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Abstract

How difficult is it to simulate an algorithm in one’s mind
and correctly deduce its outcome? In this paper, we present
a predictive modeling task in the domain of algorithmic
thinking in a railway environment. We present metrics, either
based on algorithmic representation complexity (e.g. lines
of code) or on the effect on cognitive resources an algorithm
simulation can have (e.g. context switching). We implement
the metrics within a benchmark and evaluate their predictive
performance on an individual level, by assigning a complexity
threshold to each individual. We compare these results
to a standard statistical correlation analysis and suggest a
different perspective for determining the predictive powers of
complexity metrics as models.

Keywords: Algorithmic thinking; predictive modeling;
problem solving; cognitive processes; deduction

Introduction
An algorithm is a set of well-defined instructions to be
followed in order to solve a specific class of problems.
Even though algorithms are most often associated with
mathematical and computer sciences, they are present in
each human’s everyday life. Food recipes, furniture building
instructions, getting coffee from a coffee machine... Each
one of these examples has a set of rules associated with them
that we follow in order to obtain the desired outcome.

Imagine you are building your new bookshelf, and the next
step in the visual instructions depicts hammering all the nails
in the package, totaling up to 40. What if the instructions
were written? One way to express this step would be to write
the instruction “Hammer a nail” 40 times, which is obviously
unreasonable. Instead, there would be a condensed version
represented as a loop of operations which would indicate that
the hammering action needs to be repeated 40 times, or, while
we still have nails in the package. Such loops are very often
encountered in computer programming and we distinguish
two sorts (Rogers, 1967): for-loops where the instructions are
repeated for a certain amount of times and while-loops where
the instructions are repeated while a specified condition holds.

The comprehension and formulation of algorithms has
been researched by psychologists investigating compu-
tational thinking (Bucciarelli, Mackiewicz, Khemlani, &
Johnson-Laird, 2022). Creating an algorithm for solving
a problem requires solving representative instances of the
problem class, simulating the process of solution to abduce
an algorithm and simulating an algorithm to deduce its con-

sequences in order to determine its correctness (Khemlani,
Mackiewicz, Bucciarelli, & Johnson-Laird, 2013).

We narrow down the algorithm domain to a railway
environment, following Khemlani et al. (2013). Given an
ordered sequence of train wagons on a track, rearrangement
algorithms of different complexities can be executed, leading
to a new order of the wagons on a different track. Focusing
on deducing an algorithm’s output in this domain, we are
interested in the difficulty of such tasks, operationalized by
the correctness that humans achieve when trying to solve
them. Khemlani et al. (2013) present their finding that for
deduction, the difficulty does not depend on the number of
moves performed while executing an algorithm, but rather on
the Kolmogorov complexity of a corresponding Lisp function
containing while-loops for rearranging trains of any length.
In this paper, our interest lies in using complexity metrics
to model the difficulty an individual has when deducing the
correct wagon order after applying a rearranging algorithm.

Though often used as synonyms, the terms ‘complexity’
and ‘difficulty’ are in fact used to differentiate between (1)
intrinsic characteristics which influence performance but
are independent of the context and the people solving the
problem, and (2) the direct relationship to the observed per-
formance and subjective individual experience (Effenberger,
Cechák, & Pelánek, 2019). There exists a relationship be-
tween complexity and difficulty, which, as shown in various
settings, is reflected in a human’s behavior and performance
(Sheard et al., 2013; Campbell, 1988; Liu & Li, 2012).

The complexity of an algorithmic task can be defined
using different metrics, like the previously mentioned Kol-
mogorov complexity (Khemlani et al., 2013), or simply the
length of lines in a code describing the algorithm (Nguyen,
Deeds-Rubin, Tan, & Boehm, 2007). To further explore
the relation between complexity and difficulty, we introduce
several metrics, where some are based on algorithmic
complexities, while others take the cognitive perspective into
consideration, specifically the effect on cognitive resources
that the simulation of an algorithm can have.

In order to assess whether our metrics reflect the relation-
ship between complexity and difficulty, we conducted an
experiment to establish a data foundation. The experiment
was based on the tasks in Khemlani et al.’s (2013) study,
where participants were asked to deduce the outcome of ap-
plying different rearrangement algorithms to a set of ordered



Figure 1: The Top Left, Top Right and Bottom Right train tracks.

wagons. Following Goodwin and Johnson-Laird (2011), we
first evaluated the metrics based on the correlation between
their values and the correctness achieved by participants. In a
second step, we defined a modeling task where the objective
was to predict the correctness of the participants’ answers.
By implementing our metrics as models within this task,
we evaluated their predictive performance and investigated
whether the results found based on correlations translate to
an individual predictive level.

Experiment
The goal of the experiment was to test the ability of individu-
als to correctly deduce the consequence of applying an algo-
rithm. Given a sequence of wagons in a particular order and
a rearrangement algorithm, the participants’ goal was to sim-
ulate the algorithm’s execution in their mind and deduce the
final order of the wagons, which they provided as an answer.

Our task and algorithm design was inspired by Khemlani
et al. (2013). The task scenario consisted of three train tracks
(Top Left, Top Right and Bottom Right), as shown in Figure
1. Initially, the wagons were placed in the Top Left track,
and the goal was to have the wagons rearranged in the Top
Right track. The Bottom Right track could be used by the
algorithms as an intermediate track.

The four algorithms that we used from the railway domain
are Reverse, Palindrome, Parity Sort and Faro Shuffle. Table
2 shows the initial states of the wagons and their final order
after applying the algorithms to four and six wagons. We
visualized the algorithms shown in Figure 2 using code
blocks (see Figure 3). We distinguish between three types
of code blocks - While, Repeat and Move. The While
blocks indicate that the commands in their scope will be
repeatedly executed as long as a condition holds and they are
equivalent to while-loops. The Repeat blocks work similarly
to While, except the number of repeated executions is
explicitly determined with an integer, equivalent to for-loops.
The Move blocks describe the wagon moving operation that
should be performed. A wagon can be moved only between
Top Left and Bottom Right, and Top Left and Top Right.

The experiment manipulated the type of the rearrangement
algorithm and the number of wagons that the algorithm needs

to be applied to (four or six). This allows for examining the
difficulty of a deduction not only based on the algorithm
itself, but also by taking into consideration how an algo-
rithm’s complexity changes when the number of instances it
needs to be applied to differs. Finally, every participant was
presented with eight tasks - four algorithms applied once to
four wagons, and once to six.

Reverse

While track Top-Left has wagons:
Move wagon from Top-Left to Bottom-Right

While track Bottom-Right has wagons:
Move wagon from Bottom-Right to Top-Left
Move wagon from Top-Left to Top-Right

Palindrome
While first wagon on Top-Left has color blue:

Move wagon from Top-Left to Bottom-Right
While track Bottom-Right has wagons:

Move wagon from Bottom-Right to Top-Left
Repeat 2 times:

Move wagon from Top-Left to Top-Right

Parity Sort

While track Top-Left has wagons:
Move wagon from Top-Left to Top-Right
Move wagon from Top-Left to Bottom-Right

While track Bottom-Right has wagons:
Move wagon from Bottom-Right to Top-Left

While track Top-Left has wagons:
Move wagon from Top-Left to Top-Right

Faro Shuffle

While not solved:
Move wagon from Top-Left to Top-Right
While first wagon on Top-Left has color orange:

Move wagon from Top-Left to Bottom-Right
Move wagon from Top-Left to Top-Right
While track Bottom-Right has wagons:

Move wagon from Bottom-Right to Top-Left

Figure 2: Wagon rearrangement algorithms as presented in
the experiment. The algorithms were visualized using code
blocks, as shown in Figure 3.



Figure 3: Example code blocks for the Reverse algorithm.

Participants
Thirty-six participants completed the experiment (age 18-35,
72% female). They were recruited on Prolific1 and the exper-
iment was performed online as a web-experiment. After com-
pleting the experiment, participants received a compensation
of 10 EUR. 21 of them indicated to have ‘some’ programming
background, 14 had ‘none’ and 1 participant had ‘profound’
background. All of them were native English speakers.

Procedure
Participants were first given an introductory task, which
explained the visualization of the train tracks and the code
blocks that describe the algorithm for rearranging the
wagons. They were presented with the following two rules
regarding the execution of the Move block: 1. Only one
wagon will be moved at a time; 2. Only the wagon closest
to the crossing on a track will be moved (it is referred to as
the first wagon of the track). They were informed that their
goal is determining the order of the wagons on the Top Right
track resulting from executing the algorithm described by the
code blocks. They needed to write their answer in a text-field
above the Top Right track. Participants were instructed not
to use external tools (like pen and paper) to solve the task,
but were encouraged to simulate the algorithm in their mind.
Afterwards, the participants received their first task. They
were presented with either four or six wagons on the Top Left
track and code blocks for a rearrangement algorithm. Once
they entered their answer, they could proceed to the next task.

Observed Data
The total number of tasks in the experimental data is 288 (36
participants, 8 tasks each). We eliminated 12 tasks, because
while solving the task, participants left the page for more
than half a minute in total, leaving us with 276 valid data
points (Reverse: 71, Palindrome: 69, Parity Sort: 69, Faro
Shuffle: 67). For 66 of them (23.9%) participants provided
correct answers (Reverse: 24, Palindrome: 11, Parity Sort:
18, Faro Shuffle: 13). The exact number of correct answers
for each one of the eight tasks is provided in Table 1.

Modeling Difficulty
Based on the data obtained from our experiment, we intro-
duce a modeling task for algorithmic thinking within the
railway environment. The objective of the modeling task is

1https://www.prolific.co/

Table 1: Total number of valid data points and correct
answers for each task.

Algorithm #Wagons Total Valid Correct

Reverse
4 36 10 (27.8%)
6 35 14 (40.0%)

Palindrome
4 35 4 (11.4%)
6 34 7 (20.6%)

Parity Sort
4 35 9 (25.7%)
6 34 9 (26.5&)

Faro Shuffle
4 34 11 (32.4%)
6 33 2 (6.0%)

to determine the difficulty, operationalized by the number of
errors participants make deducing an algorithm’s outcome
based on the algorithm and the initial arrangement.

Complexity Metrics
In the following we introduce seven metrics which can be
roughly divided into two conceptual groups. The first group
of metrics are based on the complexity of the algorithm’s
structure only, which is common for assessing the complexity
of program code. They are suited to represent an individual’s
ability to understand the algorithm and the underlying
concept of what the algorithm is supposed to do and estimate
the complexity of the execution based on the complexity of
the algorithm itself. Metrics of the second group consider
the precise steps performed by the algorithm when executed
on a specific output. Therefore, these metrics can better
account for the cognitive load that occurs while an individual
simulates the steps of the algorithm in their mind, but also
requires them to execute the algorithm in order to measure
the respective complexity estimate.

Depth is based on algorithmic computational complexity
which increases when nesting loops. Assuming that when the
innermost statements are deeper nested in loops, simulating
the algorithm’s execution should be more difficult for an
individual, the metric describes the depth of an algorithm
with respect to (nested) loops, while starting with a top-level
depth value of 1. Reverse has a depth value of 3, obtained by
adding 1 (top-level) + 1 (first level - While commands), + 1
(second level - instructions within While commands). This
metric provides the same value for an algorithm, independent
of the number of wagons it would be applied to.

Structure mimics the relation between the length of a code
describing an algorithm and a perceived level of task diffi-
culty (Sheard et al., 2013; Nguyen et al., 2007) by counting
the number of code blocks in the algorithm. Reverse has a
structure value of 5, as it has five blocks. Similarly to the
depth metric, structure also provides the same value for an
algorithm, for any number of wagons.

Moves is the number of wagon moves that the algorithm
performs until completion, following Khemlani et al. (2013).
When applying Reverse to four wagons, 12 moves are



Table 2: Initial and goal states, and complexity metric values for each one of the eight railway domain tasks.

Algorithm Initial Goal Complexity Metrics
Depth Structure Moves Commands Contexts Signature Entropy

Reverse
1234 4321 3 5 12 22 8 5.625 0.822
123456 654321 18 32 12 5.906 0.833

Palindrome
1234 1423 4 6 8 18 4 5.25 0.929
123456 162534 12 26 6 6.125 1.022

Parity Sort
1234 1324 3 7 8 17 5 6 1.015
123456 135246 12 24 7 7 1.074

Faro Shuffle
1234 1324 4 7 6 15 5 6 0.937
123456 142536 12 28 9 11 1.050

performed: 4 (first Move instruction on four wagons) + 2 ×
4 (two Move instructions on four wagons).

Commands takes the structure metric a step further and
counts the amount of times that code blocks have been
executed, thereby acknowledging possible costs for checking
a loop’s condition. In the four wagon scenario, Reverse has
a commands value of 22: 8 (first While and its Move blocks
are executed once for each wagon) + 12 (second While and
two Move blocks executed for each wagon) + 2 (execution of
two While blocks when their condition does not hold).

Contexts represents the people’s limitation to attending to
only one context in their working memory and the cognitive
load increase when context switching is necessary (Garavan,
1998). This metric defines a context as operating on a pair of
tracks, i.e. moving wagons from one track to another. When
switching between different Move instructions, the relevant
pair of tracks changes which leads to a context switch. The
metric counts the number of context switch occurrences dur-
ing an algorithm execution, where a higher number indicates
higher cognitive load and therefore a task is deemed more
difficult. In the case of Reverse with four wagons, 8 context
switches happen: 1 (operating on Top Left and Bottom Right
in the first While block and switching to Bottom Right and
Top Left in the second While block) + 7 (constant alternating
between Bottom Right and Top Left and Top Left and Top
Right when executing the second While block).

Signature imitates the repetition effect (Bertelson, 1961),
which shows that an individual needs less time to perform
a repeated task. We transform the effect to a complexity
metric in this domain, by assuming that once an individual
has processed a command once, its repetitions within a loop
should be perceived as easier. The metric assigns a cost of 1
to each executed command in an algorithm, while checking if
a command is immediately repeated (within a loop), in which
case the cost is halved in each repetition. The signature
cost of Reverse on four wagons is 5.625: 1.875 (first Move
command repeated four times: 1 + 0.5 + 0.25 + 0.125) + 3.75
(other two Move commands repeated four times).

Entropy is a measurement of potential knowledge and ran-
domness in information theory (Shannon, 1948). Used as a
metric to quantify uncertainty, we apply it in this scenario by
taking into consideration the distribution of the wagons over
all three tracks. After each move, the entropy of the wagons
on the tracks is calculated, as shown in Eq. 1. A higher
entropy value indicates a more chaotic distribution of the
wagons, potentially increasing the difficulty for individuals
to simulate the algorithm and deduce its correct outcome.
The final value is the average of all calculated entropies.
Reverse’s entropy when applied to four wagons is 0.822.

E=−∑
k
(pk ·log2 pk) (1)

The complexity metrics’ values for each task are presented
in Table 2.

Following approaches in related work (Goodwin &
Johnson-Laird, 2011; Khemlani et al., 2013; Khemlani,
Goodwin, & Johnson-Laird, 2015), we measure the correla-
tion between the complexity metrics’ values and the correct-
ness of the individuals’ answers, results shown in Table 3.

Complexity Metric ρ p-value

Depth -0.145 .016
Structure -0.008 .149
Moves 0.078 .202

Commands 0.019 .751
Contexts 0.086 .152
Signature -0.133 .027
Entropy -0.123 .041

Table 3: Correlation (Pearson’s ρ) between complexity
metrics and answer correctness. Significant p-values are
marked in bold.



Modeling Individuals
The significant correlation values (Table 3) indicate that
depth, signature and entropy should be the best predictors of
answer correctness. We want to determine whether this holds
on the individual level - are the metrics with statistically
significant correlation good predictors of task difficulty for
each individual in our data set?

In our modeling approach models are evaluated based
on their ability to account for an individual’s capability to
correctly deduce the final order of the wagons after applying
a rearrangement algorithm. To perform our evaluation, we re-
lied on the Cognitive Computation for Behavioral Reasoning
Analysis (CCOBRA) framework2, which facilitates model
evaluations with a focus on modeling reasoning behavior
on the individual level (Riesterer, Brand, & Ragni, 2020).
Similar to Riesterer et al. (2020), we performed a coverage
analysis, which allows models to fit to each individual
participant in the data. This approach allows to assess a
models ability to represent a participant’s behavior within
its parameter space. In our case, the models were created
by equipping each metric with a complexity threshold that
represented the maximum complexity that an individual
participant could “handle”, i.e., the complexity value up until
which the participant is able to give the correct answer. All
models then fitted their thresholds to each individual. When
a model is then queried for a prediction for a given task,
it determines its prediction by comparing the individual’s
threshold to the task complexity according to the respective
metric: If the complexity is too high, it is predicted that the
individual will not solve this task correctly.

Besides models for each metrics, we implemented an ad-
ditional baseline model which always predicts the participant
to give an incorrect answer. This serves as a reasonable
lower-bound, as the average correctness for the tasks was
below 50%.

Results
Each model was judged on its ability to account for an
individual’s difficulty threshold, on which it depends whether
a correct answer is given or not. Table 4 shows the accuracy
values for each complexity metric and Figure 4 shows how
good the individual participants are predicted. All of them
achieve an accuracy above 80% and perform better than the
baseline model.

The best performance is achieved by entropy, closely
followed by structure, with an accuracy value of 87%.
Interestingly, entropy showed a significant correlation to
the answer correctness, yet structure did not. The signature
metric, with a significant correlation performed very well in
our benchmark, reaching an accuracy of 86%. However, even
though its mean performance is rather high, Figure 4 shows
that it does not manage to fully cover as many individuals as
the other metrics.

2https://github.com/CognitiveComputationLab/ccobra

The discrepancy between significant correlations and pre-
dictive powers is shown by the depth metric - the worst pre-
dictor out of all seven metrics, even though it has a significant
correlation. A part of the problem might be the dichotomous
nature of the metric, which only assigns the values 3 or 4 to
the present algorithms. This restricts the expressiveness of the
threshold, impeding its ability to discern between individuals.
On the other hand, the structure metric is still the second best
predictor without a significant correlation value, although it
only distinguishes between 3 possible values for our tasks.

Complexity Metric Model Accuracy

Entropy 87%
Structure 87%
Signature 86%
Contexts 83%

Commands 83%
Moves 83%
Depth 81%

Baseline 76%

Table 4: Benchmark evaluation results - accuracy values
of the complexity metrics as predictive models for a task’s
difficulty, ordered from best to worst.

Baseline Depth Moves Contexts Commands Signature Structure Entropy
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Figure 4: Benchmark evaluation results - individual accuracy
values of the complexity metrics as models for a task’s
difficulty. Triangles denote the mean performance.

Discussion and Conclusion
In this paper we presented seven different complexity metrics
which we used in our proposed difficulty modeling task in
the algorithmic thinking domain with a focus on a railway
environment. We implemented them in a benchmark and
evaluated their predictive performance by comparing them
against a baseline model and also with their correlation
values. We used data from an experiment we conducted
whose design is inspired by a previous study in the railway
environment by Khemlani et al. (2013).

The best performance achieved by entropy is not a
surprising result, as it is expected that a more disorganized



distribution of the wagons on the tracks should lead to more
difficulties remembering wagons’ positions and adjusting
them after performing rearrangement operations. Through
the signature metric we also learn that in some cases the
immediate repetition of instructions helps individuals when
simulating an algorithm.

The structure metric is the second best predictor in our
benchmark, even though it doesn’t have a significant correla-
tion and it only provides 3 possible values. The combination
of a high predictive performance with a relatively low degree
of freedom for the threshold indicates that its underlying
concept is in fact meaningful. That is in line with the found
relevance of lines of code to task difficulty (Sheard et al.,
2013; Nguyen et al., 2007).

Analyzing the relation between complexity metrics and
perceived difficulty of algorithmic tasks is a topic researched
for many years from different perspectives, e.g. under-
standing mental processes in computational thinking (e.g.
Khemlani et al. (2013), education and exam creation (e.g.
Sheard et al. (2013)) and software maintenance (e.g. Curtis,
Sheppar, Milliman, Borst, and Love (1979)). In such studies,
usually a significant correlation is always taken as a sign of a
good predictor, but we show that our modeling task gives us
the possibility to analyze the complexity metrics’ capability
to act as predictive models of task difficulty beyond statistical
analysis. For example, while the depth metric was consid-
ered to be a good predictor based on correlation, it failed
to translate to an adequate performance when predicting the
complexity for individuals and was outperformed by all other
metrics.

Our findings open many doors and possibilities for future,
exciting research. In the experiment we found a difference
in correctness patterns between 4 and 6 trains. An interesting
next step would be to perform further analysis whether
this influences the complexity metrics as predictive models
for these tasks as well. Additionally, it would be useful to
conduct a similar experiment, where individuals are exposed
to the same tasks multiple times. That would allow for
broadening the modeling task to predictions on new, unseen
individual data. Further research steps can be taken by look-
ing deeper into relations between the metrics and examining
the predictive powers of their combinations. For example, the
contexts metric on its own did not perform as well as the best
performing models, but its performance might be bettered by
analyzing how switching contexts taken into consideration
together with the distribution of wagons (entropy) predicts
perceived difficulty. Moreover, it would be of great interest
to research whether expanding already existing algorithm-
specific complexity metrics towards considering the cognitive
load an algorithm can have on an individual would lead to
better predictions of difficulty thresholds. Finally, the setting
allows for an extended version of the modeling task: Instead
of predicting the expected correctness based on complexity,
the prediction of the exact responses given by participants
to a task can serve as a challenging objective. The extension

of the modeling task requires a extensive data set, but would
in turn open the task for models that go beyond an estimate
of complexity. Instead, models that are able account for
and simulate the processes underlying human algorithmic
thinking would be required to solve the task.
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