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Abstract

Menschliches Verhalten in Spielen ist vorhersehbar. Dies soll durch die gezielte Ana-
lyse von großen Datenmengen gezeigt werden. Dazu wurden eigens experimentelle
Studien durchgeführt, in denen etwa 200 Teilnehmer das klassische Spiel Schere-
Stein-Papier gegen verschiedene probalistische bots gespielt haben. So wurden etwa
28000 Spielrunden, von der jede die für das Spiel charakteristische Entscheidung
zwischen den vorhandenen Aktionen widerspiegelt, aufgezeichnet. Zusätzlich haben
einige der Testpersonen Fragebögen zu ihrem Verhalten beantwortet oder einfache
Kognitionsaufgaben abgeschlossen. Die verschiedenen Daten wurden daraufhin
nach Mustern und Besonderheiten untersucht. Dabei wurden signifikante Abwei-
chungen von rationalem Verhalten bei den Spielern festgestellt. Features, wie die
unausgeglichene Wahl der Aktionen oder das verzerrte Rotationsverhalten nach
Sieg oder Niederlage machen das menschliche Verhalten vorhersehbar. Dies soll
durch die Interpreatation der Daten durch verschiedene maschinelle Lernmethoden
gezeigt werden. Dazu wurde die Vorgehensweise von kollaborativen Filteransätzen,
State Vector Machines und Neuronaler Netze verglichen. Als Bewertungsmaß für
die genannten Methoden wird die Genauigkeit benutzt, mit der diese die nächste
Handlung der Benutzer korrekt vorhersagen können. Außerdem wurden die Infor-
mationen, die den verschiedenen Methoden zugänglich gemacht werden, variiert.
Dabei handelt es sich beispielsweise um die gewählten Aktionen eines oder beider
Spieler über eine variable Anzahl von vergangenen Runden. In die neuronalen Netze
wurden außerdem verschiedene Zusatzinputs eingegeben, um zu untersuchen, ob
diese zu signifikanten Abweichungen in der Vorhersagegenauigkeit führen. Da diese
Vorhersagegenauigkeit abhängig von der Aussagekraft der Merkmale in den Daten
ist, wird es möglich, sowohl die Leistung der verschiedenen Methoden als auch die
Besonderheiten menschlichen Verhaltens zu interpretieren.



Abstract

Human behaviour in games is predictable. To demonstrate this large amounts
of data from simple-decision-making scenarios were analysed and examined for
patterns and peculiarities. For this purpose we conducted our own experimental
studies, in which over 200 people have played the classic game of Rock-Paper-Scissor
(RPS) for about 28000 rounds, against various probabilistic bots. Some of the
participants additionally answered questionnaires on their behaviour or completed
simple cognitive tasks. Evaluating the data we were able to detect significant
deviations from rational behaviour within our test persons. Features such as the
unbalanced choice of actions or the predictable cycle behaviour after victory or
defeat allow machine learning methods to create meaningful models of the human
behaviour during a RPS game. The interpretations of the data are compared
by means of collaborative filtering approaches, state vector machines and neural
networks in order to draw conclusions about human behaviour. The accuracy with
which they correctly predict the next action of the users is used as a measure for
the evaluation of these methods. In addition, the information made available to the
different techniques has been varied, like the actions selected by one or both players
over a variable number of previous rounds. Furthermore, different supplementary
inputs are fed into the neural networks to investigate whether these result in
significant differences in prediction accuracy. Since this accuracy is dependent on
the expressiveness of the characteristics in the data, it is possible to interpret the
different methods as well as the peculiarities in human behaviour.
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1
Introduction

Most people think that artificial intelligence (AI) is a trend that emerged only a
few years ago. While the term itself was actually proposed more than 60 years
ago, when John McCarthy and some colleagues embossed the term for one of their
automata studies in 1956 [31]. They tried to proceed on the conjecture, that any
aspect of learning or any other feature of intelligence can in principle be described
so precisely that a machine should be able to simulate it. After early success of
AI systems on simple problems the progress slowed down in the seventies, when
the complexity of the problem space, especially considering the issue of context,
surpassed the available computational power. In the years to come AI underwent
multiple up’s and down’s with high hopes and promises which later could not
be lived up to. In interplay of various aspects though, AI is now on an upswing
for several years starting in the late eighties, as multiple subproblems got solved
building upon each other: the computational power grew exponentially, the second
spring of neural networks led to fast progress in the field of machine learning and the
rise of the technology standard, particularly the permanent connectivity through
the internet allowed for a mutual research goal. So it is more common nowadays to
build on existing theories and models instead of proposing new ones, meaning that
more people advance the same topics. The internet also played a decisive part in
the last factor to be mentioned: big data. Through the availability of very large
data sets (almost all of them collected and shared through the internet) AI systems
and especially the former mentioned machine learning methods are able to learn
behaviour from many thousands of examples.
The interplay of all these factors led to the mentioned trend of AI, being one

of the most discussed topics of today’s society. To extend our knowledge and
understanding of the broad field of artificial Intelligence we have to plunge deeper



2 1. Introduction

into specific regions. To do so we can first of all divide AI into four strongly
connected categories: Thinking Rationally, Acting Rationally, Thinking Humanly
& Acting Humanly [45, p. 1ff]. With the first two being mostly based on the laws
of logic and the task of acting accordingly, they try to find the best, most rational,
solution to a problem and try to determine what is needed to carry this out. Acting
Humanly can easiest be understood with the Turing test, proposed by Alan Turing
in 1950, where we try to create intelligence that can not be distinguished from
human intelligence anymore. The last remaining category deals with the matter of
thinking humanly, which will be professed a little more in the next paragraph, as it
is the most important one for this thesis. It is needless to say, that none of the
four can be mastered without comparable progress in the others.
Thinking humanly: the cognitive modelling approach. To say that a given

program thinks like a human, we first of all have to determine how humans
think. This can be done through introspection (catching your own thoughts as
they go by), psychological experiments (observing another person in action) or
through brain imaging (observing a brain in action). If a program’s input-output
behaviour matches corresponding human behaviour, that is evidence that some of
the program’s mechanisms could also be operating in humans. (cf. [45])

One of the first to try this were Newell and Simon in 1961. With their ’General
problem solver’ they compared the reasoning steps of their program with those of
human subjects [34]. From this point the interdisciplinary field of cognitive science
emerged, bringing together computer models from AI and experimental techniques
from psychology to construct precise and testable theories of the human mind.

In this work we choose an experimental study to obtain information about human
behaviour. Particularly we use the well known and studied game of Rock-Paper-
Scissors. The game is probably one of the oldest ever invented by mankind, with
written evidence from China going back over 2000 years [33]. It also counts as
one of the fairest mechanisms to resolve conflicts, as it was just recently used
to settle an argument in an auction house [50]. Due to its simplicity and the
perfect balancing we are able to transfer the players decisions almost exclusively
onto his cognition and his perception of his opponent, making it an interesting
game to study. Furthermore its specifics reoccur in samples and areas all over the
world, with the most prominent examples in nature and economics [6, 26, 28, 42].
For example, can the cyclic behaviour be physically observed, when looking at
three species of side-blotched lizards, whose male population periodically alternates
exactly like the game predicts [46].
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1.1. Contribution
In this thesis we try to combine a classical and simple cognitive experiment with
modern machine learning to obtain a better understanding of human cognition.
A self acquired big data collection allows to find and predict patterns in human
decision making behaviour. Multiple different methods from machine learning are
compared to find out which technique predicts the human way of thinking, for this
specific problem, the closest and also which features are the most important to
look out for.

1.2. Organization of the Thesis
We start the analysis by comparing already existing work to Rock-Paper-Scissors
psychology and computational methods. Chapter 3 describes the theory of the
game and the different machine learning methods. Afterwards we examine the
characteristics of our experiment and present the data in section 4. This data is
then used to evaluate and interpret the different models in chapter 5. Lastly we
conclude the results and give a prospect on possible improvements for the future.





2
Related Work

Earlier work in this topic can be divided into two sections. Behavioural studies
of humans in decision making scenarios, especially in games and particularly in
Rock-Paper-Scissors (RPS). And secondly into work, that is trying to model such
problems with computational methods.

2.1. Rock-Paper-Scissors in Psychology
From a psychological point of view the most influential survey of Rock-Paper-
Scissors was conducted by Wang, Xu, and Zhou [52] in 2014. The three researchers
from China were able to show a significant cycling behaviour in their experimental
subjects depending on the players success or failure in the previous round of the
game, which even improved when increasing the pay-off and therefore the value
for the player. They showed that winning a round increases the probability of
the subjects to use the same throw again, while losing makes them more likely
to swap. This corresponds to the well known win-stay-lose-shift strategy. An
important thing to note here is that the users were matched against a random user
after every round. Therefore they only have knowledge about their own last throw
and no information about their current opponent whatsoever. This leads to an
experiment pointing solely on the human decision process given success or failure.
Most other experiments including this thesis, aim on getting information about
the decision-making whilst duelling a single opponent repeatedly.

Some parts of this approach were readopted 2016 by Dyson et al. [16]. They claim
that negative reinforced cycling has a much bigger impact than the positive one
and show that cycle behaviour depends on the used throw as well as the outcome.
Additionally they propose that the cycle’s direction tends to continue onto the next
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turns.
The two sources above as well as multiple others suspect that the distribution at

which the three possible actions are chosen, also is not as uniform as it is expected
to be. In all of the mentioned surveys ’Rock’, is the most chosen one, obtaining
a pick rate around 35.5%. Followed by ’Paper’ and ’Scissors’, with the latter one
being mostly the least played.

2.2. Computational RPS
Since many years people try to master simple and lately even not so simple games
by using machines to analyse the game’s theory and therefore facilitate the decision-
making process for the human player. It is important to note that almost all
computational work on this subject is concerned with creating a machine that
beats his human opponents as convincingly as possible, while the goal of our work
is to predict human behaviour and draw conclusions on his cognition from it. The
fact that a correct prediction of the opponents action corresponds to a won round
in the game, allows us to still compare the results with reservation.

2.2.1. Early approaches
One of the first appearances of a RPS playing machine (that was not solely
probalistic) was in the year 2000, with Ali et al. playing the game with a genetic
algorithm [3]. They specifically used an algorithm that stores the frequency their
opponent used a particular throw after matching his last three choices before that.
Which means they tried to match their opponents history-string of length three.
As a defence mechanism they used a random caprice, which probability increases
with the number of successive losses. The algorithm achieved a winrate around
53.5% (35.3% including ties) versus human players (10 players with 30 rounds).

2.2.2. Machine learning approaches
A more recent approach was presented by Pozzato et al., using a machine learning
algorithm based on Gaussian mixture models, where again the last three throws get
analysed. In contrast to the last approach though, this time both the opponents
and the robots turns were captured to train the algorithm. The authors achieved a
winrate of up to 36.6% on a dataset of 650 games from multiple users.
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Big data. Two notable approaches prior to this one have tried to solve the
RPS problem via big data collection. Firstly the New York Times published an
interactive online game in 2011 that falls back onto a database of over 200000
rounds of play with an undisclosed winning percentage. The idea and the initial
database can be attributed to Shawn Bayern, whose website [7] runs the game
already since 2001. After four rounds of random play it starts matching the exact
history (own and opposite throws), with its database and uses the strategy that
beats the throw used by most users in the same situation. Essentially, it treats the
game as a forth-order Markov process, predicting your action, depending on the
average action of past players. Both websites are still running up to this date but
the underlying database for the better promoted NYTimes site does not seem to
have changed since its first publication.
Pomerleau extends this approach using an up to 10-th order Markov chain,

allowing also imperfect matches, which get weighted accordingly. This allows the
author to reach good results even with a comparably small database of 13000
rounds. Over another 4000 rounds the bot achieved a winrate of 53.05%. More
interesting in this case though is the fact that including ties the winrate almost
reaches 40%, which means that ties only occur in around 24.5% of games, which is
significantly lower than in random play.





3
Fundamentals

3.1. Rock-Paper-Scissors Theory
A formal description and game theoretical analysis of the Rock-Paper-Scissors
game family was introduced by Panumate et al. [38] in 2016. They established
the format RPS(n,b,s,r), which means that n players simultaneously show a move
among b possible moves with possible s winning regulations at each round out of r
round matches in total.

Figure 3.1.: Strategic interaction be-
tween the possible actions
in a standard game of
Rock-Paper-Scissors

In the basic and best known variant
RPS(2,3,1,r), the n=2 players can choose
from b=3 different actions: R (Rock), P (Pa-
per) and S (Scissors), all depicted by a
specific motion of their hand. Depend-
ing on cultural background the players will
count to three (1-2-3, Ro-sham-bo, Rock-
Paper-Scissors, Schnick-Schnack-Schnuck,
etc.) while swinging their fist simultane-
ously and revealing their chosen throw on
four. Conditioned on the following rules
player one or two receives a point (or none
if their chosen throws match): Action ’Rock’
beats action ’Scissors’, which in turn beats
’Paper’, which in turn is better than ’Rock’.
This behaviour is visualized in Figure 3.1.

It has been shown that from a game re-
finement point of view our classical model
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should be played for r=9 rounds, resulting in a game refinement score [49] similar
to extremely balanced and popular board games like Go or Chess and even close to
classical sports like foot- or basketball. This is the reason why in the continuation
of this thesis we will be using the model RPS(2,3,1,9) unless stated otherwise.

3.2. Decision Theory
Decision theory describes the study of reasoning underlying an agent’s choice during
a decision-making process, which marks the cognitive process of selecting a logical
option among several. When trying to make a good decision, the agent must weight
the positives and negatives of each option, and consider all the alternatives. For
effective decision making, the decision maker must be able to predict the outcome
of each option, and based on all these items, determine which choice is the best for
that particular situation. Therefore making a decision in a stochastic environment
is a very complex and computational intensive task. Observing humans during a
decision-making process gives great insight into the persons values, preferences and
beliefs. Comparing those for multiple different people in the same scenario allows
us to infer valuable information for cognitive science.

3.2.1. Game theory
Closely related to the field of decision theory, game theory (GT) is mainly concerned
with the interactions of agents, whose decisions affect each other. It provides a
mathematical framework to represent and analyse rational decision-making and
formalizes the outcomes and corresponding utilities for rational agents. This
allows for easy reproduceability and interpretation of the decisions. GT is also an
important part of many research areas, like economics, political science, computer
science, and philosophy, where it is widely used for studying behavior in social
settings to describe and predict the types of cooperation, conflict, and coordination
observed in groups of human decision makers (cf. [8]).
In game theory we have to distinguish between decisions with perfect and

imperfect information, meaning knowing everything about the current state and its
possible evolutions or being uncertain about parts of it. This might be induced by
simultaneous decision-making, by disclosed information like hand cards, or even by
being unsure about the incentive of your counterpart. RPS is a game of imperfect
information, as the outcome of every single round depends on the decisions all
players make equally and you do not know those decisions beforehand.
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Single-move games. Most games consist of multiple moves that are executed
sequentially. To break down a game into its components it is best to isolate and
analyse single turns. Choosing the action that maximizes your utility in every
single situation maximizes your overall pay-off. A single move game can be defined
with three components (cf. [45, p. 667f]):

• The players or agents, who will make the decisions. In our Rock-Paper-
Scissors example we just use a two players game, but it is possible to expand
this to any amount of players. Every player is represented by a unique set of
capitalized letters A/B or its name Anna/Barney.

• All actions the players can choose from. Normally displayed as lower-case
names like ’one’ or ’playRock’. They are mostly, but not necessarily the same
set for all players. For RPS the eligible actions are ’playRock’, ’playPaper’
and ’playScissors’

• Lastly a pay-off function that specifies the utility to each player for each
combination of actions by all players. For single move games, this can be
represented by a matrix, known as the strategic or normal form of the game.
The pay-off matrix for RPS looks the following:

Table 3.1.: Pay-off matrix for a single round of two players Rock-Paper-Scissors

B: playRock B: playPaper B: playScissors
A: playRock A=0, B=0 A=-1, B=+1 A=+1, B=-1
A: playPaper A=+1, B=-1 A=0, B=0 A=-1, B=+1
A: playScissors A=-1, B=+1 A=+1,B=-1 A=0, B=0

The two players A and B each choose one of the three actions and receive a
pay-off of 1, 0 or -1 depending on the opponents pick. This represents the three
possible outcomes of a single round of RPS: winning, drawing or losing.
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Strategy profile. Every player in a game will adopt a strategy, which means
he will choose one of the available actions with probability p. If p = 1 for one
of the actions and correspondingly p = 0 for all others, this strategy is called
pure. For most games, especially in a multiple-move game, it is advisable to use
a mixed strategy, which has a probability distribution over all possible actions.
Depending on each player’s choice of strategy, and therefore its strategy profile,
we can determine the game’s outcome, a numeric utility value for each player,
equalling the pay-off.

For every strategy of a player, there exists a best response (BR) for other players,
meaning a strategy that yields the most favourable outcome for themselves, given
the initial players strategy. In RPS this simply is the throw that beats the other
player.

If there exists a strategy profile for a player that is better than all others, this is
called the dominant strategy (weakly /strongly). A rational player would always
choose a dominant strategy over any other, since this improves its expected utility.
If there’s a dominant strategy for all players, the combination of those is called a
dominant strategy equilibrium.

The mathematician John Nash proved that every game has at least one equilib-
rium. The concept of equilibrium in game theoretic scenarios is therefore being
referred to as Nash equilibrium (NE) in his honour. An equilibrium is essentially a
local optimum, where no player can improve its pay-off by switching strategy, given
the other players stick to their current choice. Meaning every player is already
playing its best response to the opponent’s strategy. Due to its cyclic dominance
RPS does not have a pure strategy NE, instead we have to search a mixed strategy,
that yields a probability distribution over all possible actions.

In a single turn of RPS the choice of strategy has no impact on the outcome of
the game, since the expected utility of every action in the game is constant (zero),
independent of your own choosing. This means every participants gain or loss in
utility is exactly balanced by the loss or gain of all other participants, which makes
it a zero-sum game. In a single-move of RPS we do not have any prior knowledge
about our opponent, apart from the fact that he’s rational, since this is one of the
pre-requisites of game theory. If Player A therefore chooses to play ’Rock’, he’s
equally likely to receive a pay-off of 0,-1 and 1. The outcome is purely defined by
chance.
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Repeated games. When played only for a single move, the outcome of many
games is dominated by chance or will end up in a local optimum only [53]. In
a repeated game, players face the same decision repeatedly, but each time with
knowledge about the history of all players’ previous choices. The ability to remember
this complete history at all times is called perfect recall. A strategy profile for a
repeated game, includes the choices for each player, at each time step, for every
possible history of previous choices. The payouts of the underlying single-move
games are added over time to portray the outcome of the repeated game.

When looking at RPS in a repeated setup we might be able to find an equilibrium.
The best strategy in any multi-move two-player zero-sum game is to figure out
what your opponent is going to do and choose the action that does best against it,
essentially finding the best response. Vice versa your opponent is most likely doing
the exact same.

Intuitively selecting a pure strategy does not allow you to react to your opponent’s
strategy at all, while you make his task as easy as possible. This clearly will not
maximize your utility. Furthermore this also can not be an equilibrium, since at any
point, where you do not win you would want to switch your strategy, which already
contradicts with the definition of an equilibrium. Same holds for mixed strategies
including a probability distribution over two of the actions only. Therefore our only
chance to find an equilibrium is to find a mixed strategy that alternates between
all three throws. The probability distribution over all actions, that will lead us to
the mixed strategy equilibrium will be determined in the following.
The pay-off matrices, inferred from Table 3.1 above for A and B, respectively

are:

A =

 0 −1 1
1 0 −1
−1 1 0

 B =

 0 +1 −1
−1 0 +1
+1 −1 0


Assuming player A wants to use all of his three strategies. Let pAR be the

probability of player A choosing action ’playRock’, pAP the probability of him
choosing action ’playPaper’ and pAS the probability of taking ’playScissors’, with

pAS = 1− pAR − pAP . (3.1)
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His strategy profile would therefore look like σA = (pAR, pAP , 1− pAR− pAP ) and
the pay-offs for Player B against this strategy are given by:

σAPB =

 pAR

pAP

1− pAR − pAP


 0 +1 −1
−1 0 +1
+1 −1 0

 =

 2pAp + pAR − 1
1− pAP − 2pAR

pAR − pAP


Equating the pay-offs mathematically, leaves us with two relevant equations:

2pAp + pAR − 1 = pAR − pAP ⇔ pAP = 1
3 (3.2)

1− pAP − 2pAR = pAR − pAP ⇔ pAR = 1
3 (3.3)

Inserting this into Eq. (3.1) , completes the strategy profile for player A:

σA = (1
3 ,

1
3 ,

1
3)

Since the game is symmetric we can just exchange the roles and receive σB = σA.
The result of choosing all the actions with the same probability, meaning choosing

them completely random, is the expected outcome. Since both players have the
exact same knowledge about previously played rounds and in theory perfect recall
about it, any reasoning one player does, can be recreated by his opponent and
therefore used to counter it. However this is also known to both players, which
makes it an infinite cycle. This behaviour is often referred to as reasoning dilemma
by advanced RPS players. In our chosen variant of the game the cycle automatically
repeats itself after three stages.
With this standing in the way of a meaningful prediction of your opponent’s

strategy, the only way of losing is if your own strategy is exploitable. So the game
theoretic best strategy in RPS is to make yourself unpredictable, marking the
mixed strategy Nash equilibrium at [(1

3 ,
1
3 ,

1
3), (1

3 ,
1
3 ,

1
3)]. This correspondingly,

should be the strategy used by a rational player, who competes with another rational
player.
The fact that humans are only restricted rational, only have restricted recall

and additionally are not able to make multiple completly random choices in a row
[30, 51], allows us to still predict their behaviour. The field of behavioural game
theory, described in the next section, deals with this theory.
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3.2.2. Behavioural game theory
The field of behavioural game theory (BGT) arose after multiple researchers noticed
deviations from the behaviour the game theorists suggested. This started with the
work of Allais [4] in 1953, who discovered that his probands behaviour did not mirror
the payoff they receive, but he could not find an explanation yet. Experimental
studies from the 70’s finally demonstrated that behaviour that occurred in economic
markets showed peculiarities, that could not be grasped with the theory, but could
be proven experimentally [48]. From this point on researchers examined the
conditions that caused this divergence from rational behaviour [19]. The task of
behavioural game theory is to describe those unusual phenomena, in contrast to
GT, which tries to prescribe a correct reaction given crucial assumptions. BGT
allows us to formalize new assumptions using empirical data, like we do in this
thesis. Some of the for this work most relevant behavioural deviations are described
in the following.

The most important one for this thesis is the inability of humans to create random
sequences [30, 51]. It was shown, that random sequences created by humans reliably
deviate from random ones. They normally exhibit too few long runs of the same
sample, too many alternations, and, consequently, deviation frequencies that are
too close to the actual event probabilities (cf. [14]). It has also been shown though
that humans are better at creating those sequences if in a game scenario where
they belief it is the best strategy to be random [41], which should be the case for
the players in our experiments. The second point is that humans are proven to
act irrationally, especially following disappointing/negative events [17]. But they
mostly still converge to the rational equilibrium in the long run when facing the
problem repeatedly, as they adjust their strategies based on past experience [29].
Meaning that even though single decisions might be contradictory to what game
theory suggests, humans should ultimately be able to learn from those mistakes
and return to a more rational behaviour again. It is important to note that with
increasing incentive[12, 47], especially monetary incentive [11, p. 38f], this kind of
behaviour is even enhanced.

Mirrored onto our RPS problem, all those should heavily reflect onto the throw
distribution and especially on the earlier mentioned cycling behaviour of the
probands. With the empirical data we collect in our experiments we are hopefully
able to detect those behavioural peculiarities and allow our machine learning
methods to predict our probands decisions with more than random accuracy, as
proposed by classical game theory. The fundamentals of the used prediction
methods will be described in the next sections.
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3.3. Machine Learning
The field of machine learning is mainly concerned with finding solutions to problems
for which algorithms are difficult to develop [36]. Instead, one uses applied stochastic
and lets a model learn from data, until it can infer results from previously unknown
data as well [21]. A machine learning algorithm can be classified into the categories
supervised or unsupervised. It learns either from data only, i.e. unsupervised, or
from data and their respective desired results, i.e. supervised. These desired results
for an input are also called labels. There exist multiple different machine learning
methods, some of them described in the next sections, but firstly we examine the
probably most successful one: Artificial neural networks.

3.3.1. Artificial neural networks
Artificial neural networks (ANNs) are computational models, inspired by biology,
as they are based upon natural neural networks, that form nerve cell networks
in the brain [21]. Neuroscience suggests that human cognition is caused by elec-
trochemical activation, which is transmitted by synapses interconnecting these
cells. The activation of a single neuron can be defined as the aggregated incoming
activation. When a certain activation threshold is reached, it ’fires’ and distributes
the activation to subsequent cells, thereby stimulating them. The processes that
make up human cognition are controlled by these neural networks in the brain,
which demonstrate their impressive computing power. Artificial neural networks
represent a mathematical abstraction of the biological process that tries to exploit
their potential. (cf. [44])

Figure 3.2.: Scheme of a single neuron

Structure. Figure 3.2 shows a schematic
representation of a single artificial neuron
with inputs x1, ..., xn and output y. An
ANN consists of layers of such nodes, form-
ing large network structures. Between the
neurons of different layers lie weighted edges,
resulting in a directed graph. The first layer
is the input into the network, consisting of
the so-called features, i.e. the properties of
the data we want to learn from. The last
layer provides the features or labels of the
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network output. Both the individual neurons as well as the entire network thus
have inputs and outputs. An exemplary Feed Forward network (FNN) with two
inputs, a variable number of hidden nodes and layers and three outputs is shown
in Figure 3.3. FNNs are the first and simplest form of neural networks, where the
information only moves in one direction: forward. Additionally all neurons are
connected to all neurons in the previous as well as the next layer.

Figure 3.3.: Exemplary structure of a fully connected feed forward neural network.
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Learning process. The essential part of artificial networks is, that all connections
between two neurons i,j are assigned a weight wi,j, defining their influence to the
output, whilst all neurons have a bias, which marks the shift of their activation
function. The activation of neuron j is aggregated by summing the incoming
activations ai from all n preceding neurons, weighted with wi,j and passing it
through the neural activation function σ:

aj = σ(x) = σ(
n∑

i=1
wi,jai)

The activation σ can be set to any function, that transforms the input into the
outgoing activation. Table 3.2 lists a selection of the commonly used functions.
The activation function has a big impact on the output of each neuron and is
therefore a important parameter to determine.
Adapting the weights and biases until they describe the problem shown to the

network the best, is the core task of the learning process. To do this, we first have
to measure how big the error currently is, i.e., the difference between our output
and the desired output for the given input. This is frequently done using methods
like the mean squared error

MSE = 1
n

∑
i

= 1n(yi − ȳi),

with y marking the real and ȳ the expected output, or the cross-entropy error

CE = −
M∑

c=1
ln(pi,c) · qi,c,

with M being the number of classes, p the predicted probability that i is of class c
and q being a binary indicator that indicates if c is the correct classification for i.
Subsequently, the factors on which this error depends, i.e. all weights and biases
in our network, are gradually changed in such a way that the error is minimized.
This is done using (Stochastic) Gradient Descent with different optimizers and
Backpropagation. Two powerful tools, that allow for more effective and faster
calculations in the network and thus contribute decisively to the success of neural
networks. However, the exact theories and processes behind the two of them exceed
the share of this section and are skipped accordingly. Good sources for both can
be found in Nielsen’s book on neural networks [36].
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Table 3.2.: Exemplary activation functions

Name Function Derivative
Linear σ(x) = x σ′(x) = 1
Hyperbolic tangent (Tanh) σ(x) = tanh(x) σ′(x) = 1− tanh2

Logistic (Sigmoid) σ(x) = 1
1+e−xj

σ′(x) = σ(x) · (1− σ(x))

Rectified linear (ReLU) σ(x) = max(0, x) σ′(x) =
{

1 if x > 0
0 if x ≤ 0

Problems. Unfortunately, artificial neural networks, in addition to their great
success in many areas, also cause problems. Mainly is it very difficult for people to
understand the problem-solving knowledge of neural networks [25]. Meaning that
you mostly do not know how a problem was solved, allowing you to reproduce it
with other methods, but only that it has been solved. This also makes it increasingly
hard to detect and localize errors in your model.

The most limiting factor of neural networks though, is definitely their need to be
learned on very big datasets. It can be mathematically shown that neural networks
are able to approximate any function with arbitrary precision given a sufficiently
large network and enough data [5]. However, due to a potentially extensive number
of parameters, the task of finding an optimal parameter configuration is immensely
complex and the existence of a dataset describing the problem sufficiently is also
not guaranteed.
A common problem during learning of neural networks occurs when it is Over-

fitting the data. The reason for this lies in too much specialization onto specific
details of the training data and the associated lack of ability to generalize to foreign
data. This can be indebted to badly selected data, insufficient randomization of
the examples or simply training for too long on the same set. To avoid that, neural
networks should be validated. For this purpose, some of the data is split away
before training starts. This Validation set is then used to test the learned fit of
your model to new, unseen data.
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3.3.2. Recurrent neural networks

Figure 3.4.: Scheme of a single recur-
rent neuron

A subtype of neural networks are Recur-
rent Neural Networks (RNN’s), which, in
contrast to feed forward networks, also al-
lows its neurons to use its own output as
additional input in the next timestep. This
means it allows loops in its structure, mak-
ing it especially suited to model the relation-
ships of sequences. RNN’s are more complex
to train, but with possible feedback loops
they show greater proximity to the struc-
ture of biological brains, as they do not start
their ’thinking process’ from scratch every
time.

Long-Short-Term-Memory networks

Long-Short-Term-Memory networks (LSTM’s) are a special kind of RNN, with
improved capabilities to learn long-term dependencies. They were introduced by
Hochreiter and Schmidhuber [23] in 1997 and refined and popularized by many
in the following years. They have been incredibly successful solving all kinds
of sequence problems, like speech recognition, translation tasks or time series
prediction. The key difference to a normal RNN is the internal structure, using four
internal neural layers, instead of one. With each of them updating the cell state in
an individual manner, allowing the network to control its output more precisely
and pass on information from earlier cycles. A comprehensible explanation of the
different gates and their interplay and any further reading on LSTM’s can be found
on Christopher Olah’s website [37].

Gated-Recurrent-Unit networks

The last network type, we try to predict our data with, is the Gated-Recurrent-Unit
(GRU). Its structure features three layers, making it slightly less complex and
therefore easier and faster to learn than a LSTM. Unfortunately this also means
that the information that comes from memory (long term information) is modelled
less precisely.



3.3. Machine Learning 21

3.3.3. Support vector machines
For comparative purpose we also model the data with other learning methods. For
example using a Support Vector Machine (SVM), which aims to divide a set of
objects into two classes. To do so it tries to fit a hyperplane into the object space,
in such a way that as many objects as possible are classified correctly, while as few
objects as possible are close to the class boundaries. For multi-class classification
the SVM repeats this binary classification until it reaches the given amount of
different classes. Similar to the training of neuronal networks, we use a labelled
training set to train the classifier or in this case the function of the hyperplane,
and a validation set to verify our results afterwards.
In our specific case we use C-SVM classification, which tries to minimize the

function:
1
2w

Tw + C
N∑

i=1
ζi

subject to the constraints

yi(wTφ(xi + b) ≥ 1− ζi and ζi ≥ 0

where C is the capacity constant, w is the vector of coefficients, b is a constant,
and represents parameters for handling inseparable input data. The index i labels
the N training cases. ζ represents the class labels and xi represents the independent
variables. It should be noted that the larger the C, the more the error is penalized,
thus an ill-considered chosen C can lead to overfitting. (cf. [24])
The hyperplane naturally cannot be ’bent’, so that a clean separation with a

hyperplane is only possible if the objects are linearly separable. This condition
is generally not fulfilled for real training object sets. In the case of non-linearly
separable data, Support Vector Machines use the kernel trick to confiscate a non-
linear class boundary [2, 9]. The idea behind the kernel trick is to convert the
vector space and the training vectors in it into a higher dimensional space. In a
room with a sufficiently large number of dimensions - in case of doubt infinite -
even the most interleaved vector set becomes linearly separable. In this higher
dimensional space the separating hyperplane is now determined. During the back
transformation into the lower dimensional space, the linear hyperplane becomes a
nonlinear, possibly even unconnected hyperplane, separating the training vectors
neatly into the given classes. (cf. [9])

The kernel parameter K is used to transform data from the input to the feature
space. There are various kernels that can be used in support vector machine models
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[24], making it one of the parameters to optimize:

K(xi, xj) =


xT

i · xj linear
(γxT

i · xj + r)d Polynomial
exp(−γ|xi · xj|) Radial basis function (RBF)
tanh(γxT

i · xj + r) Sigmoid



3.3.4. Recommender systems
A recommender system is a subclass of an information filtering system, that tries
to predict a rating or preference a user would give to a specific item. Systems like
this are around us at all times, for example when shopping online or watching a
movie. While carrying out those actions the system will analyze your behaviour
and try to give you ’useful’ hints on what you might like. There exist two major
approaches to recommendation systems: collaborative filtering and content-based
filtering [20, 43].
The first, and relevant for this thesis, uses large amounts of data to compare

a person’s behaviour to other users with a similar profile. It is based on the
assumptions, that users who agreed in the past will also do so in the future and
that they will like similar items now as they did in the past. It can be implemented
either item-based, meaning we have an item and try to find other items that are
similar to this and infer the rating/output accordingly, or user-based, meaning
for a new item, take all similar users and mean/median their opinion. The key
advantage of user-based collaborative filtering is, that the content itself is irrelevant
and therefore does not have to be interpretable by the machine, making it possible
to recommend very complex items like movies without understanding why or what
the users like about this item. [10]

Content-based filtering on the other hand tries to recommend items with similar
content than what you are currently looking at. This idea can not be transferred
onto our prediction problem and will therefore be disregarded in this work.



4
Experiment

4.1. Data Acquisition

4.1.1. Rock-Paper-Scissors-Data
Frontend

To acquire a significantly large dataset we set up a webpage where probands were
able to play the game of Rock-Paper-Scissors online. The layout of the website is
shown in Figure 4.1. To achieve a comfortable environment for the majority of
users a small experiment was conducted beforehand, comparing different looks for
header, animations, buttons and the wording of the result texts. The webpage was
build using HTML and Css for appearance and JQuery for functionality.

Backend

The backend was implemented using exclusively open source libraries. Whenever
a new player registers, a new game is started or even whenever a user plays its
next turn a request is sent to the backend. This consists of a webserver running
Apache and a Database using MariaDB’s MySQL. All requests are sent via REST
(Representational State Transfer), which uses the Url and corresponding parameters
to specify its requests. The commands are processed on the server and the answer
is sent back to the web interface with JSON (JavaScript Object Notation) data
format using AJAX (Asynchronous JavaScript and XML) calls. Additionally a
request is sent to the database, using Entity Framework, to register the new user,
game or turn. Figure 4.2 visualizes the interaction of the different modules in front-
and backend.
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Figure 4.1.: Layout of the experiment-website

Ranking. To keep up the motivation of our probands, we added a ranking system
to the website. Every player in-/decreases its own ranking depending on its
performance in the last match. The best five players and their rating as well as
your own position in the rating and your score is shown on the game screen at all
times (Figure 4.1). From the beginning we advertised the experiment with a price
pool, with guaranteed prices for the highest ranked players, but also for random
participants. With this distribution we hope to attract a broad base of participants,
who play a small amount of games for the potential random award and a small
group of players competing for the top ranks, leading to a more detailed strategy
profile for a selection of players.
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Figure 4.2.: Visualization of the interplay of front- and backend for the experiment’s
webpage

Bots. We used a total of seven different bots to oppose our human players. The
bots get selected randomly with a small constraint on the players given skill bracket.

• RandomBot: Using one of the three actions at complete random
• CounterOwnBot: Using the action that would have won against his last throw

in 50% and the others in 25% respectively
• CounterLastBot: Using the action that counters the users last throw in 50%

and the others in 25% respectively
• Sequence3/4/5Bot: Uses a random sequence of 3/4/5 throws and repeats

them until the game ends
• GameFrequencyBot: Counters the throw that has been used least by the

player up to this point

All bots also react to players who repeat a single action multiple times, countering
it after three repeated occurrences.
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Turing. During data acquisition we tried to give the user the impression of playing
against a human opponent, even though he was actually playing versus a bot at
all times [54]. To hide this fact we used multiple features that would normally
only occur while playing against a human opponent. Firstly whenever starting a
new game, the webpage is waiting for multiple seconds to find an opponent, before
continuing with the game. During this time we chose a name and the corresponding
rating out of the actual ranking list, randomly chosen out of all players with a
similar rating. This information is then displayed above the opponents animation
(Figure 4.1), indicating that this is the name of the player currently opposing
him. Furthermore after every turn there is a chance of a small wait time until the
opponent is ready as well, conditioned on your own ready up time. Lastly we used
an animation of a human hand for both players, showing the common swinging of
the fist during ready up and the known signs for ’Rock’, ’Paper’ and ’Scissors’ after
the choices are made. This feature scored highest during the layout questionnaire,
asking for the animation, that gives the best impression of playing against a human
opponent.

4.1.2. Questionnaires
After every game of RPS we asked the users to fill out a short questionnaire. It
includes a rating from 1 to 5 of your enjoyment of the game, the opponents skill level
and his rationality, as well as a selection menu for your own and your opponents
strategy. The menu included the following options:

• No strategy involved. Just random clicking.
• Intentionally tried to make a random choice at every point.
• Specific pattern decided beforehand. (Like a specific cycle of throws)
• Gambits. (Predefined pattern of 3 throws)
• Read my opponents strategy and used the throw that beats it.
• Mostly use the throw that beat my last throw.
• Mostly use the throw that beat his last throw
• Other. Please Specify below.

On the basis of this questions we try to get a better understanding of the players
thinking process during a game, and also hope to find correspondences between
the users or games.
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4.1.3. Cognition tasks
For the second set of experiments we added two cognition tasks before the actual
gameplay to gain a better grasp on the cognitive abilities of our participants.

Cognitive reflection task

We start with a short questionnaire, called the Cognitive reflection task (CRT),
which was originally proposed by Frederick in 2005. According to him, there are
two general types of cognitive activity called ’system 1’ and ’system 2’. System 1 is
executed quickly without reflection, while system 2 requires conscious thought and
effort. The test consists of three questions, shown in Figure 4.3, that each have an
obvious but incorrect response given by system 1 . The correct response requires
the activation of system 2. For system 2 to be activated, a person must note that
their first answer is incorrect, which requires reflection on their own cognition. We
use this to evaluate to what extent the cognitive reflection translates into game
specific decision-making.

N-Back task

Furthermore we asked the subjects to solve the single N-back task [27] up to a level
of n = 3. In this task the user is presented a sequence of stimuli one-by-one and
has to decide respectively if the same stimuli was presented already n steps ago. In
our case we used a sequence of letters (visual stimuli), because this transferred best
to our initial assignment. We confine the task from n = 1 to n = 3, since those
tend to provide the most expressive results [32] and more tests on this topic would
lead to less time and motivation left for our main experiment. With the N-back
task we examine the capability of our probands to remember past turns and if this
broadcasts into their game behaviour.
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Figure 4.3.: Excerpt of the Cognitive reflection task as posted on the website
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4.2. First Experiment
For our first experiment we collected data of 185 different participants. Their
demographic stats are visualized in figure 4.4. Basic statistics about the experiment
can be found in Table 4.1.

145

40

male
female 110143

27
4

<10
11-20
21-30
31-50
>51

Figure 4.4.: Gender (left) and age (right) distribution of the users participating in the
first experiment

Table 4.1.: Descriptive statistics about the first experiment

Value STD
Users 185
Games 2273
Turns 28841
Questionnaires 1592
Average games per user 12.07 43.07
Average games per user (no top5) 5.98 12.80
Average turns per game 13.18 2.65
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4.2.1. Throw distribution
Overall throw occurrence

As mentioned in the Related work section, multiple surveys prior to this one suggest
that the three different actions do not get selected with even probability. Figure
4.5 shows, that this also is not the case here. As in most other studies action
’Rock’ gets selected the most, while ’Scissors’ is used the least. The null hypothesis,
that this distribution should be uniformly distributed can be rejected with high
confidence (Rock: p < .001, z-value = 3.49; Paper: p = 0.4839, z-value = -0.70;
Scissors: p=0.0048, z-value = -2.82). The overuse of action ’Rock’, as well as the
below average usage of ’Scissors’ are correspondingly highly significant deviations
from rational behaviour. The variance of ’Paper’ is not.

First throw

Another claim is that male players tend to start a game with ’Rock’, as it is the
most aggressive and dominant. As shown in Figure 4.6 this is not the case in our
study. Rather the opposite, as the probability for a female user is almost twice as
high to start with ’Rock’. Men tend to start with action ’Paper’, while ’Scissors’
is, like in the overall throw-distribution, the least chosen. The relatively uniform
distribution for the opposing bots, which is listed in the appendix in Table A.1,
shows that this behaviour is not evoked by our bot structure. This implies that
the deviations from rationality at the first throw of a game is indeed a cognitive
decision made by the participants.
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Figure 4.5.: Throw-distribution over all turns and users in the first experiment, expected
uniform distribution marked in red
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4.2.2. Cycling behaviour
Additionally we examined the cycling behaviour of our participants. Earlier
literature proposes that users tend to continue their behaviour after winning and
change strategy after losing. We have to keep in mind though that the underlying
experiment was designed in a way, that the users were not matched against each
other repeatedly. Figure 4.7 shows how people react during our experiment in a
repeated format and it clearly indicates a different behaviour. Users tend to change
their actions significantly more often than expected (Stay: p<.001, z-value = -16.9),
notably even more after winning. This might be caused by the players fear of
making themselves predictable by repeating their action and also the mentioned
fact that humans tend to change their selection too often when trying to produce
random/unpredictable sequences. The second thing that stands out is the well
above average proportion of clockwise rotations. As visualized earlier in Figure 3.1
the clockwise rotation is R → S → P → R, meaning that players choose the action
that would have lost against their own last action.
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Figure 4.7.: Cycling behaviour of all users after winning, losing or drawing in the last
round, expected uniform distribution marked in red
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Both these factors actually imply that our users tried to counter the win-stay-
lose-shift strategy. They intentionally do not stay after a win, while predicting
their opponent to do so, therefore they cycle clockwise after their own loss. The
probabilities for the remaining options (clockwise & counter-clockwise after a win,
and Stay & counter-clockwise after a loss) do not differ decisively, which further
supports the claim. The increased probability of the users to cycle clockwise after
a draw shows, that the players expect their opponent to shift action when there
was no winner in the last round.

A look at the bots cycling behaviour, which is visualised in Figure 4.8, shows
many biases, which firstly implies a slightly imbalanced selection of bots. Secondly
it can be used to explain the user behaviour.
Depending on the below or above average use of a specific cycle behaviour of

the bots we can infer the best response (BR) of our players. The best responses
for all cycle combinations are listed in the appendix in Table A.2. For example
should the high probability of the bots to stay after a win correspondingly be met
by the users with a comparable amount of clockwise rotations after a loss. These
belong together, since intuitively bot win equals user loss. Interestingly the same
behaviour is enforced after a bot loss and draw, as they tend to cycle clockwise or
counter clockwise afterwards. For both the best response for the users is to cycle
clockwise. This definitely allows us to explain the unusual high use of clockwise
cycles in the players’ behaviour.
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Figure 4.8.: Cycling behaviour of the bots after winning, losing or drawing in the last
round, expected uniform distribution marked in red
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We illustrate this by comparing the bots’ cycle probabilities to the corresponding
best responses for the players in Figure 4.9. It shows the respective deviation of the
actions from the uniform distribution. It is important to note, that the deviation for
the below average usage of the cycle ’BR-’ was negated for visualization purposes.
The exact numbers to this figure are listed in the appendix in Table A.3.

We see that the tendencies in the bots’ cycle behaviour were answered very
well by our participants. Solely the clockwise rotation after a draw was not met
correctly by the players. The only other bad results (CC|W/L) are too close to
the uniform distribution to be relevant. It is interesting to note, that many of the
easier to interpret cycles, like staying after a win, were over-interpreted by the
users. This reinforces the theory that the bot cycle tendencies have been detected
by the participants.
Overall the comparison showed that the cycling behaviour of the human par-

ticipants was clearly influenced by our chosen bots. Therefore we can not draw
conclusions on human cycle preferences. We managed to show though that the
cycle behaviour of many players’ was directly influenced by their opponent’s biased
decision-making.
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Figure 4.9.: Visualization of the user’s response to the bot’s cycle behaviour. Best
response for above average usage of this cycle in green. Negated best
response for below average usage in red
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Continued cycling

When pursuing the cycle assumptions onto another turn, as Dyson et al. [16]
propose in their work, we obtain the proportions visualized in Figure 4.10. We
use the label ’maintain’ for users who continue using the same strategy, meaning
people who e.g. cycled clockwise after the initial round and continued doing so in
the one after as well. ’Downgrade’, when players adapt their cycling behaviour
clockwise, e.g. staying in the first round and then cycle clockwise in the second,
or cycling counter-clockwise and then stay. The last label ’Update’ is defined
accordingly, when players adjust their behaviour counter-clockwise. An exact list
with all combinations and the corresponding label can be found in the appendix
in table A.4. The figure shows a fairly balanced distribution of reactions, but
with a very significant trend towards maintaining a strategy once started (38.40%,
p<.001, z=16.96). This coincides well with the presented work of Dyson et al. and
again shows an interesting peculiarity of human behaviour. This result also is not
provoked by the bots secondary cycling behaviour, which shows a course very close
to the uniform distribution (Figure A.1).
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Figure 4.10.: Continued cycling two rounds after the initial win, lose or draw, expected
uniform distribution marked in red
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4.2.3. Questionnaires
We also conducted and evaluated almost 1600 questionnaires, held after every
completed game. The most relevant questions we ask refer to the users own used
strategy and the strategy he identified in his opponents play style. Figure 4.11
shows that over half of our users tried to read the opponents throws and react
accordingly in their games. This supports the results from 4.2.2, where the cy-
cle behaviour of the users was examined. Around 37.3% (NoStrat + Random +
FixedPattern + CounterOwn) on the other hand claim that they ignored their
opponents actions. The remaining opted for a strategy in between.
The strategies our participants detected in their opponent are more evenly dis-
tributed. When looking at the correctly given predictions listed in Table 4.2 we
see though that only the Sequence Bots (Seq3, Seq4 & Seq5), corresponding to
the ’Fixed Pattern’ answer, were detected correctly above average. The average
ratio in this case means that we select one out of the seven (excluding ’Other’)
possible answers in the questionnaire at random, leading to an average hit rate
of 14.3%. The increased proportion for the Sequence Bots is not surprising, as
a static repeating pattern is easier to detect than random movement or specific
cycling behaviour. Moreover, the Sequence3/4/5 bots have a fairly high probability
of 77.8%, 55.5% and 38.3%, respectively, to not even use all three available throws,
which makes them even more predictable. As the ’GameFrequency Bot’ has no
direct answer allocated to its strategy, we assign ’Read Opponent’ to it, leading to
an above average hit ratio as well. This has to be seen in perspective though, as
’ReadOpponent’ is the most used answer overall (27.8%) and also covers multiple
other possible strategies, which means that the ’GameFrequency’ strategy probably
was not identified this often.

Overall we can say that the specific strategies were not reliably identified by our
probands. Solely the fixed pattern strategy shows predictability.
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Figure 4.11.: Evaluation of answers given in the questionnaires referring to the own
and the opponent’s strategy choice

Table 4.2.: Number of played games and completed questionnaires for the different
bots and the number and corresponding proportion of correctly identified
strategy for the opposing bot

Counter Counter Game
Bot Random Seq3 Seq4 Seq5 Last Own Freq Overall
Games 378 67 379 289 342 424 394 2273
Questionnaires 256 33 281 210 256 285 271 1592
Corresponding Counter Counter Read
Answer Random Fixed Pattern Last Own Opponent
Correct 19 10 55 45 6 29 76 240
Proportion 7.4% 30.3% 19.6% 21.4%︸ ︷︷ ︸

21.0%
2.3% 10.2% 28.0% 15.1%
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4.3. Second Experiment
For the second experiment we collected the data of 53 more users, now including
the cognitive reflection task as well as the different N-back tasks, described in
4.1.3. Descriptive statistics about the second experiment can be found in Table
4.3, the participant’s demography is visualized in Figure 4.12. It is important to
mention that we reduced and adapted the used bots for this experiment to make
it more clear if a user identified a strategy. Now we only use the Sequence3Bot,
as well as the CounterLastBot and CounterOwnBot. The latter with adjusted
probabilities, now using their intended throw in 60%, from the 50% of the first
experiment. The corresponding throw and cycling occurrences can be found in the
appendix in Table A.5 and A.6, as they are not that important for this part.

Table 4.3.: Descriptive statistics about the second experiment

Value STD
Users 53
Games 738
Turns 9289
Questionnaires 557
Cognitive reflection tasks 53
N-back tasks 53
Average games per user 13.91 33.46
Average games per user (no top5) 5.06 9.28
Turns per game 12.59 2.24

42
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12

35 6

11-20
21-30
31-50

Figure 4.12.: Gender (left) and age (right) distribution of the users participating in the
second experiment
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4.3.1. Cognition tasks
Cognitive reflection task

As the cognitive reflection task, simply consists of questions with a right and
multiple wrong answers, the evaluation is carried out by comparing the amount of
errors a user makes. This is visualized in Figure 4.13. We can see that over half of
the participants were able to perform some kind of reflection on their answers and
return all questions correctly. It is worth to note that, even though participants
who knew the task already achieved overall slightly better results, many (around
30%) still failed to pass the task error-free.
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Figure 4.13.: Proportion of users making a specific amount of errors during the cognitive
reflection task. Divided by users who already knew the task and those
who did not
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N-Back Task

The N-Back task is evaluated similarly, as any input is inevitably correct or wrong.
Figure 4.14 shows the proportion of users making a specific amount of errors,
grouped by the three different values for N. We see that for increasing N the
proportion of users who achieved good results decreases rapidly. For N=1 almost
80% managed to stay below 2 errors, still a little over 60% for N=2 and not even
18% for the last task. The average error counts per user are visualized in Figure
4.15. For N=1 our probands make 0.82 errors on average. This number doubles
already for the second task and more than doubles again for N=3, where we reach
4.38 average errors per user. The division into forgotten inputs (false negatives)
and wrong inputs (false positives) allows us to determine where the errors come
from. Especially the latter mark a state of confusion, showing that the user was
not able to follow the sequence anymore. This value more than quadruples from
N=2 to N=3. In combination with the enormous drop in users who could achieve
a good (6 1 error) result, we can say that the average user was able to ’pass’ the
2-back task, but not the subsequent.

4.3.2. Questionnaires
Evaluation of the questionnaires for the second experiment show a very similar
image to the one of the first experiment. The exact numbers are listed in the
appendix in Table A.7 and Figure A.2. The given answers again suggest that the
specific behaviour of the opponent was not detected during the games, even with
the simplified bot structure. The distribution also implies that the behaviour of
the opposing bot does not decisively change the player’s chosen strategy, nor the
proportion of strategies the users identified in their opponent.
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Once the experiments were concluded, the unstructured data from the database
is exported, structured and then used as the basis for interpretation and learning
methods. This flow is visualized in figure 5.1 using a learning example.

 Unstructured Data  

Data 
Preprocessing

Keras

Tensorflow

Structured Data

Python

Model

Prediction

Database PC

Figure 5.1.: Flow chart of events from the unstructured data to a prediction
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5.1. RPS as Learning Problem
To be able to predict human behaviour in a game of RPS we have to formalize
it as a machine learning problem. To begin with we use a single turn of our
Rock-Paper-Scissors game as input, or more precisely, the selected action of the
first player (A) plus the action of its opponent (B). The output at all times and for
all methods is the predicted action, player A will use in the next turn. Formalizing
the input/output pair like this:

A(t), B(t)→ A(t+ 1)

This also means, that we treat our problem as a supervised learning problem, as we
use the real next action as label during the learning process.

5.2. Interpretation using Neural Networks
In all our networks we used a fully connected layer with three neurons and a softmax
activation function as last layer before the output. Each of those neurons represent
one of the three possible actions and the sigmoid function maps the conduct of
all previous layers into an interpretable number between [0,1]. So to say, it shows
us the proportion the network predicts this action to be the next one, eventually
using the action with the highest value as output. The variable amount of layers
in between have to be trained until they represent the data the best, as described
in 3.3.1.

Used Software. All networks were trained using Keras [15], a high level deep
learning library for Python. It builds upon Google’s open-source software Tensor-
flow [1], one of the most common libraries for machine learning applications. For
faster learning, we use Nvidia’s CUDA [35] architecture to enable parallel CPU
& GPU computations, running on a Nvidia GTX 1070 graphics card. Processing
code was written using Python 3.6, running on Windows 10.
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Training & Validation set. The training process was implemented using the
holdout method, meaning that we randomly split our dataset in a training set,
containing 80% of the data, and a validation set, containing the remaining 20%.
During training the data from the first set is fed into the network, learning the
corresponding parameters, e.g. the weights and biases. The validation set is held
out during this phase, allowing us to later validate our model with new/unseen
data. Like this we can assess the generalization performance of the model and also
prevent overfitting.

Preprocessing. Additionally to bringing our data in the mentioned A(t), B(t)→
A(t + 1) format we had to enumerate the different actions ’Rock’, ’Paper’ and
’Scissors’, so they can be interpreted by the network. A simple encoding into
for example 1,2,3 brings some big problems, since if, e.g. the network fluctuates
between action 1 and 3 it would probably predict a value around 2, a obviously
wrong generalisation. Therefore we use so called one-hot encoding, which ’binarizes’
the features. Transforming one feature with three values into three features with
a binary value each (see Table 5.1), to prevent the unwanted dependencies. The
same method is used for the user ids added during the input variation, later in this
section.

Table 5.1.: One-hot encoding of the available actions to prevent internal dependencies

Action Encoding
Rock 1 0 0
Paper 0 1 0
Scissors 0 0 1

5.2.1. Initialization with a genetic algorithm
To find the best model for our RPS problem we had to test multiple different
combinations of parameters. To get an initial set of parameters we used a genetic
algorithm [22], that tries to optimize the number of layers (or the network depth),
the neurons per layer (or the network width), the activation function and the
optimizer for the network. To do so it initializes the four parameters randomly from
a given list to create a population of N networks. The configuration options are
shown in Table 5.2. Each of the networks is then scored using a fitness function, in
our case the prediction accuracy the network can achieve for our dataset. The top
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performing networks and some random ones are kept, while the others get discarded.
The random networks are kept to maintain diversity and to prevent getting stuck in
a local maximum. The remaining networks get copied and mutated until we reach
a population of N again. To do so, two random networks are chosen to ’breed’ one
or more new networks. The so emerged child will have some parameters of the first
and some of the second parent network, mimicking natural evolution. This method
leads to an optimized network significantly faster (around 85%) than the brute
force method of trying all possible parameter combinations.

As our input structure is small, multiple network parameter combinations were
able to achieve the same good results. Since the learning times increase drastically
with higher numbers of neurons and especially layers, a goal is to minimize the
model complexity while maximizing its performance. Therefore we choose the
variant with 96 neurons in 1 layer as our starting point. As activation function,
the Rectified Linear Unit (ReLU) performed same or better for all combinations,
making it the obvious choice. The different optimizers for the error minimization
using gradient descent (see Section 3.3.1), did not impact the result significantly,
leading to the usage of Adam, as it is less complex. For the loss function, categorical
cross-entropy suits our problem clearly better, as we formulated it as a classification
problem.

Table 5.2.: Parameter combinations used as input for the generic algorithm, best com-
bination marked in bold

Parameter Selections
Neurons 2, 4, 8, 16, 32, 64, 96, 128, 256
Layers 1, 2, 3, 4, 5
Activation function Linear, ReLU, Tanh, Sigmoid
Optimizer RMSprop, Adam, AdaMax, Nadam
Loss Categorical cross-entropy, MSE

5.2.2. Network types
First of all we compared the different network types described in 3.3.1 and 3.3.2. It
is important to emphasize that we did not optimize all four architectures separately,
but optimized the fully connected Feed Forward Network and the LSTM with
the genetic algorithm only. Since the variant with 96 neurons in one layer, ReLU
activation and Adam optimizer achieved top performance for both, we adopted
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those for the other two network types as well. This allows for a well balanced
comparison, as the parameters coincide while only the network types vary. Table 5.3
depicts the corresponding accuracies, as well as the amount of epochs needed to
reach this accuracy, for the four different network types. The results are averaged
over five different random initializations of the training procedure, meaning the
data is shuffled in different succession, resulting in different learning orders and
validation sets, leading to more significant results and deviations. A descriptive
course of the accuracy and loss for one fixed random seed, can be observed in
Figure 5.2. It shows the learning process over the number of learning iterations,
called epochs.

Table 5.3.: Comparison of the four used neural network types with fixed parameters,
contrasting the maximum accuracy and the amount of epochs needed to
reach it, averaged over multiple random seeds

Network type Accuracy mean Epoch
Feed Forward Network (FNN) 40.87± 0.32 7.6± 3.3
Recurrent Neural Network (sRNN) 41.87± 0.76 25.0± 4.0
Gated Recurrent Unit (GRU) 42.16± 0.66 3.6± 0.5
Long Short Term Memory (LSTM) 42.09± 0.75 4.8± 0.3

(a) Validation accuracy (b) Validation loss

Figure 5.2.: Accuracy and loss curve for different network types using the same param-
eters, reflecting one of the random seeds
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The learning process for the recurrent network types can be easily traced. The
validation loss drops continuously, until it converges towards a static value. This is
mirrored onto the accuracy as well, where we get good values at the corresponding
epochs. The small dip in accuracy afterwards for the LSTM and GRU network
type can probably be attributed to overfitting, as the networks learn dependencies
of the specific random seed, like the order of the input sequences. The feed forward
network was not able to learn from the data. This can mean that the parameters
were not set up correctly for this type, or that the peculiarities of the dataset in
this succession can not be picked up by a FNN. When looking at the different
random seeds the FNN always performed worst, but at least sometimes was able to
learn some dependencies, leading to a slow drop for the loss function. Overall we
can say that the contradictory nature of our problem did not fit the feed forward
network structure.
In conclusion it is evident that the LSTM and the GRU outperform the simple

recurrent as well as the standard feed forward network types. Notably all recurrent
types exceeded the non-recurrent neural networks prediction accuracy, due to their
inherent capability to model temporal data. This also demonstrates the additional
dependencies that can be picked up during a game of Rock-Paper-Scissors.

The better learning times led to the usage of GRU as our continuation network
type, as they converged faster than standard RNN and the LSTM, just as their
internal structure suggests.

5.2.3. Sequence learning
A first interesting comparison arose when we increased the size of a single input
interval. So instead of using the current input to predict the next action, we
additionally used a variable amount of history steps n. Meaning for n=1 we still
formalized our problem as

A(t), B(t)→ A(t+ 1).

For n=2, we added A(t-1) and B(t-1):

A(t− 1), B(t− 1), A(t), B(t)→ A(t+ 1)

This can be repeated for any n, as long as it does not surpass the length of a
complete game. Figure 5.3 shows the accuracy means for a fixed GRU network
with 96 neurons in 1 layer for n=1,...,8. To improve significance, again all results
were averaged over five different random seeds of our dataset.
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Figure 5.3.: Accuracy means and standard deviations for varying sequence length.

Interpretation. The figure shows clearly, that the accuracy improved for n>1.
This is comprehensible, as the network is able to conduct more information out
of the longer history sequences. It is easier to predict the next move, if you have
additional background information, like if the player won or lost the rounds before
and what action he used there. The best results were obtained for n=3,4. This
is interesting, but still easily traceable as a big problem for n → k is, that the
amount of datarows decrease linearly. For every game with length k, there exist
exactly k−n+ 1 datarows, that the network can use. Therefore, for bigger n, there
is less data available. Additionally are longer sequences more rare, which makes
it significantly harder to find matching sequences, which seemed to be a relevant
aspect for our predictions. For n=1 the biggest amount of data is available and it
is also easiest to find a gameround, where another user, or even better the same
user in a different game, used exactly the same throw. As for n=1 this is only
one of the known three actions, this is quite probable, but also means that there
exist multiple matches, where the output differs. This let the network work with
more information, but at the same time with contradictory information. For n=3,4
the two factors seemed to be balanced the best. Another idea that could have
played into this result, is the fact that most humans are not capable to include
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information that lies more than two steps back (see 4.3.1). A sequence length of 3
represents actually the current round plus the last two, reflecting exactly the just
mentioned maximum steps. The spike after this maximum coincides well with the
results from the N-back tasks.

5.2.4. Input variation
Lastly we tried to evaluate different networks by varying their input features. For
this purpose we again fixed the network parameters, using a GRU with 96 neurons
in 1 layer, as this structure showed to be the most effective, especially considering
learning times. We then changed the input from the standard A(t), B(t) to those
listed in Table 5.4 and compare the maximum accuracy reached with this feature
combination. This data is additionally visualized in figure 5.4.

Table 5.4.: Variation of features used as input for the neural networks

Input Abbr. Accuracy
A(t), B(t) AB 42.17± 0.66
A(t) A 42.15± 0.80
B(t) B 35.97± 0.27
A(t), B(t), Result(t) ABR 42.28± 0.89
A(t), Result(t) AR 42.37± 0.78
B(t), Result(t) BR 42.41± 0.75
A(t), B(t), Gender ABG 42.90± 0.30
A(t), B(t), R(t), UserIdA IdA 47.75± 0.30
A(t), B(t), R(t), UserIdB IdB 42.28± 0.46
A(t), B(t), R(t), UserStatsA StatsA 49.57± 0.46

Interpretation. It stands out, that all combinations that hold the same informa-
tion, like AB, ABR, AR & BR, led to a basically equivalent accuracy slightly above
42%. When looking at the exact classifications we noticed that they coincide well
with the allocations that occur when just always using the label that was predicted
the most for this input combination. Meaning, that when labelling every ’Rock’,
’Rock’ input with ’Scissors’ as the next action etc. we receive a similar prediction
rate. This shows that for the small feature lists, the networks did not actually learn
anything noteworthy. It seems they just picked up the global tendencies present
in the data. This actually is evident, as with the randomization of the turns the
sequence structure is lost and therefore also some of the peculiarities we examined
before (first throw statistics and secondary cycling).
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Figure 5.4.: Accuracy means and standard deviations for varying input features using
a single layer GRU

Interestingly the input of player A’s action alone led to a similar value as well.
Notably this can not be explained with the global tendencies in the data anymore,
as the tendency using A’s action only, merely leads to an accuracy around 38.5%.
This implies that the network was able to infer the same information from the
chosen action of player A only, as from both players concurrently. This leads us
to the assumption that for many players the opponent’s action did not impact
their future decision decisively. This initially seems to contradict the results we
obtained in chapter 4.2.2, where we examined the users cycle behaviour. In fact
though we showed that our participants reacted conditionally on their opponent’s
cycle behaviour. The used throw itself was no part of the dependency. This implies
that the users picked up the cycle tendencies of their opponents conditioned on the
result of the last round, the specific throw on the other hand did not impact their
behaviour significantly.
A reassuring result unfolded when looking at input B, together with the IdB

input. The average result for the latter and the only slightly above random for the
first one shows that the opposing bots exact strategy mostly was not detected by
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our participants, as the users behaviour did not change noticeable, when playing
against the different bots. We can infer this, since changes in strategy dependant
on the opponent is an exploitable change in behaviour, which the neural network
would have picked up when fed with this additional information. This observation
again also supports our assumption from the questionnaires, where only a really
small portion of bot strategies have been identified.

Subsequently we considered different additional input features and their impact.
Including the gender information increased the prediction accuracy only minimally
by around 0.5%, but it decreased the deviation considerably. This means that
gender did not really impact the behaviour, but the added information allows
our network to classify some of the infrequently used throw combinations better.
It is important to notice though that our experiments exhibited a rather biased
demography, with below 25% female participants. The accuracy for those 25%
seemed to only increase marginally though, leading to the presented result.
Adding the specific user id to every turn gave the network a significant edge.

The accuracy rose by around 5.5%, as the network can now fall back on specific
behaviour of every user. This implies that single users have reoccurring patterns
that differ substantially from the average player. As final attempt we feed our
network with additional statistics about the user. The exact composition includes
the players throw distribution as well as his cycling behaviour after a win, lose
and draw. This actually means that we add information to the network that was
extracted from the complete dataset beforehand, meaning that we also include
information from the validation set into training diminishing its expressiveness.
It allows us to reach a prediction accuracy of almost 50% though, marking the
highest value for this dataset for all used methods and inputs.
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5.3. Interpretation using Recommender Systems
System adaption. Since our problem is no classical problem to solve with a
recommender system, we had to adapt some of its characteristics. Firstly the items
we want to rate are now the sequences of different length, consisting of the last n
throws for both players. The output we want them to predict is, as for the other
methods, the throw that comes next. Additionally we had to take into account,
that the same user can rate the same sequence multiple times with different outputs,
because they occurred multiple times in his games and he reacted differently. As
there exist only exactly 32 · n different sequences, and similar sequences represent
totally different behaviour in the game, item-based filtering approaches do not offer
valuable results.

This left us with user-based collaborative filtering concepts to represent the
recommender methods. In the first approach, we ignored the fact for which user
a given sequence occurred, but counted the times a specific output followed this
sequence. The one with the most votes was then chosen as predicted next throw. In
case of two- or three-way ties, we added this sequence two to three times with the
different outputs. Afterwards we verified for each sequence if the predicted result
coincided with the actually observed ones, leaving us with a prediction accuracy
similar to the ones issued by the neural networks. Per above description this
technically is still a user-based approach, as we compare how other players react
in the same situation. Since it is heavily centred around the given item/sequence
though, we will refer to it as sequence-based in the continuation of this thesis.
Pseudo-code to this approach is outlined in Algorithm 1.
In our second approach we addressed the single user more, giving every user

exactly one vote on what the current candidate should do. If for any user the given
sequence occurred multiple times with different outputs, we had an intern vote
again, similar to the one described in the first approach, to determine his final
answer. The answers again get verified, leaving us with a prediction accuracy.
It is important to note that for both recommender approaches we did not hold

out any data to validate the model, as this is not needed for this type.
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Algorithm 1 Sequence-based collaborative filtering
1: for sequenceA in data do
2: voteRock=votePaper=voteScissors=0
3: for sequenceB in data do
4: if sequenceA==sequenceB then
5: if predictionB==Rock then
6: voteRock+=1
7: else if predictionB==Paper then
8: votePaper+=1
9: else if predictionB==Scissors then
10: voteScissors+=1
11: if (voteRock+votePaper+voteScissors) > 0 then
12: for action in (Rock,Paper,Scissors) do
13: if action has most votes then
14: if predictionB==action then
15: correct+=1
16: else
17: incorrect+=1

return correct/(correct+incorrect)

Interpretation. Using the two recommender system approaches, we reached the
accuracies displayed in figure 5.5. It stands out that the best performance is
achieved using only one set of inputs, and the around 45% for both approaches
exceed the expectations. It seems that many users react very similar in comparable
situations, as well as similar to other users in the same situation. This was also
represented in the primary cycling behaviour, examined in section 4.2.2.

The sequence-based approach expectedly outperformed the user-based approach
in all scenarios. This is not surprising as the amount of votes is significantly
higher (thousands compared to exactly 185-1), reducing outliers and improving
the inferred prediction accuracy all together. Since the users only voted on other
peoples behaviour, this also means that reoccurring sequences in a single user are
not taken into account. The significant drop in accuracy from sequence length
one to two implies that secondary behaviour, meaning reactions that do not occur
as direct response are definitely less clear. This coincides with the secondary
cycling behaviour we examined in 4.2.2, where the cycling probabilities did not
show peculiar outliers. The even higher drop in the user-based case demonstrates
that the same individual seems to repeat behaviour while different users show only
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little affinity. This is somewhat balanced out again for n≥3, which implies that
the secondary cycling behaviour is particularly diverse for the different users. The
overall descending accuracy for growing input length can again be attributed to the
linearly decreasing amount of data, paired with an increase of input combinations
by a factor of 2n. This consequentially leads to a lack of sequence matches, which
is the only information our recommender system can use.
It is also worth mentioning that the sequence-based approach with sequence

length four actually reflects the exact strategy used by the NYTimes, described in
the Related work chapter.
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Figure 5.5.: Accuracy reached with the two different recommender system approaches
for varying input length
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5.4. Interpretation using Support Vector Machines
We trained our SVM using LIBSVM [13], one of the most prominent libraries for
support vector machines. By using grid search and cross validation techniques we
were able to compare different parameter combinations. The best are then used to
classify our data by dividing the space with multidimensional hyperplanes. The
chosen kernel, the parameters and the five-fold cross validated prediction accuracy,
are listed in table 5.5. As input for the machine we use the classic A(t), B(t), with
A(t+1) now being the class label we want new data to be allocated to.

Table 5.5.: Parameter combination and values leading to the best accuracy for our
support vector machine approach

Kernel Parameters Accuracy
RBF C = 0.125, γ = 2 42.272%

Interpretation. A vivid representation of the data and corresponding classification
through the SVM is presented in figure 5.6. The light gray dots depict the different
input combinations we can have. As we only have two inputs with three possible
values each, this adds up to nine different data piles only. But each of them is
thousands of data points deep, as 28000 rows of game data distribute over them.
This makes our problem a very unique one to solve with a support vector machine.
Since the thousand data points at every position also vary in the label/class they
belong to, which in our case again is the class/throw that will be used in the
following turn. The SVM now has to find a partitioning of the complete plane
into the different classes depending on the amount of data and the distribution
of classes on the different positions. The resulting image is easy to interpret, as
the SVM simply predicts the label of a new data point dependant of its position
in the plane. A entry with action A = ’Scissors’ and action B = ’Scissors’ for
example will be labelled as class ’Paper’, as this point origins in the orange area.
With this technique the method achieves a prediction rate of 42.27%, which is
a reputable result, that can compete with neural networks for this simple input
structure. The strict labelling of the input combinations actually represents the
global tendencies we mentioned in the interpretation of the input variation section
earlier this chapter.
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Figure 5.6.: Visualized classification as performed by the SVM, with the classes repre-
senting the predicted next throw. Single data points (overlapping thousands
of times) shown in light gray
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5.5. Cognition Tasks
Additionally we evaluated how different performance in the cognition tasks linked
to the users behaviour in a RPS game. Figures 5.7a - 5.7d visualize the relations
between the amount of errors a specific user made during the different cognition
tasks and his winrate during all of his RPS games. The dotted lines represent the
average performance in both. This division allows us to separate the data plane
into four quadrants, each representing an above/below average performance in the
respective fields. It is important to note that we could only use the data of 34 users
for this calculations, as not all tests were complete or the associated users did not
play enough games (≥ 2) afterwards. The average winrate for those equals 42.25%.
This ’low’ number emerges from the fact that the win rates are weighted equally,
independent of the amount of games they are build upon.

Interpretation. As we can see, the distribution of data points is relatively balanced
for all of the tasks, implying that there is no strong correlation between the two
variables. We also notice though, that most points are in the bottom right quadrant,
meaning that users with high win rates also tend to make fewer errors. This in
combination with the amount of points in the top left corner, most apparent to
see in 5.7a, suggests a small negative correlation between the variables. The exact
numbers of this relation can be looked up in table 5.6. The values show that
the correlation between the amount of errors in the n-back tasks and the players’
performance in the games is consistently negative, but the numbers are too close
to zero, meaning that this is not a significant discovery. Similarly the correlation
with the CRT, where the values are small, but positive. This shows that we can
not infer any information from the used cognition tasks to the performance in our
RPS game.

Table 5.6.: Covariance and correlation between the errors in the cognition tasks and
the winrate of the corresponding user

1-back 2-back 3-back N-back CRT
Average error count 0.6471 1.5588 4.1765 6.3824 0.6765
Covariance -0.0340 -0.0305 -0.0038 -0.0683 0.0167
Correlation -0.1214 -0.0693 -0.0064 -0.0729 0.0659
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(a) 1-back task (b) 2-back task

(c) 3-back task (d) Cognitive reflection task

Figure 5.7.: Illustration of the relation between the errors in the cognition tasks and
the winrate of the corresponding user, darker colors represent overlapping
data, dotted lines mark the average





6
Conclusion

In this thesis we tried to show that human behaviour in games can be predicted
using computational tools. With a self acquired big data collection and machine
learning methods we tried to find and predict peculiarities in the players’ decision-
making. By comparing different interpretation methods and the information they
use, we hoped to evaluate the different features and get insight into human cognition.

We started this work with a theoretic analysis of human behaviour in decision-
making scenarios and especially in Rock-Paper-Scissors. We showed that rational
agents with perfect knowledge should chose their actions at total random, as this is
the only strategy that prevents you from being predictable and therefore exploitable.
It has been proposed though that humans are neither completely rational nor are
they able to utilize perfect information nor are they able to perform actual random
actions. It should correspondingly be possible to predict human behaviour in games
using computational methods.

In order to examine this we conducted two experimental studies. On the basis of
28000 rounds of RPS, versus probabilistic bots, 2100 questionnaires and around 200
simple cognition tasks, we tried to gain further insight into peculiarities of human
decision making. Evaluating the data, we were able to detect significant deviations
from rational behaviour within our test persons. We identified characteristics such
as the biased choice of throw, overall as well as especially in the first round of a
game. Also the primary and secondary cycling behaviour of humans after winning,
losing or drawing in a repeated game revealed interesting peculiarities. Those
findings coincide well with earlier work on this topic.

During evaluation of the primary cycle behaviour we noticed a bias in the cycling
behaviour of the bots. We managed to show that many of our users were able
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to detect this deviation from rationality and counter it accordingly. As a matter
of fact those deviations were even overcompensated by the users, adding another
usable feature to the list of peculiarities.
When interpreting the questionnaires of both experiments, we found out that

more than half of the users tried to read and react to the opponent’s actions. This
relates to the just mentioned dependencies in the cycle selection. On the other
hand they also show that a third of the players intentionally tried to ignore their
opponents strategies. The comparison of the questionnaires building on the two
different experiments implied that the specific strategies of the underlying bots were
not detected and that the player’s choice of strategy is not impacted considerably
by the opponents strategy.

All these discoveries were then used to create various models, which represent
and predict human behaviour in a Rock-Paper-Scissors game. This was done using
different machine learning methods such as neural networks, support vector ma-
chines and collaborative filtering approaches, a subgroup of recommender systems.
All of them were compared and interpreted by evaluating their ability to correctly
predict the next action of our players. For the basic evaluation, we used the chosen
action of the opposing players in the current round and tried to predict the next
action of the first player. This corresponds to a sequence length of one, a condition
that was adapted in later stages of the evaluation by adding a variable amount of
previous turns to this representation.

Formalizing RPS as a supervised learning problem held several difficulties. Mainly
is the input feature count relatively small due to the simple structure of the game.
This also leads to overlapping of the input-output combinations, which means that
the same input can lead to contradictory outputs. These factors definitely limit
the prediction accuracies the different methods can achieve.
The first representation we want to mention here was obtained using a support
vector machine. This method tried to divide the data into different planes. Cor-
respondingly are equal input combinations always classified to the same output.
The method so to say sets up static rules about human behaviour in a RPS game.
Prediction using this classification technique led to an accuracy slightly above 42%.
This represents the global tendencies that are present in our dataset.

The straightforward recommender approaches, which mostly just count how other
users react in similar situations, achieved a surprisingly good prediction accuracy
of 45%, using a single sequence input. It shows how the overall throw distribution
together with primary cycle behaviour alone, since this is the only information
the recommender system is able to pick up, already represents the behaviour of
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other users considerably well. It also proves that these behavioural characteristics
reoccurred in multiple test persons. For increasing sequence length the prediction
accuracy decreased continuously.
The results for the neural networks were as multifaceted, as the possibilities of

this technique. After we found a suitable network structure for our problem and
satisfactory parameters, we started by evaluating the standard inputs. Due to
the randomization during learning, we lost many of the discovered peculiarities in
the data, leading to a prediction score, similar to the SVM. By varying the input
features of our networks, we were able to partially prevent this improve their results
considerably. Firstly we changed the length of the input sequence we fed into the
network. Adding these sequential dependencies, allowed the network to learn on
more and less contradictory information. The network performance peaked for
n = 3 at around 47%. This implied, that history more than 3 turns away did not
add more behavioural dependencies. Which means that human behaviour in a
game of RPS, that lies back more than three turns, does not influence the current
decision considerably anymore. This coincided well with the results from the n-back
tasks we conducted, which clearly showed that most humans are not capable to
remember occurrences more than three steps away.
Further insights arose when changing the used input features for the neural

network as a whole. First of all, we were able to support the claim that the
average player did not identify the opposing bots strategy in their games, by adding
said information to the network inputs. As this did not increase the information
gathering performance of the network, we could infer that the users’ behaviour
did not change considerably facing the different bots. This also implied that the
opponent’s choice of action did not have as big of an impact on a player’s decision
making as expected. Indications for this were also found in the questionnaires
and in the unaffected prediction accuracy when reducing the input to the action
of player A alone. This should not be mistaken as statement that players play
independent of their opponent. It just shows that the action itself is less important
than the previous result, as the players behaviour is best portrayed using the cycle
behaviour.
The overall best accuracies were achieved by adding the unique id of the user

(47.7%), or when adding additional stats about the players, like their throw prefer-
ences or cycle behaviour (49.5%). This suggests that single users show reoccurring
preferences, that can be predicted fairly well, but even out in the mass of the
general population.

Comparing the different methods, we noticed that neural networks did not out-
perform the other two for small input feature sizes. This is evident as the strength
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of artificial neural networks lies in solving complex problems with many features.
A glimpse of this was recognized when we increased the available information
and reached prediction rates for this dataset close to 50%. This is a reputable
performance for this contradictory problem. Most importantly though this score
should lie just above 33%, if the experiments were conducted by rational agents on
both sides. We were therefore evidently able to predict human behaviour in games
using computational tools.

In this thesis we presented a new big data set describing peculiarities in human
behaviour while playing the game of Rock-Paper-Scissors. We demonstrated the
behavioural peculiarities in human decision-making, and showcased the deviation
from rational behaviour. We additionally detected, that most players in this game
try to analyse their opponent’s strategy and were able to predict deviations from
rationality in the long term. The same was attempted and successfully accomplished
using different computational methods. With the means of machine learning we
were able to predict human behaviour in a game of RPS with far above random
accuracy.

6.1. Future Work
In order to build upon these results, we can work on various properties. During
examination of the experiments we noticed some flaws in their structure, which
decreased the significance to cognitive science. First of all should the experiment
be conducted with human players on both sides. We hoped that the bot structure
allowed for easier modelling and to generate interesting changes in the decision-
making process of the human players. Unfortunately, this was not the case and the
bots’ strategies mainly led to a distortion of the human behavioural peculiarities.
The second point is to aim for a more balanced demography.

When continuing working on the current dataset, we could add further examina-
tions. An interesting feature we could investigate is whether and how the cycle
behaviour of users who claimed to have played strategies independently of their
opponents differed from the others. Continuing on the interpretation methods
we could firstly extend the recommender systems, by adding a similarity func-
tion to the users. This would enable an additional approach where only specific
users are allowed to vote, probably leading to improved results and interesting
interpretations.
Further ideas for the neural networks would be to combine the most successful
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approaches regarding sequence length with the additional inputs. Secondly would
it be beneficial if we found a way to insert information about the sequence of the
turns, while keeping the context of a complete game. This could, for instance, be
tackled using batch learning.

The last improvement could be to build a bot, which falls back onto the learned
dependencies. By doing so the relevance of all inferred characteristics of the users
could be tested and improved simultaneously. This would also allow us to actually
compare the performance of this prediction approach with other proposed models.
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A.1. First Experiment

Table A.1.: First throw distribution of the bots in the first experiment.

Rock Paper Scissors
Proportion 32.19 35.15 32.66

Table A.2.: List of bot throws and corresponding best response of the users for above
and below average usage of the given throw

Bot throw Best response Best response
given last result above average below average
S | W C S
S | L S CC
S | D CC C
C | W CC C
C | L C S
C | D S CC
CC | W S CC
CC | L CC C
CC | D C S
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Table A.3.: List of bot cycles with the corresponding best response of the users for
above and below average usage of the given action. Comparing deviations
from the uniform distribution U to detect dependencies between bot and
users cycle behaviour

P(Bot cycle P − U BR+ if prob(BR+)− U BR- if prob(BR−)− U
given last result) P − U > 0 P − U < 0
S | W = 41.21% +7.88% C +10.47% S -5.72%
S | L = 28.28% -5.53% S -11.73% CC +5.13%
S | D = 27.40% -5.93% CC -3.68% C +8.92%
C | W = 25.10% -8.23% CC -4.73% C +10.47%
C | L = 39.03% +5.70% C +6.61% S -11.73%
C | D = 27.23% -6.10% S -5.23% CC -3.68%
CC | W = 33.70% +0.37% S -5.72% CC -4.73%
CC | L = 32.69% -0.64% CC +5.17% C +6.61%
CC | D = 45.37% +12.04% C +8.92% S -5.23%
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Figure A.1.: Continued cycling two rounds after the initial win, lose or draw, as per-
formed by the bots
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Table A.4.: Combinations and corresponding label for the continued cycling behaviour
of our probands in the first experiment.

1st cycle 2nd cycle Label
Stay Stay Maintain

Clockwise Clockwise Maintain
CC CC Maintain
Stay C Downgrade
C CC Downgrade
CC S Downgrade
Stay CC Upgrade
C S Upgrade
CC C Upgrade
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A.2. Second Experiment

Table A.5.: Throw-distribution over all turns and users in the second experiment

Throw Rock Paper Scissors
Proportion 0.3346 0.3400 0.3253

Table A.6.: Cycle distribution over all turns and users in the second experiment

Stay Clockwise Counter-clockwise
Win 0.1220 0.4267 0.4513
Draw 0.3160 0.4214 0.2626
Loose 0.2139 0.5789 0.2072

Table A.7.: Number of played games and completed questionnaires for the different
bots and the number and corresponding proportion of correctly identified
strategy for the opposing bot in the second experiment

Bot Sequence3 CounterLast CounterOwn Overall
Games 253 226 259 738
Questionnaires 193 169 195 557
Corresponding Answer Fixed Pattern CounterLast CounterOwn
Correct 39 9 1 59
Proportion 15.42% 5.3% 4.25% 10.59%
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Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software available from tensorflow.org.

[2] Mark A Aizerman. Theoretical foundations of the potential function method
in pattern recognition learning. Automation and remote control, 25:821–837,
1964.

[3] Fathelalem F Ali, Zensho Nakao, and Yen-Wei Chen. Playing the rock-paper-
scissors game with a genetic algorithm. In Evolutionary Computation, 2000.
Proceedings of the 2000 Congress on, volume 1, pages 741–745. IEEE, 2000.

[4] Maurice Allais. L’extension des théories de l’équilibre économique général et du
rendement social au cas du risque. Econometrica, Journal of the Econometric
Society, pages 269–290, 1953.

[5] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning
polynomials with neural networks. In International Conference on Machine
Learning, pages 1908–1916, 2014.

[6] Kwangyeol Baek, Yang-Tae Kim, Minsung Kim, Yohan Choi, Minhong Lee,
Khangjune Lee, Sangjoon Hahn, and Jaeseung Jeong. Response random-
ization of one-and two-person rock–paper–scissors games in individuals with
schizophrenia. Psychiatry research, 207(3):158–163, 2013.

https://www.tensorflow.org/


74 Bibliography

[7] Shawn Bayern. Rock, paper, scissors: Humans against ai.
http://www.essentially.net/rsp/index.jsp [Online], 03 2001.

[8] Sudeep Bhatia and Russell Golman. A recurrent neural network for game
theoretic decision making. In Proceedings of the Cognitive Science Society,
volume 36, 2014.

[9] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152. ACM, 1992.

[10] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence, pages 43–52. Morgan
Kaufmann Publishers Inc., 1998.

[11] Colin F Camerer. Behavioral game theory: Experiments in strategic interaction.
Princeton University Press, 2011.

[12] Colin F Camerer, Robin M Hogarth, David V Budescu, and Catherine Eckel.
The effects of financial incentives in experiments: A review and capital-labor-
production framework. In Elicitation of Preferences, pages 7–48. Springer,
1999.

[13] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[14] Gary Charness and Matthew Rabin. Understanding social preferences with
simple tests. The Quarterly Journal of Economics, 117(3):817–869, 2002.

[15] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[16] Benjamin James Dyson, Jonathan Michael Paul Wilbiks, Raj Sandhu, Georgios
Papanicolaou, and Jaimie Lintag. Negative outcomes evoke cyclic irrational
decisions in rock, paper, scissors. Scientific reports, 6, 2016.

[17] Seymour Epstein, Abigail Lipson, Carolyn Holstein, and Eileen Huh. Irrational
reactions to negative outcomes: Evidence for two conceptual systems. Journal
of personality and social psychology, 62(2):328, 1992.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/fchollet/keras


Bibliography 75

[18] Shane Frederick. Cognitive reflection and decision making. The Journal of
Economic Perspectives, 19(4):25–42, 2005.

[19] Herbert Gintis. Behavioral game theory and contemporary economic theory.
Analyse & Kritik, 27(1):48–72, 2005.

[20] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Communications of
the ACM, 35(12):61–70, 1992.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[22] Matt Harvey. Let’s evolve a neural network with a genetic algorithm. coastline
automation, posted on April, 2017.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time
lag problems. In Advances in neural information processing systems, pages
473–479, 1997.

[24] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to
support vector classification. 2003.

[25] Samuel H Huang and Mica R Endsley. Providing understanding of the behavior
of feedforward neural networks. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 27(3):465–474, 1997.

[26] Benjamin Kerr, Margaret A Riley, Marcus W Feldman, and Brendan JM
Bohannan. Local dispersal promotes biodiversity in a real-life game of rock–
paper–scissors. Nature, 418(6894):171–174, 2002.

[27] Wayne K Kirchner. Age differences in short-term retention of rapidly changing
information. Journal of experimental psychology, 55(4):352, 1958.

[28] Benjamin C Kirkup and Margaret A Riley. Antibiotic-mediated antagonism
leads to a bacterial game of rock–paper–scissors in vivo. Nature, 428(6981):
412–414, 2004.

[29] Daeyeol Lee, Benjamin P McGreevy, and Dominic J Barraclough. Learning
and decision making in monkeys during a rock–paper–scissors game. Cognitive
Brain Research, 25(2):416–430, 2005.



76 Bibliography

[30] Lola L Lopes and Gregg C Oden. Distinguishing between random and non-
random events. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 13(3):392, 1987.

[31] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shan-
non. A proposal for the dartmouth summer research project on artificial
intelligence, august 31, 1955. AI magazine, 27(4):12, 2006.

[32] KM Miller, CC Price, MS Okun, H Montijo, and D Bowers. Is the n-back task
a valid neuropsychological measure for assessing working memory? Archives
of Clinical Neuropsychology, 24(7):711–717, 2009.

[33] Michael E Moore and Jennifer Sward. Introduction to The Game Industry
(Game Design and Development Series). Prentice-Hall, Inc., 2006.

[34] Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume
104. Prentice-Hall Englewood Cliffs, NJ, 1972.

[35] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. Queue, 6(2):40–53, 2008.

[36] Michael A Nielsen. Neural networks and deep learning, 2015.

[37] Christopher Olah. Understanding lstm networks. GITHUB blog,
posted on August, 27, 2015. URL http://colah.github.io/posts/
2015-08-Understanding-LSTMs/.

[38] CHETPRAYOON Panumate, Hiroyuki Iida, and Jean-Christophe Terrillon.
A game informatical analysis of roshambo. 2016.

[39] Neil Pomerleau. Rock paper scissors.

[40] Gabriele Pozzato, Stefano Michieletto, and Emanuele Menegatti. Towards
smart robots: Rock-paper-scissors gaming versus human players. In PAI@
AI* IA, pages 89–95. Citeseer, 2013.

[41] Amnon Rapoport and David V Budescu. Generation of random series in
two-person strictly competitive games. Journal of Experimental Psychology:
General, 121(3):352, 1992.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Bibliography 77

[42] Tobias Reichenbach, Mauro Mobilia, and Erwin Frey. Mobility promotes
and jeopardizes biodiversity in rock–paper–scissors games. Nature, 448(7157):
1046–1049, 2007.

[43] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recom-
mender systems handbook. In Recommender systems handbook, pages 1–35.
Springer, 2011.

[44] Nicolas Riesterer. Variational conceptor learning for generative modelling of
sequential data. Master’s thesis, Albert-Ludwigs-Universität Freiburg, 2018.

[45] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach
(International Edition). {Pearson US Imports & PHIPEs}, third edition
edition, 2010. ISBN 978-0-13-207148.

[46] Barry Sinervo and Curt M Lively. The rock-paper-scissors game and the
evolution of alternative male strategies. Nature, 380(6571):240, 1996.

[47] Vernon L Smith. An experimental study of competitive market behavior.
Journal of political economy, 70(2):111–137, 1962.

[48] Vernon L Smith. Corporate financial theory under uncertainty. The Quarterly
Journal of Economics, 84(3):451–471, 1970.

[49] A. P. Sutiono, R. Ramadan, P. Jarukasetporn, J. Takeuchi, A. Purwarianti,
and H. Iida. A mathematical model of game refinement and its applications
to sports games. EAI Endorsed Transactions on Creative Technologies, 15:1–7,
2015.

[50] Carol Vogel. Rock, paper, payoff: Child’s play wins auction house an art
sale. 04 2005. URL http://www.nytimes.com/2005/04/29/arts/design/
rock-paper-payoff-childs-play-wins-auction-house-an-art-sale.
html.

[51] Willem A Wagenaar. Generation of random sequences by human subjects: A
critical survey of literature. Psychological Bulletin, 77(1):65, 1972.

[52] Zhijian Wang, Bin Xu, and Hai-Jun Zhou. Social cycling and conditional
responses in the rock-paper-scissors game. arXiv preprint arXiv:1404.5199,
2014.

http://www.nytimes.com/2005/04/29/arts/design/rock-paper-payoff-childs-play-wins-auction-house-an-art-sale.html
http://www.nytimes.com/2005/04/29/arts/design/rock-paper-payoff-childs-play-wins-auction-house-an-art-sale.html
http://www.nytimes.com/2005/04/29/arts/design/rock-paper-payoff-childs-play-wins-auction-house-an-art-sale.html


78 Bibliography

[53] Claus Wedekind and Manfred Milinski. Human cooperation in the simultaneous
and the alternating prisoner’s dilemma: Pavlov versus generous tit-for-tat.
Proceedings of the National Academy of Sciences, 93(7):2686–2689, 1996.

[54] David Weibel, Bartholomäus Wissmath, Stephan Habegger, Yves Steiner, and
Rudolf Groner. Playing online games against computer-vs. human-controlled
opponents: Effects on presence, flow, and enjoyment. Computers in Human
Behavior, 24(5):2274–2291, 2008.


	Introduction
	Contribution
	Organization of the Thesis

	Related Work
	Rock-Paper-Scissors in Psychology
	Computational RPS
	Early approaches
	Machine learning approaches


	Fundamentals
	Rock-Paper-Scissors Theory
	Decision Theory
	Game theory
	Behavioural game theory

	Machine Learning
	Artificial neural networks
	Recurrent neural networks
	Support vector machines
	Recommender systems


	Experiment
	Data Acquisition
	Rock-Paper-Scissors-Data
	Questionnaires
	Cognition tasks

	First Experiment
	Throw distribution
	Cycling behaviour
	Questionnaires

	Second Experiment
	Cognition tasks
	Questionnaires


	Evaluation
	RPS as Learning Problem
	Interpretation using Neural Networks
	Initialization with a genetic algorithm
	Network types
	Sequence learning
	Input variation

	Interpretation using Recommender Systems
	Interpretation using Support Vector Machines
	Cognition Tasks

	Conclusion
	Future Work

	Appendix  
	First Experiment
	Second Experiment

	List of Literature

