Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ - Two different tasks,
‘Mean’ - Mean of the differences between parameter values expressed as
a percentage, ‘Form’ - Conditional Presentation Form, ‘Red’ - Reduced
Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression Effect Condition,
‘Base’ - Baseline, ‘Par’ - Parameter)

D/A 1 - D/A 2

Supp Form Par
F/M - M/F F/M - M/M M/F - M/M

Mean p-value Mean p-value Mean p-value

Base

Red

p1 4.90 .567 26.95 .003 22.05 .013
p2 7.37 .005 -14.54 < .001 -21.91 < .001
p3 -27.57 < .001 -8.43 .002 19.13 < .001
p4 15.30 .028 -3.97 .417 -19.27 .003

Cond

p1 8.53 .191 10.48 .074 1.95 .871
p2 4.79 .007 -5.26 .002 -10.05 < .001
p3 -10.91 .001 -4.08 .001 6.82 .294
p4 -2.42 .721 -1.14 .347 1.28 .787

Dis

Red

p1 8.89 .085 15.98 .021 7.08 .217
p2 5.37 .002 -13.21 < .001 -18.58 < .001
p3 -33.26 < .001 -10.15 < .001 23.11 < .001
p4 18.99 .004 7.38 .518 -11.61 .010

Cond

p1 8.58 .142 9.48 .055 0.90 .814
p2 4.90 .003 -9.00 < .001 -13.90 < .001
p3 -30.27 < .001 -11.51 < .001 18.76 < .001
p4 16.79 .014 11.03 .044 -5.76 .096

Alt

Red

p1 17.22 .019 27.55 < .001 10.33 .158
p2 12.06 .001 -9.56 .014 -21.63 < .001
p3 -33.57 < .001 -14.78 < .001 18.78 .007
p4 4.28 .445 -3.20 .505 -7.48 .085

Cond

p1 11.18 .085 7.73 .281 -3.44 .357
p2 3.57 .025 -11.37 .003 -14.94 < .001
p3 -23.20 < .001 -6.68 < .001 16.52 .046
p4 8.47 .505 10.33 .248 1.86 .544
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Table 61: Analysis of the change in parameter values, between participants in exper-
iment 4, for different suppression effect conditions, for each conditional
presentation form, and, each combination of varying amounts of disablers
and alternatives (1/2). Significant p-values are marked in bold. (‘D’/‘Dis’
- Disablers, ‘A’/‘Alt’ - Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ -
Two different tasks, ‘Mean’ - Mean of the differences between parameter
values expressed as a percentage, ‘Form’ - Conditional Presentation Form,
‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression
Effect Condition, ‘Base’ - Baseline, ‘Par’ - Parameter)

Supp 1 - Supp 2

Form D/A Par
Base - Dis Base - Alt Dis - Alt

Mean p-value Mean p-value Mean p-value

Red

F/F

p1 0.33 .430 12.41 .036 12.07 .010
p2 1.23 .130 -18.22 < .001 -19.45 < .001
p3 -5.08 .005 -1.65 .104 3.43 .042
p4 3.51 .204 7.46 .087 3.96 .272

F/M

p1 7.60 .180 1.15 .384 -6.47 .162
p2 1.09 .459 -12.05 < .001 -13.14 < .001
p3 -2.97 .003 0.71 .361 3.67 .001
p4 -5.74 .230 10.19 .150 15.93 .021

M/F

p1 11.60 .104 13.47 .032 1.86 .311
p2 -0.91 .482 -7.35 .001 -6.44 .001
p3 -8.65 .150 -5.26 .339 3.37 .282
p4 -2.05 .248 -0.82 .323 1.21 .384

M/M

p1 -3.35 .172 1.75 .465 5.11 .113
p2 2.41 .488 -7.08 .027 -9.49 .017
p3 -4.68 .042 -5.64 .113 -0.96 .316
p4 5.61 .253 10.96 .032 5.34 .116
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Table 62: Analysis of the change in parameter values, between participants in exper-
iment 4, for different suppression effect conditions, for each conditional
presentation form, and, each combination of varying amounts of disablers
and alternatives (2/2). Significant p-values are marked in bold. (‘D’/‘Dis’
- Disablers, ‘A’/‘Alt’ - Alternatives, ‘F’ - Few, ‘M’ - Many, ‘1’ and ‘2’ -
Two different tasks, ‘Mean’ - Mean of the differences between parameter
values expressed as a percentage, ‘Form’ - Conditional Presentation Form,
‘Red’ - Reduced Inference, ‘Cond’ - Conditional, ‘Supp’ - Suppression
Effect Condition, ‘Base’ - Baseline, ‘Par’ - Parameter)

Supp 1 - Supp 2

Form D/A Par
Base - Dis Base - Alt Dis - Alt

Mean p-value Mean p-value Mean p-value

Cond

F/F

p1 3.62 0.367 23.10 0.001 19.47 0.000
p2 -0.69 .066 -15.90 < .001 -15.21 < .001
p3 -6.83 < .001 -3.77 .004 3.07 .025
p4 3.90 .217 -3.40 .356 -7.33 .108

F/M

p1 5.68 .092 3.52 .318 -2.19 .427
p2 -1.20 .176 -8.67 .002 -7.48 .009
p3 -3.02 .001 0.57 .071 3.59 < .001
p4 -1.46 .329 4.59 .195 6.08 .211

M/F

p1 5.73 .389 6.11 .323 0.41 .494
p2 -1.08 .176 -9.89 < .001 -8.81 < .001
p3 -22.38 < .001 -11.74 .078 10.66 .014
p4 17.74 .037 15.51 .050 -2.25 .311

M/M

p1 4.68 .161 0.73 .418 -3.94 .362
p2 -4.93 .015 -14.80 < .001 -9.85 .014
p3 -10.44 < .001 -2.03 .127 8.42 .001
p4 10.71 .010 16.10 .002 5.38 .040
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Table 63: Mean percentages of the individuals’ parameter values in experiment 5,
for prological and counterlogical conditionals, for each instruction type.
(‘Pro’ - Prological, ‘Count’ - Counterlogical, ‘Instr’ - Instructions, ‘Ded’ -
Deductive, ‘Ind’ - Inductive, ‘Par’- Parameter)

Type Type
Instr Par Pro Count Instr Par Pro Count

Ded

p1 37.92 41.40

Ind

p1 53.17 46.70
p2 20.72 12.46 p2 11.20 4.40
p3 3.70 5.96 p3 1.79 16.04
p4 37.38 40.14 p4 33.84 32.86

Table 64: Analysis of the change in parameter values, within participants in experi-
ment 5, for prological and counterlogical conditionals, for each instruction
type. Analysis for deductive and inductive instructions, for each condi-
tional type. Significant p-values are marked in bold. (‘Pro’ - Prological,
‘Count’ - Counterlogical, ‘Instr’ - Instructions, ‘Ded’ - Deductive, ‘Ind’ -
Inductive, ‘1’ and ‘2’ - Two different tasks, ‘Mean’ - Mean of the differences
between parameter values expressed as a percentage, ‘Par’ - Parameter)

Type 1 - Type 2 Type 1 - Type 2

Instr Par
Pro - Count

Instr Par
Pro - Count

Mean p-value Mean p-value

Ded

p1 -3.49 .648

Ind

p1 6.47 .288
p2 8.26 .452 p2 6.80 .001
p3 -2.27 .014 p3 -14.24 < .001
p4 -2.76 .798 p4 0.97 .936

Instr 1 - Instr 2 Instr 1 - Instr 2

Type Par
Ded - Ind

Type Par
Ded - Ind

Mean p-value Mean p-value

Pro

p1 -15.26 .025

Count

p1 -5.30 .211
p2 9.52 .042 p2 8.06 .426
p3 1.91 .042 p3 -10.07 < .001
p4 3.54 .327 p4 7.27 .274
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Table 65: Mean percentages of the individuals’ parameter values in experiment 6,
for prological, counterlogical and neutral conditionals, for each instruction
type. (‘Pro’ - Prological, ‘Count’ - Counterlogical, ‘Neut’ - Neutral, ‘Instr’
- Instructions, ‘Ded’ - Deductive, ‘Ind’ - Inductive, ‘Par’- Parameter)

Type Type
Instr Par Pro Count Neut Instr Par Pro Count Neut

Ded

p1 25.27 29.59 39.14

Ind

p1 34.42 34.40 37.17
p2 43.24 33.39 15.20 p2 29.20 19.86 4.98
p3 1.78 4.57 3.83 p3 2.16 13.58 17.02
p4 29.80 32.62 41.68 p4 33.92 32.06 40.65

Table 66: Analysis of the change in parameter values, within participants in ex-
periment 6, for prological, counterlogical and neutral conditionals, for
each instruction type. Significant p-values are marked in bold. (‘Pro’ -
Prological, ‘Count’ - Counterlogical, ‘Neut’ - Neutral, ‘Instr’ - Instruc-
tions, ‘Ded’ - Deductive, ‘Ind’ - Inductive, ‘1’ and ‘2’ - Two different tasks,
‘Mean’ - Mean of the differences between parameter values expressed as a
percentage, ‘Par’ - Parameter)

Type 1 - Type 2

Instr Par
Pro - Count Pro - Neut Count - Neut

Means p-value Means p-value Means p-value

Ded

p1 -4.31 .252 -13.87 .011 -9.56 .052
p2 9.85 .038 28.04 < .001 18.19 < .001
p3 -2.79 .018 -2.05 < .001 0.74 .206
p4 -2.82 .517 -11.89 .031 -9.07 .134

Ind

p1 0.01 .559 -2.76 .329 -2.77 .318
p2 9.34 .034 24.22 < .001 14.87 < .001
p3 -11.42 < .001 -14.87 < .001 -3.44 .672
p4 1.87 .541 -6.73 .088 -8.60 .031
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Table 67: Analysis of the change in parameter values, between participants in
experiment 6, for deductive and inductive instructions, for each conditional
type. Significant p-values are marked in bold. (‘Pro’ - Prological, ‘Count’
- Counterlogical, ‘Neut’ - Neutral, ‘Instr’ - Instructions, ‘Ded’ - Deductive,
‘Ind’ - Inductive, ‘1’ and ‘2’ - Two different tasks, ‘Mean’ - Mean of the
differences between parameter values expressed as a percentage, ‘Par’ -
Parameter)

Instr 1 - Instr 2 Instr 1 - Instr 2

Type Par
Ded - Ind

Type Par
Ded - Ind

Mean p-value Mean p-value

Pro

p1 -9.14 .003

Count

p1 -4.82 .002
p2 14.03 .192 p2 13.53 .453
p3 -0.37 .009 p3 -9.01 < .001
p4 -4.13 .014 p4 0.56 .067

Instr 1 - Instr 2

Type Par
Ded - Ind

Mean p-value

Neut

p1 1.96 .490
p2 10.22 .357
p3 -13.18 < .001
p4 1.03 .459

Table 68: Mean percentages and analysis of the individuals’ parameter values in
experiment 7 and 8, for inductive and deductive reasoning. Significant
p-values are marked in bold. (‘Ind’ - Inductive, ‘Ded’ - Deductive, ‘Mean’
- Mean of the differences between parameter values expressed as a per-
centage, ‘Par’- Parameter)

Par Ind Ded
p1 21.87 31.26
p2 7.60 25.06
p3 32.00 1.68
p4 38.47 42.00

Par
Ind - Ded

Mean p-value
p1 -9.41 .363
p2 -17.46 .466
p3 30.32 < .001
p4 -3.53 .289
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A.6 Monty Python Witch Logic

Why is the conditional “If the woman weighs the same as a duck, then she is a witch”
true, according to the 1975 British movie “Monty Python and the Holy Grail”.

1. She looks like a witch.

2. She is dressed like a witch.

3. She has a wart.

4. She turned someone into a newt.

5. One burns witches.

6. One also burns wood.

7. Witches burn because they are made of wood.

8. Also bridges are made of wood.

9. However, bridges can also be made of stone → Making a bridge out of her
cannot prove that she is a witch.

10. Wood floats in water.

11. Aside from bread, apples, very small rocks, cider, gravy, cherries, mud, churches
and lead, also ducks float in water.

12. It follows that if she weighs the same as a duck, she is made of wood because
she will float in water and if she is made of wood then she is a witch.

13. Therefore, by transitivity, if she weighs the same as a duck then she is a witch,
holds.

This list of points has been summarized from the movie’s scene script found on
http://www.montypython.net/scripts/HG-witchscene.php.
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