

MathPsych/ICCM/EMPG 2023 mathpsych.org July 2023

Uncovering iconic patterns of syllogistic reasoning: A clustering analysis

Mr. Daniel Brand ~ Chemnitz University of Technology

Syllogistic Reasoning

No B are A. All B are C.

What, if anything, follows?

- Two quantified statements connected via a common term
- Task: Find a **conclusion** connecting the end terms
 - Or: conclude that no valid conclusion exists (NVC)
- Traditionally used with **first-order logic** quantifiers: All (A), None (E), Some (I), Some not(O)
- Well-defined domain with 64 tasks and 9 responses

Reasoning Patterns

Observations can be shown as 9 × 64 matrix → Reasoning pattern

- Cognitive models generate such reasoning patterns using their internal mechanisms
- Models perform well for aggregated patterns¹
- This is not the case on the individual level!²

[1] Khemlani, S. S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis.

[2] Riesterer, N., Brand, D., & Ragni, M. (2020). Do models capture individuals? Evaluating parameterized models for syllogistic reasoning.

Individual Patterns

Substantial inter-individual differences

→ Likely that **no single inferential process** is sufficient

→ Multiple patterns are necessary

Modeling Individuals

- Models incorporate multiple processes
- Prominent approach: Dual-processing accounts¹
 - System 1: Fast-and-frugal heuristics
 - System 2: deliberative, more logical

• Incorporated by the Mental Model Theory² (MMT)

Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition.
 Khemlani, S. S., & Johnson-Laird, P. N. (2013). The processes of inference.

Research Questions

- How many patterns are necessary?
 - Is the distinction into two main processes justified?
- How do optimal patterns look like?
 - How well could they account for individual data?

A Data-driven Perspective

- Cognitive models are constraint by theoretical assumptions
- → Search patterns in the data **directly**

\rightarrow Clustering

- Find *k* patterns that are **representative** for a respective group of individuals
- Which clustering method?
- What is the best k?

Clustering Methods

- k-Means
 - Common method for clustering
 - Uses the **mean of a cluster** as a centroid
 - \rightarrow Direct extension to **aggregated** patterns
- k-Medoids
 - Uses actual data points instead of the mean
 - \rightarrow Patterns are not *artificial*
- Nonnegative Matrix Factorization
 - Formally, clustering can be understood as a special case of matrix decomposition¹
 - Finds latent patterns using **dimensionality reduction**
 - Usually good interpretability of resulting patterns

Nonnegative Matrix Factorization

- *m* × *n* matrix *X* with *m*-dimensional patterns from *n* reasoners
- NMF factorizes X into two matrices W and H:
 - $W(m \times k)$: Contains k patterns
 - $H(n \times k)$: **Contains assignment** to the *k* patterns
 - **Clustering**: Assignments in *H* must be **unique**

Analysis

- Task: Select best clustering method and optimal k
- \rightarrow Analysis based on cross-validation
 - Dataset¹ contains the responses of 106 participants to all syllogisms (full patterns)
 - Use different clustering methods and values of k to find patterns in the training set
 - Test quality of the patterns on the test set

Quality Metrics

- Distinct patterns:
 - All k patterns should not be similar to each other
 - Patterns should make precise predictions
- Stable patterns:
 - Found patterns should be stable and not be dependent on the **specific composition** of the training data
- Test-Accuracy:
 - Patterns found in the training data should be predictive for individuals in the test data

Distinct Patterns

- Maximum cosine similarity **between** all k patterns
- Cosine similarity: $sim(w_1, w_2) = \frac{w_1 w_2}{\|w_1\| \|w_2\|}$
- Within patterns, entropy is used
- Entropy: $H = -\sum_i p_i * log_2 p_i$

Example: k-Means vs. NMF

- NMF pattern is sharper
- k-Means yields no clear predictions on an individual level

Stable Patterns: Inter-Similarity

- Patterns should not depend on the specific composition of the training data
- Cosine similarity between corresponding patterns from multiple CV-splits

Test Accuracy

- Patterns found in the training data should be good predictive models for individuals in the test data
- Accuracy on the test set of the best fitting pattern

Results

• The overall best configuration was k = 2 with NMF

- Patterns roughly resemble S1/S2 patterns
- k = 2 and NVC differences

 \rightarrow Support for dual-process accounts?

Support for Dual-Process

- We tested correlations for:
 - Need for Cognition (NFC)
 - Cognitive Reflection Task (CRT) performance
 - Response times (RT)
- Should be higher for participants associated with the "system-2 pattern"

Support for Dual-Process

	Mean S1	Mean S2	р	U
NFC	4.65	4.73	.536	1224.5
CRT	.47	.7	< .001	747.0
RT	15803	13468	.001	1697.0

- No significant result for NFC
- CRT performance significantly higher for S2!
- Response times significantly higher for S1?
- \rightarrow Mixed results: No support for dual-processes
- \rightarrow CRT could be a good predictor

Using Patterns as Models

• Assign individuals to patterns based on CRT & NFC

- CRT allows to surpass the most frequent answer
- Performance is far behind the optimal assignment to the two patterns

Conclusions

- Clustering analysis showed that only two patterns seem to be sufficient
 - \rightarrow Explains the convergence of models
- Dual-process assumption was not supported
 → Different explanations for NVC necessary
- Iconic patterns have a high predictive accuracy
 →Good assignment strategies valuable
- Methodology is applicable in all domains where datapoints form well-defined patterns
- Optimal *k* heavily depends on the **quality criteria**:
 - We focused on stable patterns that are likely to exist in most datasets

References

- Brand, D., Riesterer, N., & Ragni, M. (2022). Model-based explanation of feedback effects in syllogistic reasoning. *Topics in Cognitive Science*, 14(4), 828-844.
- Dames, H., Klauer, K. C., & Ragni, M. (2022). The stability of syllogistic reasoning performance over time. *Thinking & Reasoning*, 28 (4), 529-568.
- Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59(1), 255–278.
- Khemlani, S. S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A metaanalysis. *Psychological Bulletin*, 138(3), 427–457.
- Khemlani, S. S., & Johnson-Laird, P. N. (2013). The processes of inference. *Argument & Computation*, 4(1), 4–20.
- Kim, J., & Park, H. (2008). *Sparse nonnegative matrix factorization for clustering* (Tech. Rep.). Georgia Tech.
- Riesterer, N., Brand, D., & Ragni, M. (2020a). Do models capture individuals? Evaluating parameterized models for syllogistic reasoning. *Proceedings of the* 42nd Annual Conference of the Cognitive Science Society (pp. 3377–3383).