

Virtual MathPsych/ICCM 2023 mathpsych.org June 2023

Preferred Mental Models in Syllogistic Reasoning

Sara Todorovikj ~ Chemnitz University of Technology

Introduction - Syllogisms

All red shapes are circles.
Some red shapes are marked with a star.
What, if anything, follows?

- Quantified premises describing relationships between three terms
- What kind of relation, if any, exists between the two end-terms?
 - o 'circles' subject
 - o '(marked with a) star' predicate
- Theories aim to explain and model processes behind human syllogistic reasoning
 - Mental Model Theory (MMT)¹

¹ Johnson-Laird, P. (1975). Models of deduction. In Reasoning: Representation and process in children and adults, 7–54).

Introduction - Mental Models

```
All red shapes are circles.

Some red shapes are marked with a star.

What, if anything, follows?
```

- Given some observations, individuals create iconic representations mental models – of possibilities
- Subjective mental representation of the information presented in a reasoning task
- Possible representations:

```
circles [red] [star] circles
circles red [star]
```

- Conclusion: "Some circles are marked with a star"
- ullet To confirm validity all possible premise interpretations should be checked if they hold ullet difficult

Introduction - Preferred Mental Models

- Spatial relational reasoning domain individuals have preferred mental models
- Model building process typically not addressed in syllogistic domain
 - Which models do individuals create?
 - o Are the models correct?
 - Oo they even have preferred models at all?
- Present experiment visual responses showing representation of given syllogistic premises
- RQ1: Can we examine what kind of models do individuals create from the premises of syllogistic tasks and do they have preferred mental models?

Introduction - Canonicality & mReasoner

- Canonical form the minimal, simplest representation of an expression
- In mental models which instances form a canonical set for a given syllogism?

All red shapes are circles $\begin{array}{c} \text{circle red} \\ \neg \text{circle } \neg \text{red} \end{array}$ $\begin{array}{c} \text{canonical} \\ \text{non-canonical} \end{array}$

RQ2.1: How influential is the canonicality of mental models that individuals build for syllogistic premises on the correctness of derived conclusions?

Introduction - Canonicality & mReasoner

- mReasoner² a LISP-based implementation of MMT for syllogistic reasoning
 - System 0: Create intensional representations of premises
 - o System 1: Build and interpret an initial model
 - o System 2: Perform search for counterexamples
- System 1 parameterizes number of entities and their canonicality
- RQ2.2: Is the model building behavior observed in humans in line with the model building processes of mReasoner?

²Khemlani, S., & Johnson-Laird, P. (2013). The processes of inference. Argument & Computation, 4(1), 4-20.

Theoretical Background - Syllogisms

- The two syllogistic premises and conclusion are characterized by their mood and figure
- Quantifiers \rightarrow Mood

```
A All A are BI Some A are BO Some A are not B
```

ullet Order of terms o Figure

Figure 1	Figure 2	Figure 3	
A - B	B - A	A - B	B - A
B - C	C - B	C - B	B - C

Denoting syllogisms using abbreviations and figures:

All red shapes are circles. Some red shapes are marked with a star. $\ensuremath{\rightarrow}$ Al4

- Denoting conclusions using quantifier and end-term order (ac or ca)
 Some shapes marked with a star are not circles → Oca
- \circ Some snapes marked with a star are not circles \to Oca
- 'No valid conclusion' → NVC

Theoretical Background - mReasoner

MMT

- Individuals represent entities described by quantifiers using mental models
- → Aim to derive a conclusion
 - Before accepting search for counterexamples
- → If successful, reject and correct original conclusion or NVC
- mReasoner four parameters
 - \circ λ model size
 - \circ ϵ canonicality
 - \circ σ counterexamples search
 - \circ ω NVC

Experiment

No yellow shapes are hexagons

All shapes that are marked with a star are yellow

What do you imagine the ten objects below look like when thinking about the premises above?

Experiment

No yellow shapes are hexagons

All shapes that are marked with a star are yellow

What do you imagine the ten objects below look like when thinking about the premises above?

Analysis - Experimental Data

- Correct representation \rightarrow 82.12%
 - o Not affected by negativity of quantifiers, particularity or validity
 - $\circ \ \, \mathsf{Figure} \,\, \mathsf{2} \to \mathsf{More} \,\, \mathsf{incorrect} \,\,$
 - \circ Figure 4 \rightarrow Potentially easier

Analysis - Experimental Data

- Correct response \rightarrow 31.06%
- Correct representation and response \rightarrow 25.50%
 - No significant correlation

Analysis - Preferred Mental Models

- All → non-canonical instances
- ullet Particular quantifiers (Some, Some not) o weaker preference
- ullet AA1 and EA4 o two models with equal preference
- ullet Otherwise o no preferred models

Analysis - mReasoner

- Relevant model building parameters:
 - \circ λ number of instances in the model
 - \circ ϵ likelihood that instances are from the full set

Quantifier	Canonical	Noncanonical	
All	Х Ү	¬X Y ¬X ¬Y	
Some	$\begin{matrix} X & Y \\ X & \neg Y \end{matrix}$	$\neg X Y \\ \neg X \ \neg Y$	
No	$\neg X Y \\ X \neg Y$	$\neg X \ \neg Y$	
Some not	X Y X ¬Y ¬X Y	$\neg X \neg Y$	

- Derived ε values based on participants' responses
- Fit mReasoner to task responses
 - Fixed $\lambda = 10$
 - $\circ \ \ \mathsf{Free} \ \lambda$

Analysis - mReasoner

Discussion

- RQ1 What kind of mental models do individuals create and do they have preferred models?
 - Designed and conducted and experiment
 - Found a belief bias tendency
 - 82% correct visual representations
 - Preferred mental models for 46 syllogisms
- RQ2 Does model canonicality have influence on correctness? Is the mReasoner model building process in line with the one observed in humans?
 - No significant correlation in any scenario
 - Lack of relevance of the models for the responses?
 - \circ Many ϵ values lead to the same answer
 - Assumption of correct representation mostly in line
 - NVC not possible with one model

Conclusion

- Individuals do have preferred mental models
- Initially built mental model not substantial for finding conclusions
- Instances chosen correctly in line with premises
- Model building \rightarrow rather easy task for humans
- Solving tasks by repeated construction of models?