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Abstract

Goal of this undergraduate thesis was the generation of easy and human-understandable

boolean logic formulas to predict human syllogistic reasoning. To achieve this, syllo-

gistic problems and answers were encoded in binary, and used in a genetic algorithm

to generate circuits to match them. I showed that genetic algorithms can generate

theories that predict human answers with an accuracy that comes close to the most

frequent answer strategy. I also compared the generated formulas to state-of-the-art

theories of the syllogism.
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Zusammenfassung

Das Ziel dieser Bachelorarbeit war die Generierung einfacher und verständlicher

boole’scher Logik-Formeln, mit denen man menschliches syllogistisches Schlussfolgern

nachvollziehen kann. Für dieses Ziel habe ich syllogistische Probleme und Antworten

binär kodiert und einem genetischen Algorithmus übergeben, der dazu passende

boole’sche Schaltkreise generiert hat. Ich habe gezeigt dass der Algorithmus Theorien

finden kann die menschliche Antworten mit einer Genauigkeit die der häufigsten

Antwort nahe kommt voraussagen kann. Ich habe außerdem die generierten Formeln

mit bisherigen syllogistischen Theorien verglichen.
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1 Introduction

Human reasoning has long been subject to research in psychology and neuroscience.

It has led to many new questions, seeing as the percentage of logically correct conclu-

sions can vary widely from subject to subject, depending on factors like educational

background and measured level of intelligence. It is therefore integral to understand

how these conclusions are generated in the human mind if the matter is to understand

human cognition.

In cognitive science, a common domain for testing and analyzing deductive rea-

soning are so-called syllogisms (Greek for ’logical conclusion’), encodings of two

logical premises and their conclusion, using universal and existential quantifiers, and

negation. In total, there are 64 syllogisms, to each of which nine possible answers

can be given. Of course, not every answer will be correct for every syllogism. The

various answers humans are more or less likely to give for different syllogisms can

give interesting insights into deductive reasoning. As Khemlani et al. succinctly

summarize [1], several theories for understanding and categorizing how humans reason

over syllogsims have been proposed in the field of psychology in the last hundred years.

However, these theories focus more on deconstructing the processes that are ex-

ecuted in the human brain during reasoning, whilst not concerning themselves much

with prediction. Since this is a rather bottoms-up approach, a top-down approach

could lead to new insights into human reasoning processes: Firstly find heuristics
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that make good predictions about human answers for syllogisms, and then analyze

these heuristics for commonalities. The ability to assess the quality of such generated

theories first-hand by letting them predict a certain number of human answers is

another advantage of this approach. A straightforward idea for making a predictive

approach work would be to train a deep neural network to make the predictions. But

as they often have a complex weight-space, are high-dimensional, and not symbolic,

there is no easy way to generate simple, human-readable heuristics with them.

Genetic algorithms [2] are a better approach to finding these heuristics, as they

can find a variety of good solutions by making use of evolutionary processes, which

combine successful solution candidates and exclude unsuccessful ones through se-

lection. They are comparatively easy to implement, and require less input data

and tuning than other machine learning approaches, which is advantageous for the

problem at hand as it does not give a lot of input data to begin with. Genetic algo-

rithms are capable of generating logical formulas for a given problem, for example by

developing a boolean circuit [3] to fit the problem’s parameters. Because the circuits

can be reversely transferred into logical formulas again and are as such easy to in-

terpret for humans, they make a good approach for finding simple predictive heuristics.

The goal of this thesis is to model human syllogistic reasoning using formal logic,

and optimize the resulting formulas for simplicity. The results offer two contributions

to the current state of the art: highly interpretable models and highly predictive

performance. They also show that it is possible to generalize an approach that uses

genetic algorithms with boolean circuits in similar problems.

This thesis consists of seven chapters. Following this chapter will be a brief overview

over recent research in the concerned topic in chapter 2, as well as a background

section in chapter 3 to introduce all neccessary concepts that were used. In chapter

4, the theoretical foundation of my approach is presented, and chapter 5 describes
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the proceedings of experiments. Chapter 6 gives a short evaluation of the results by

usage of an online benchmark. Chapter 7, finally, contains the conclusion.
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2 Related Work

Genetic algorithms have been used before to solve complex search problems with a

large problem space, and often shown to be able to compete with state-of-the-art

search techniques [4, 5, 6, 7, 8]. The best results genetic algorithms have achieved were

often through usage of a combined approach with other search methods, where the

genetic algorithm was not tasked primarily with optimization but with diversifying

the exploration space [4, 5, 6]. For the generation of boolean circuits especially,

genetic algorithms have been used in the context of generating circuits to satisfy

given truth tables. This has proven largely successful, however a scalability problem

made processing large truth tables difficult due to a strong increase in processing

time [9, 10, 11]. Soleimani et al. [11] especially propose separating the problem space

of the circuit into parts to decrease the complexity of evolution.

Theories of the syllogism vary widely in both their method and accuracy, as summa-

rized in the article by Khemlani et al. [1]. As said before, they are not designed to

predict human answers in the first place, which is why assessment of their predictive

power is difficult. I will go into more detail about popular psychological theories in

chapter 3. Machine learning or optimization approaches to generate theories about

syllogistic reasoning are few and far in between, but Ragni et al. propose one such

an approach [12]. Their idea is to take cognitive theories and combine them with a

data driven approach of optimizing prediction. To achieve this they take a set of

human responses and then use an autoencoder to generate a precise heuristic for that
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data. They also propose a portfolio of heuristics which they use in a adaption-based

approach. With this approach they can assess theories in terms of accuracy, which

is useful in the sense that it makes it easier to compare predictive approaches with

other theories. By maintaining a portfolio of different heuristics of a theory and

keeping record of each heuristic’s relative past accuracy, they let each heuristic give a

weighted vote for a final prediction [13]. With this approach they are able to compare

and surpass tested psychological theories in terms of accuracy.
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3 Background

3.1 Boolean Circuits

Boolean circuits are a theoretical or technical method to realize boolean logic formulas,

as first proposed by George Boole in 1847 [3]. They take one or more inputs that can

assume either the value of 1 or 0, or alternatively True or False, and consist of logic

gates such as AND, OR, XOR, and NOT . With these gates the circuits evaluate

the inputs. The output or several outputs contain likewise a value of 1 or 0 again,

which represents the result of the inputs after they were evaluated by all gates in the

circuit.

Table 1: Different logic gates as building blocks of a logic circuit.

A ¬ A
0 1
1 0

(a) NOT -
Gate

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1
(b) AND-Gate

A B A ∨ B
0 0 0
0 1 1
1 0 1
1 1 1
(c) OR-Gate

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0
(d) XOR-Gate

There are several logic gates which will be used in this work to build boolean

circuits. An AND-gate takes two inputs and returns 1 or True only if both of the

inputs were also 1, else 0. An OR-gate returns 1 if either of the inputs were 1. An
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XOR-gate returns 1 if exclusively one of the inputs holds the value 1, the other one

0. A NOT -gate is a gate with only one input, and it returns the opposite of the

input that it was given. The detailed function of several gates can be seen in Table 1.

Putting the gates together to form a tree-like network, it is possible to build any

logical formula that can be evaluated with boolean logic. Such formulas are, if not

too long, easily understood by humans or can be made understandable, for example

by visualizing them with a Venn diagram [14].

3.2 Hill Climbing

Hill climbing is an algorithm type that is used for optimization and local search. It

begins with an optimum or minimum as the goal (depending on how the goal function

is defined [15]), and a starting solution that may be arbitrarily far away from it. In

a continuous iteration, the algorithm makes local changes to try and see if the new

solution is closer to the desired goal than the previous one, until it either reaches said

goal or alternatively ends up in a local extremum, which is a solution that cannot

be improved on further by any direct, local changes, but is not the desired goal as

specified in the function either [16].

3.3 Genetic Algorithms

Genetic algorithms are a variant of machine learning which are frequently used in

optimization or search problems. They use a concept that is based on biological

mechanisms in genetic inheritance as first proposed by Darwin [17], where processes

that take place during the copying of genetic sequences result in the creation of new

combinations. With evolutionary selection the genes that prove advantageous then
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continue to spread over generations of a population. For genetic algorithms, this

principle is used to continually improve a solution candidate towards a given goal

or ruleset by drawing on strategies that combine randomization and combination of

already good solutions [2]. As they go into a search space without expectations or

previous knowledge that could bias their approach, this makes them a good candidate

for finding new directions in problems that were previously only looked at by humans.

As Clinton Sheppard’s library for generating boolean circuits with genetic algorithms

[18, 19] will be used primarily in this work to generate formulas, a brief explanation

about how genetic algorithms function follows, using this concrete library as an

example.

5
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(b) After Mutation

Figure 1: Process of a single mutation step for boolean circuits. In 1a, a
random index is selected as the gate to be mutated. This is the gate
marked in red. Per randomization, a new gate to replace the old one is
then chosen. The inputs of this new gate are also chosen by randomization.
The result can be seen in 1b, where the new gate is marked blue. The
greyed out gate is one whose output is unused now, which is why it will
not appear in the result circuit. It can however still be chosen as an input
for a following mutation.

A genetic algorithm always starts with a set of rules, which in our case are the

different input bits of the boolean circuit, and the corresponding output bits the

circuit should produce for each of those inputs. Firstly the genetic algorithm generates
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a random guess at a solution, which should fulfill the rule set. This guess is then

evaluated by a fitness function which tells the algorithm how good the guess was.

In case of the boolean circuit, this fitness is evaluated by building and testing the

formula on all rule inputs, and then checking how many of the circuit’s answers match

the output that was given for that specific input in the rules. The more outputs are

correct, the better the formula. A correct solution is given only if all inputs match

the outputs for the formula.

After the solution is created and evaluated, the next step is to generate a sec-

ond solution attempt that is hopefully an improvement of the first one. This is

achieved by using heuristics based on biological mechanisms of evolution, which define

the genetic algorithm as an evolutionary procedure. Mutation and crossover are some

of the most frequently used heuristics. For mutation, a new guess is generated by

taking the current one and changing parts of it randomly, based on the biological

principle of a change in the nucleotide sequence of a chromosome, which typically

occurs due to errors during replication of the sequence [20]. In case of the boolean

circuit, the mutation is done by randomly replacing any gate in the circuit with a

new, randomly selected gate as depicted in Figure 1. The genetic algorithm compares

which of the two guesses has a better fitness, and remembers the one that is best. It

continues generating new guesses and comparing them until a solution that matches

all rules is found.

As observed in chapter 2, genetic algorithms often perform better when they are

used in a hybrid approach. For this purpose, Sheppard’s library uses a hill climbing

algorithm in combination with the genetic one. This has the purpose of making

the algorithm work towards an optimal length of the formula, which the genetic

algorithm itself does not care about. When comparing the new mutation with the

previous best one, the genetic algorithm looks only if more rules are satisfied than were

previously, but with hill climbing the algorithm can now also work towards optimizing

9



the size of the circuit. This means it will compare the number of satisfied rules as

well as the number of gates, as a circuit size as small as possible is the desired outcome.

Figure 2 shows an overview over the entire genetic algorithm cycle.

3.4 Theories of the Syllogism

Syllogisms are a domain of deductive reasoning. They usually consist of two premises

in the form of ’All A are B’, ’Some X are not Y’ and similar ones, making statements

about three groups in total who are in relation to each other. Based on those state-

ments a logical conclusion must be drawn, in the same form as the premises. Some

syllogisms allow several correct conclusions, and for others there does not exist any

valid conclusion. Syllogisms have been used since ancient Greece to model logical

thinking as summarized by Smith et al. [21], and since they are easily understood

by humans, the answers humans propose for each of the problems may be helpful in

understanding humans’ reasoning processes.

Table 2: Abbreviations for the four syllogistic moods.

Abbreviation Meaning
A All X are Y.
E No X are Y.
I Some X are Y.
O Some X are not Y.

There are four different types of statements in syllogistic reasoning, called moods,

that each contain an existential or universal quantifier as well as a positive or negated

statement. The moods are traditionally abbreviated with the letters A, E, I, and

O, as seen in Table 2. It is also relevant for syllogisms to differentiate in what

configuration the statements appear, as well as the sets they argue about. The
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Table 3: The four syllogistic figures.

Figure Structure Example

1

A B
B C All corgis are dogs. All dogs are mammals.

2

B A
C B Some dogs are corgis. Some mammals are dogs.

3

A B
C B All corgis are dogs. Some mammals are dogs.

4

B A
B C Some dogs are corgis. All dogs are mammals.

Table 4: Abbreviations for the directions of syllogistic answers. The direc-
tion always refers to the ordering of the sets A and C of the syllogistic
premises, as they appear in the answering mood.

Abbreviation Direction
ac Corgis → Mammals
ca Mammals → Corgis

different possible types of configurations are called figures and can be viewed in

Table 3. As there is four moods and four figures which can be combined in any way in

syllogistic reasoning, this gives a total of 64 possible syllogisms. The answers to the

syllogisms consist again of a mood, as well as a direction of the relation. For example

if a syllogism were to consist of the statements ’All penguins are flightless animals.’

and ’All penguins are birds.’, which would make it the syllogism AA4, a possible

conclusion would be ’Some birds are flightless animals.’. As ’flightless animals’ is,

going from the figure, set A of the statement, and ’birds’ is set C, the conclusion is in

backwards direction. Directions of the answer are abbreviated ac and ca respectively,

as seen in Table 4. If no conclusion for the answer is possible, the abbreviation NV C

is used which is short for ’no valid conclusion’ [22, 1].

11



In the field of psychology, many studies have been conducted and theories cre-

ated to try and explain human syllogistic reasoning. Some of those theories are

heuristic and focus more on explaining why humans do not reason deductively and

may give incorrect answers, others are based on modelling the process of human

thinking [1]. Most of the theories are focused on explaining answers that may occur

instead of directly predicting them, however they are still of good use in evaluating

and understanding the formulas that are generated by the genetic algorithm.

The first such theory that was proposed in modern psychologic research, and also

a good example for a heuristic theory, is the atmosphere theory as first published

by Sells et al. [23, 24]. It proposes that the existential quantifier as well as the

presence of negativity gives the syllogism a so-called atmosphere, which influences

a majority of people to include those properties in their proposed answer for the

syllogism. Otherwise, atmosphere theory proposes a bias to non-negative, universal

answers. Table 5 gives a brief overview over these heuristics. The atmosphere theory

has some weaknesses, namely that it cannot say anything about the direction of

the conclusion. It also does not take into account the figure of the syllogism for

reaching the conclusion, and it does not factor in NV C answers. However, it still

makes a good prediction about universality and negativity for a majority of answers.

Another example for a heuristic theory is the matching theory by Wetherick et al. [25],

which is somewhat analogous to the atmosphere theory and proposes that individu-

als answer with the mood of the premise which describes the existence of fewer entities.

An example for a model-based theory is the mental models theory, which was

developed by Johnson-Laird et al. [26, 27]. It proposes that humans first construct

a mental representation of the problem to depict the relations of the different sets

of the syllogism. The arrangements are presented spatially in a way to fit with the

premises, and from this spatial model is then drawn a conclusion. If this conclusion

12



Table 5: A summarized version of the heuristics of the atmosphere theory.

Precondition Answer
Both premises are univeral and affir-
mative.

A

Both premises are universal and one
or both are negative.

E

One or both premises are existential
and both are affirmative.

I

One or both premises are existential
and one or both are negative.

O

seems implausible, people attempt to falsify it by finding a possible counterexample

that fits with their model. If this succeeds, they search for an alternative model of

the premises and try to draw another conclusion. This step is repeated until either

a valid conclusion is found or the individual gives up and draws the conclusion of

’no valid conclusion’. An example of the reasoning process can be seen in Figure 3.

A study by Johnson-Laird et al. on the subject however has shown that only a

select people include the step of falsification, and even fewer attempt to construct

an alternative model, but those who do attempt to use the falsification step in their

deduction process are more likely to give correct answers [28]. Polk and Newell

propose a variant of the mental model theory called the verbal models theory [29],

which does not include the falsification step. The argue that instead of spatial, the

model is constructed in verbal terms, and that people do not falsify, but instead only

re-construct the model if no conclusion can be drawn from the previous attempt.

With this model too, the answer ’no valid conclusion’ is given after enough failed

attempts to draw a conclusion.

13



Initial
formula
length

Set formula
length N

Generate
formulas of
length N

Formula
Set

Update

Parent
formula
pool

Best par-
ent

Mutate Mutated
formula

Compare

Length
of Best
Formula

Solution

if not timeout
and not optimal

if child better
than parent

if timeout and not optimal

if optimal

Figure 2: Cycle of the genetic algorithm to generate circuits. A set of
potential parent solutions is randomly generated and continuously mutated
until a timeout is reached. The best solution serves as a basis for the
following iteration.
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Premise 1: No artists are beekeepers.
Initial Model:

Artist
Artist

Beekeeper
Beekeeper

Premise 2: All beekeepers are chemists.
Update Model:

Artist
Artist

Beekeeper Chemist
Beekeeper Chemist

Conclusion: No artists are chemists.

Figure 3: An example to outline the process of reasoning as proposed by
the mental models theory. The individual first arranges the two
groups spatially to fit the premises, and then draws a conclusion from
the resulting model, which is incorrect in this case. Depending on the
individual, a validation process may follow, where an attempt to falsify
the conclusion and a subsequent try to construct a new model are made.
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4 Approach

4.1 Problem Definition

The goal of my work was to find boolean formulas to predict human answers for the

syllogisms that are both easily understandable and accurate. The problem is therefore

how to encode the syllogisms and answers in bit-representation, and represent the

given data as rulesets in a way that can be used by a genetic algorithm to generate

boolean circuits.

4.2 Matching Answers with Input

Opposed to most syllogistic theories, boolean circuits do not accept several answers

for the same input. They are deterministic and only one answer can be given for

any problem. This raises the first question of how to deal with differing answers

for a syllogism. With this limitation, two different methods for generating a theory

with genetic algorithms were tested. The first one was to calculate the most frequent

answer (MFA) for each syllogism and exclude all other answers from the boolean

ruleset. The second one was to maintain a set of formulas rather than only one, where

a matching occurs if one formula within the theory can predict the answer. For the

latter, the goal was to find a set of formulas as minimal as possible.

16



4.3 Dividing the Problem

One drawback of genetic algorithms is that their processing time can grow exponen-

tially with increasing problem size. After some test runs with a full 64-syllogisms

problem set, none of which terminated after several days (for details of the system

used please see chapter 5), I split up the problem in smaller chunks. I parted the

problem by figure of the syllogisms to have a different formula for each figure, instead

of one that covers all figures. I also split it up by answer to have only one output

bit per circuit and therefore formula. This gives a theory with one formula per

property of the answer (i.e. universality, negativity...) and per figure, resulting in a

total 16 formulas for the MFA theory, and a set of sixteen formulas per person for

the combination approach. Because of the hybrid approach with hill climbing, the

algorithm still has a chance of getting stuck in a local extremum, at which point it

needs to be restarted. For this reason, further optimization of the hyperparameters

was performed as described in the following section. Yet in general this split up

showed to be advantageous for later evaluation, as the partition made it easier to

compare the resulting formulas with other theories.

4.4 Expected Size and Timeout

The algorithm uses hill climbing to optimize the size of the circuits that are generated

by the genetic exploration, which itself only checks whether a circuit satisfies all

input rules. With this hybrid optimization process it is ensured that the solution

formula is as short as possible, as well as satisfying all rules. Because hill climb-

ing always requires a goal function, in this case an optimum, to work towards, a

value of ’expected optimal size’ needs to be determined pre-emptively before the

start of computation. In this case, the size is measured by the number of gates

and inputs included in the circuit. If a formula generated by the algorithm fits all
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Figure 4: Parameter tuning for the genetic algorithm. 4a shows a range of
different optimum sizes as goal for the hill climbing. Optimums were
calculated in a distance of five for the expected number of gates of the
circuits. 4b shows the different timeout length to minimize the amount of
times the algorithm gets stuck in a local maximum. The red lines show
the chosen values of the parameters that were used for the experiments.

rules but does not meet the ’expected size’ requirement, the genetic algorithm does

not accept the formula, and instead continues to mutate. Because the algorithm

does not restrict the generation of bigger circuits but only rejects in hindsight the

circuits that were already generated, it may happen that processing time increases

with a smaller optimum, depending on the complexity of the problem. Likewise, the

addition of hill climbing brings with itself the risk of steering into a local extremum,

at which point the algorithm becomes stuck indefinitely and has to be restarted.

This means that for a smooth running of the experiments, which was neccessary

due to time constraints, the optimum size has to be chose in such a way that the

algorithm can find solutions that fit the optimum requirement with a good probability.

Figure 4a shows the relation between the size of the optimum and the amounts

of neccessary restarts. For my experiments with MFA I empirically determined

the smallest optimum size that did not require restarting. For the experiments

with the formula sets I raised the optimum size to the smallest rate that minimized

the amount of neccessary restarts. All resulting optimum sizes can be seen in Table 6.
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Table 6: Chosen optima for the different experiments. Sizes were chosen
according to a fast performance in formula calculation. As NV C formulas
proved during tests to have a longer relative calculation time than the
other properties, optima were each set one step (plus five gates expected
size) higher for this bit, to have homogenous calculation time.

Method Universal Negative Direction NVC
MFA 20 20 20 25
Formula Sets 30 30 30 35

Another parameter of the algorithm was a timeout included in the mutation process.

The author of the utilized program library states that the longer the mutation takes,

the more likely it is that the algorithm will produce an unoptimal mutation [18].

Thus the timeout is there to ensure that too long solution propositions will not be

generated, which speeds up the process. Combined with hill-climbing however this

brings the risk of steering the algorithm into a local maximum if the timeout is too

short. Therefore it was neccessary to test out good timeout values before proceeding

with the experiments. Figure 4b shows the number of formulas that can be processed

in an hour per different timeout lengths. For my experiments, I have chosen a timeout

of 45 seconds.

4.5 Encoding

For the final encoding of the syllogisms, a bitwise encoding in the order of Figure−

Premise1− Premise2 was chosen. The different properties of each syllogism were

encoded in the order of first the universal quantifier, and secondly the negativity

quantifier. In the answer, the direction was encoded as the third bit, ac or the

forward direction representing 1 and ca or the backward direction representing 0.

The answer was added a fourth bit to accommodate NV C answers in the ruleset.

For the generation of formulas I split the ruleset up in NV C-answers-included and
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non-NV C sets, the first of which was used to train only the answers that resulted

in NV C, and the second one all other answers. In the prediction tool NV C was

therefore prioritized above all other answers, which means that if a formula predicts

NVC it does not matter what all other formulas predict because NV C outvotes all

of the other bits. This rule separation is to ensure that no unneccessary information

from the NV C calculations will flow into the generation of the first three bits, seeing

as the first three bits could technically be either 0 or 1 when the answer is NV C, but

such a state is not possible in a boolean circuit. An overview of the final encodings

can be seen in Table 7.

Table 7: Bitwise encoding of the syllogisms into binary. Ordering for the
problems was Figure−Premise1−Premise2, and for the answers Mood−
Direction−NV C. In the case of NV C, only the last bit was set to 1 and
all others to 0.

Figure Encoding
1 00
2 01
3 10
4 11

(a) Figures

Mood Universal Negative
A 1 0
E 1 1
I 0 0
O 0 1

(b) Moods

Direction Encoding
ac 1
ca 0

(c) Direction
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5 Experiments

5.1 Experimental Setup

The genetic algorithm used was taken from Clinton Sheppard’s library of genetic algo-

rithms [18, 19], chapter 16 genetic algorithms with boolean circuits. All experiments

were run and evaluated on a Windows 10 system with an Intel R© CoreTMi5-3320M

dual-core processor with 2.60 GHz frequency and 8GB RAM. For both the experiments

and the evaluation Python 3.6 was used.

5.2 Most Frequent Answer

A natural approach to predicting the syllogistic reasoning of a group of humans is to

find the most frequent answers (MFA) of any given syllogisms, and generate circuits

to predict them. To achieve this a dataset of 139 people, who each answered logical

questions for all 64 syllogisms, was used. Then, a training set of 100 people was

randomly selected, whose answers were used as the basis for calculating MFA outputs

for each syllogistic input. These formed the genes for the genetic algorithm. The

resulting formulas that were generated were evaluated by their accuracy with the

remaining 39 people as the test set. The performance of each formula can NV C seen

in Table 8.
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Table 8: Percentage of correctly predicted answers for each MFA formula.
Performance was calculated based on the answers of a testing set of size
39.

Bit Figure 1 Figure 2 Figure 3 Figure 4
Universal 87 % 84 % 77 % 82 %
Negative 72 % 78 % 79 % 76 %
Direction 69 % 77 % 64 % 70 %
NVC 67 % 69 % 66 % 62 %

Figure 5 shows the amount of answers per person, out of the 64 syllogisms, that differ

from the predicted answers of MFA. As can be seen in both graphs, the accuracy

varies wildly and there is no person in either the testing or training group that can

fully be predicted with the MFA. In total, MFA achieves only 44 % accuracy of

prediction, and is therefore not a very good tool to get a full understanding of how

human thinking solves the syllogism. However, it can give a good indication about

what a large group of people answer. The question that arises is whether it will be

possible to group people together based on differing answers, and gain insight by

predicting the answers after having identified what hypothetical answering group a

person belongs to.

5.3 Prediction Sets

Instead of using just one formula another option is to maintain a whole set of formulas

per bit and figure, and then attempt to gain a good coverage of the different answers

with this set. This formulates a different approach where the goal is not to predict as

many answers as possible with a single formula, but find one or more formulas within

the set that can predict the given answer. The question is whether it is possible

to form clusters of people with such sets, where disjoint or at least roughly disjoint

groups of people can be matched with certain combinations of formulas within the
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Figure 5: Amount of deviations from MFA prediction per test person. 5a
shows only the testing group, 5b includes those people whose data was
used to train MFA.

sets. If yes, then it may be possible to predict answers partially, after asking targeted

questions to determine which cluster the person belongs to.

Table 9: Figure 1 lower bounds. The boundaries were calculated to cover 25 %
of the total number of answers, and rounded up if there was not found a
bound that hit the number exactly.

Bit Figure 1 Figure 2 Figure 3 Figure 4
Universal 15

16
15
16

15
16

15
16

Negative 13
16

13
16

13
16

13
16

Direction 12
16

13
16

12
16

12
16

NVC 14
16

14
16

13
16

13
16

To find such sets a first necessary step is to find a measure for the quality of a

formula. Obviously this can be measured by how many answers the formula can

accurately predict within the test group. But if only the people that match with the

formula in all 16 answers are taken into account, it will be difficult to find a good
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Figure 6: Selected total distributions. The red lines show the mean performance
of formulas for the given bit and figure, the green lines show the calculated
lower bound according to Table 9.

coverage of the group without using too many formulas. Therefore the approach in

this work was to calculate a performance mean of each formula that represents the

average percentage of correctness in prediction of the entire test set, and then define

a lower bound to represent the minimum required correctness percentage. A formula

then "covers" a person if all answers the person gives reach a total accuracy that

lies above the minimum required correctness border. The lower bounds were chosen

high enough to still give a good accuracy for the formulas, and give a none-too-large

coverage of the testing group so it will be possible to form somewhat distinguishable

sets. The bounds were chosen according to Table 9 to account for rounded 1
4 of all

possible answers for each formula, as can be seen in Figure 6.

Figure 7 shows the performance of all 139 formulas predicting the first syllogis-

tic figure’s universal parameter. The blue line in the middle depicts the identity of

each formula and therefore indicates the correctness of the calculation. Seeing as

each formula should have 100 % accuracy for the person it was generated from, it

of course has to cover said person. From the unordered graph it is evident already

that groups of similar coverages can be formed, and even more so in the ordered

graph, which shows that there are actually many formulas that cover an identical to
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Figure 7: Total performance of figure 1 universal formulas. Using the given
lower bounds, this graphics shows the total coverage of the test group
for the different formulas, meaning in the case of figure 1 universal, a
formula covers a person if 90 % or more of their answers are correctly
predicted by the formula. 7a shows the formulas unordered, enumerated
according to the person they were generated from. 7b shows the formulas
in descending order of how many people they cover.

near-identical set of people. To factor these out of the set calculation, I first grouped

all the formulas with identical coverage together to get a set of unique formula types.

Going from the results of the MFA algorithm, I then formed clusters by order of

descending coverage size of the formulas. The idea was that if MFA covers only one

group of typical answers for people, then there can be found smaller formulas that

will cover the rest.

Table 10: Difference rates with best coverages per figure. All rates were
calculated with a set size of 10.

Bit Figure 1 Figure 2 Figure 3 Figure 4
Universal 0.2 0.1 0.1 0.45
Negative 0.15 0.1 0.15 0.1
Direction 0.2 0.3 0.25 0.2
NVC 0.35 0.45 0.45 0.25
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Figure 8: Growth of coverage per set size. Differing percentages for all figures
are included, starting from a set size of ten.

To find a set of formulas with good coverage one firstly needs to determine a good set

size. Figure 8 compares the prediction coverage of the testing group achieved with

different numbers of formulas. As evident, trying to achieve a coverage close to 100 %

lets the set size grow linearly, as was to be expected as there are a select number of

unusual people, which are only covered by a small number of formulas covering little

else in return. As my goal was to form a set with a small size for easier comparison

purposes, I first settled for a coverage of around 80 % of people, which was reached

by using a set size of 10. Also to be determined before further evaluation was the

difference rate between the formulas, meaning the percentage of people covered by

exclusively one formula within the set. For a clustering of people according to the

formulas, a large difference rate is needed, but depending on the coverage of the

formulas this may again result in a bad total coverage of the set. Table 10 shows

the difference rates with the best performance of all figures and bits. As can be seen

already, clustering may be hard to achieve with this method for most formula types.

In Figure 9 this can be seen even more clearly. While for the figure 1 NV C formulas

it was possible to build somewhat disjunct sets of people for the formulas, this was

not readily so for the universal formulas and most other formula types. People don’t
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Figure 9: Figure 1 best coverage with a set size of 10 for selected bits. This
graphic shows the performance of the best cover formulas for universal
and NVC each. 9b and 9d respectively order the people along the abscissa
so that people who belong to the same formula cover set will be closer
together, for better comparison.

really belong into distinct behavioral groups with similar answering patterns, and

instead will give a more individually determined combination of answers. Comparing

the formulas for different bits of a figure with each other yields similar results, as

shown in Figure 10. Here too a disjunct grouping of the different sets is not easily

possible, as there are many candidates who fit into the clustering for one group, but

fall outside of it for a similar group of a different bit. This gives a decided indication

that clustering people into different answer groups is not possible, and fits with what

research has shown so far in this area.
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Figure 10: Figure 1 comparison between bit sets. This graphic shows the
performance of the best cover formulas for universal and negative bits,
and universal and NVC in comparison. For easier visibility, only the
first five sets per bit are shown in this graph.

5.4 Generated Formulas

At last the formulas that were generated by the genetic algorithm will be examined

a bit closer. Generally, it should be said that performance varies widely for the

generation of the formulas. For some test persons it only takes a short processing time

and the formulas are easily understandable. For others generation of the circuits takes

a long time and frequently needs to be restarted. A supposition was that there was a

correlation between these factors, which is why I compared the data of processing

time per formula with the length and accuracy, as seen in Figure 11. However, as

can be seen, no such correlation exists. Yet I will still only look at the more well

performing formulas in this section, as results from the previous section have shown

that clustering is not possible, and evaluating all 139 formulas would go beyond the

scope here. For each figure and bit I have therefore chosen the best MFA formulas as

well as some of the best performing single person formulas, according to the coverage

accuracy percentage as calculated in the previous section. The latter were selected

with exceptions, as a rare few of the single person formulas were already too long

and complex.
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Figure 11: Comparison of processing time, length and accuracy per for-
mula.

Table 11 shows the MFA results which in most cases proved to be the simplest

and shortest formulas. Looking at the quantifier bits of figures 1 and 2, it becomes

apparent that MFA follows in large parts the atmosphere theory, with small exceptions

like for figure 1 where a conclusion will only become negative if exactly one of the

base premises is. It is notable that for figure 2 both exclusive and simple OR of

the premise negativities is a valid prediction for answer negativity. At first glance

this seems contradictory, however when looking at the NV C strategy for figure 2

proposed by MFA, the case where the negativity formulas would contradict each

other never happens. The conclusion is always NV C if the second premise starts out
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Table 11: Best resulting formulas of MFA encoding. U1 denotes whether
premise 1 is universal (True if yes, False if no). U2 likewise tells the
same about premise 2. N1 denotes whether premise 1 is negative (True
if yes, False if no), and N2 does the same with premise 2.

Figure Universal Negative Direction NVC
1 U1 ∧ U2 N1⊕N2 > ¬U2 ∨ (N2 ∧ U2)

2 (N1∨N2)∧
U2

N1 ⊕ N2
and
N1 ∨N2

⊥ N1∨ (¬U1∧¬U2∧N2)

3 ¬(U1⊕ U2) N1 ∨N2 U2 (U1∧¬N1∧U2∧¬N2)∨
(¬U1∧¬U2)∨(N1∧N2)

4 U1∧U2 and
¬(U1⊕ U2)

N1 ∨N2 ¬N1 (¬U1∨N1)∧(¬U2∨N2)

negative. The direction of the first two figures matches largely with those predicted

by the verbal models theory, which is to be opposites of each other and homogenous.

However, a good alternative strategy for figure 1 was to make the forward direction

dependant on the non-negativity of both premises as well as universality. For figure 2,

a successfull strategy besides "always predict ca" was to use direction ac only if both

premises are E. NV C seems to depend on non-universality of the second statement

for figure 1, and both premises for figure 2 as well as negativity of the last premises.

Again, it seems to largely match the verbal models theory here. A successfull strategy

other than MFA for both figures was to never use NV C at all.

Figures 3 and 4 are more complicated, given the somewhat laxer rules for universality,

in the sense that neither or both premises can be universal to have universality in the

prediction. Figure 4 allows similar to negativity for figure 2 a somewhat contradictory

prediction of both AND and XOR formulas. Yet, in both figures the case that

neither premise is universal is not reached, as in these cases NV C again trumps the

prediction. Thus no contradiction is given. In total, it thus seems likely that figures

3 and 4 too follow the atmosphere theory regarding the quantifiers. The direction is
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more interesting here. Figure 3 suggests ac in the case that premise 2 is universal,

figure 4 when premise 2 is not negative. Both also accept ’always ac’ and ’always ca’

respectively as successful strategies, matching their counterparts from figures 1 and 2.

Interestingly enough, the formulas quickly become very complicated after these very

simple looking, best performing results, suggesting that they adapt to individualistic

behavior rather than represent a feasible, generalizing strategy. The same happens,

as expected, with NV C, as evident even from the MFA results already. One can

however see in lieu of complexity of the formulas, that absence of universality and

presence of negativity seems to be an important factor for NV C in these two figures.

To summarize, in most somewhat successful strategies the quantifiers follow the

atmosphere theory or a variation or specification of it, with formulas getting more

specific the less accurate they are, but most still containing the MFA formulas in their

larger formulas in some manner. For direction and NV C things look different. NV C

especially seems to depend on negativity and non-universality, which makes sense

seeing as these properties contain less information than their counterparts. However,

evaluation for the NV C formulas is complicated as not all of them are variations of

each other in the same fashion as the formulas for the quantifiers, and the formulas

also quickly become large and complicated, especially for the latter two figures. As

direction and NV C appear to also be more easily clusterable, as explained in the

previous section, this was to be expected.

5.5 Summary

Tests were conducted to assess both the performance for formulas generated on the

basis of the most frequent answer of the given data set, as well as for formulas

tailored to singular test persons’ answers. A clustering with the given methods was

not possible, and while the accuracy for the singular properties of an answer (i.e.

universal, negative...) could achieve a high overall accuracy, put together the accuracy
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could only reach a percentage of 44 %. The best performing formulas generated by

the algorithm mostly showed similarity with either the atmosphere or verbal models

theory.
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6 Evaluation

To test out the actual performance of the formula sets calculated in chapter 5, they

were given to a portfolio algorithm inspired by the approach of Riesterer et al. [13].

The approach was adapted for these purposes, combining rules based on a principle

similar to portfolios to perform a voting more on an individual basis and make the

formula sets adapt to each test person gradually over time. The algorithm starts by

initializing weights for each formula and predicts the answers of a person for each

syllogism by letting the formulas give a weighted vote. The weights of the formulas

are updated continuously to reward correct answers, thus giving formulas that make

correct predictions have a higher voting power.

A benchmark of Riesterer et al. [30], also based on their portfolio approach, was

used to evaluate the predictions. The adaption was performed online, allowing the

benchmark to update weights of successful formulas after each prediction. The test

runs did not start with any previous knowledge about an individuum, but instead

grew to anticipate the answers of each test person over time. After an individual run

was finished, all voting weights were reset to their initial values again. Two different

test runs were made, one with the configurations that were calculated in chapter 5

(see Tables 9 and 10) and a set size of 10. The other was conducted with maximum

configurations, which is 100 % accuracy required for all formulas in the set and no

limit to the set size. The answers were evaluated by a testing set of 139 people. The

resulting total accuracies can be seen in Figure 12.
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Figure 12: Performance of selected formula portfolios. Compares accuracies
of the testing set (red) with atmosphere (green), matching (yellow)
and uniformly random (blue) strategies. 12a shows the results with
configurations as calculated in the previous chapter, 12b shows the
results with maxed configurations, meaning 100 % accuracy for a formula
to be included, no difference rate between formula coverages, and no set
size limit.

As can be seen, with as small a set size of 10 formulas each, a significant improvement

in prediction accuracy compared to the psychological theories is reached, and without

limit on set size the results even come close to MFA accuracy (around 44 %), as

calculated in the previous chapter.
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7 Conclusion

This work showed that genetic algorithms can create simple and effective formulas

for predicting human answers for syllogistic problems, and that genetic algorithms

for boolean circuits can be used generally to find solutions for a large space search

problem, given that the inputs and outputs are encoded to fit the problem as well

as the appropriate hyperparameters. In this work, formula sets were generated as

theories to adapt to an individuum in terms of prediction, which was more successful

than the compared psychological theories. The formula sets were able to reach

accuracy rates of almost 44 %, which is the accuracy reached by the most frequent

answer strategy. This marks the question why the individual adaption could not

surpass the most frequent answers. For this there could be two reasons, one would

be that the algorithm first has to ’learn’ most frequent answer before it can surpass

it, for which there might not be enough trial time. Another reason could be that

a lot of the formulas generated by the genetic algorithm appear themselves to be

only variations, or specifications, of the formulas created by most frequent answer.

In the future it could be interesting to try out how the individual adaption of the

portfolio approach performs given more runs per individuum. Another topic that

could be interesting for the future could be to try out how the adaption would fare if

the algorithm already had previous knowledge on the basis of most frequent answer,

and would adapt its formulas from this pre-knowledge instead of uniformly.

In singular comparison, the formulas performed extremely well, reaching up to
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80 % accuracy. This means of course, that to achieve a better total rate for the

prediction, the singular formulas would have to reach almost perfect scores nearing 100

%. This raises the further question whether or not it will be possible to make better

prediction with a formula that was optimized for all figures and moods simultaneously.

However, as one single formula can of course not reach better results than the most

frequent answer, the individual adaption strategy has the most promising outlook in

this field. Otherwise, another question would be if the strictly deterministic boolean

strategy should even be forgone entirely, and a more probabilistic approach could be

used.
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