Unifying Models for Belief and Syllogistic Reasoning

Daniel Brand^{1,2}, Nicolas Riesterer¹, Marco Ragni^{1,2} ¹ Cognitive Computation Lab, Department of Computer Science, University of Freiburg ² South Denmark University

Belief Effect in Syllogistic Reasoning

Is the conclusion of the following syllogism correct?

No addictive things are inexpensive. Some cigarettes are inexpensive.

Therefore, some addictive things are not cigarettes.

- 92% accept the conclusion (Evans et al., 1983), although it is not valid
- However, without believable content, only 8% accept it!
- → Background knowledge and belief has an effect on our reasoning

Traditional Models vs. Belief Models

- Traditional models for syllogistic reasoning usually focus on the structure of a syllogism
- Models are able to predict conclusions for all syllogisms
- Experiments usually rely on neutral content to avoid the belief effect
- Models for the belief effect rely only on the believability
- Often analyzed via experimental manipulations on a small subset tasks
- Tasks are selected to reduce structural effects
- Models are mostly statistical models
- We aim at combining both worlds to obtain better predictive models

Evaluation Foundation

- Data from meta-analysis by [1]
- Results from 22 studies
- 993 individuals that answered 16 syllogistic tasks each (usually 8) with believable content and 8 with unbelievable content)
- The conclusion was presented, and the participants were asked whether they accept it or not
- In some studies, participants were asked the same tasks twice
- Participants should respond with ratings between 1 and 6
- Models were evaluated in CCOBRA [2]
- Several baselines were used for comparison (random ratings, past) ratings, individual selection of best belief model, portfolio selecting the best belief and reasoning model)
- Models were evaluated wrt. acceptance and ratings of conclusions

Mail: daniel.brand@cognition.uni-freiburg.de Web: https://www.cc.uni-freiburg.de

Predicting Ratings

• We leverage the paths in the belief models to derive gradations for predicting ratings

Follows?	Possible?	Believable?	Sel. Scrutiny
√	-	\checkmark	6
√	-	×	4
×	\checkmark	\checkmark	5
×	\checkmark	×	2/3
×	×	\checkmark	5
×	×	×	1/2

References

[1] Trippas, D., Kellen, D., Singmann, H., Pennycook, G., Koehler, D. J., Fugelsang, J. A., & Dub'e, C. (2018). Characterizing belief bias in syllogistic reasoning: A hierarchical Bayesian meta-analysis of ROC data. Psychonomic Bulletin & Review, 25(6), 2141–2174. [2] Riesterer, N., Brand, D., & Ragni, M. (2020). Do models capture individuals? Evaluating parameterized models for syllogistic reasoning. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Conference of the Cognitive Science Society (pp. 3377–3383). Cognitive Science Society. [3] Evans, J. S. B. T., Barston, J. L., & Pollard, P. (1983). On the conflict between logic and belief in syllogistic reasoning. Memory & Cognition, 11(3), 295–306. [4] Khemlani, S. S., & Johnson-Laird, P. N. (2013). The processes of inference. Argument & Computation, 4(1), 4–20. [5] Chater, N., & Oaksford, M. (1999). The probability heuristics model of syllogistic reasoning. Cognitive Psychology, 38(2), 191–258.

Predictive performance was improved for both, belief and

Models were adapted to ratings, which is richer data compared to

Data foundation introduced a bias towards logic since the tasks were specifically selected to reduce structural effects

→ Reasoning research is missing general purpose data for modeling → Results illustrate the potential stemming from unified models

> 43rd Annual Conference of the Cognitive Science Society July 2021