

Using Cross-Domain Data to Predict Syllogistic Reasoning Behavior

Daniel Brand & Marco Ragni

Professorship of Predictive Analytics

- ☑ Contact: Daniel.Brand@metech.tu-chemnitz.de
- https://www.tu-chemnitz.de/hsw/pva

Motivation

- The human ability to reason is an integral part of our intelligence
- Reasoning research is often done on single (isolated) reasoning domains
 Syllogisms¹, Conditionals², Spatial-relational reasoning³,...
- This leaves three core questions open:
 - 1. Is there a general reasoning ability⁴?
 - 2. Is the separation of the domains justified?
 - 3. What other factors contribute to reasoning?
- → We present an **extensive cross-domain dataset** and an analysis using **predictive modeling** to tackle those questions

Study

- Web-experiment with 95 participants over three sessions
- Tasks to assess cognitive traits (i.e., CORSI5, CRT6,...)
- Study covered three central reasoning domains

Syllogistic Reasoning

All cooks are golfers.
Some golfers are monks.

What, if anything, follows?

- Two quantifier statements connected via a middle term
- Task: Conclude what holds for the other terms (cooks, monks)
- → Participants solved all 64 traditional syllogisms []
- → Multiple-Choice responses or "No valid conclusion" (NVC)

Conditional Reasoning

If Joe cuts his finger, it bleeds. His finger bleeds.

What, if anything, follows?

- Consist of a conditional rule and a statement
- Content was adapted from commonly used tasks
- → Participants solved MP, MT, AC and DA
- → Normal and counterfactual⁷ versions
- → Abstract Wason-Selection-Task⁸ were also tested

Spatial Reasoning

The Banana is left of the Strawberry
The Pear is left of the Strawberry
The Strawberry is left of the Mango
The Apple is right of the Mango

- Indeterminate & determinate tasks (balanced)
- Task: Verify or correct a given arrangement, or determine specific relations
- → 16 tasks asking for relations (with/without memorizing premises)
- → 20 verficication and re-arrangement tasks

Relations Between Domains

- Build Spearman's rank **correlations** between participants' performance in different domains and tests
- All traditional reasoning domains correlate with each other
- → There seems to be some general ability to solve reasoning tasks
- → This ability **does not translate** to general cognitive abilities
- However, domains have their **unique traits**: e.g., Only Spatial reasoning correlates with Mental Rotations

Towards Predictive Modeling

- Goal: Predict behavior based on other domains
- We split participants into two groups based on performance
- Patterns are similar for syllogisms and other domains
- → Can we make accurate predictions using information from multiple domains?

- MAC (Spatial Control of Control o
- We predict individual patterns using a recommender system⁹ based on the performance in the other domains
- Optimal feature combination used performance in conditionals, spatials and verbal substitution
- → Prediction did not improve much beyond the most-frequent pattern

Results

- We obtained an extensive dataset, covering multiple reasoning domains
 - Dataset is publicly available
 - Reasoning capabilities are transferrable to a degree:
 - Participants performance correlates across domains
 - Little transferrability about specific reasoning behavior
- 1. Findings support a **general reasoning ability**, but it does not account for the full behavior
- 2. Each reasoning domain has its **own intricacies** worth investigating
- 3. Factors measured by the other cognitive tasks were only minor influences and offered **little additional information**

References

[1] Khemlani, S. S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis. *Psychological Bulletin*, 138(3), 427–457.

[2] Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. Thinking & Reasoning, 17(3), 247–281.

[3] Ragni, M., Brand, D., & Riesterer, N. (2021). The predic-tive power of spatial relational reasoning models: A newevaluation approach. Frontiers in Psychology, 12, 626292.

[4] Spearman, C. (1904). 'General intelligence,' objectively determined and measured. The American Journal of Psychology, 15(2), 201–292.

[5] Brunetti, R., Del Gatto, C., & Delogu, F. (2014). eCorsi: implementation and testing of the Corsi block-tapping task for digital tablets. Frontiers in Psychology, 5.

[7] Byrne, R. M., & Tasso, A. (2019). Counterfactual reasoning: Inferences from hypothetical conditionals. In Proceedings of the 16th annual conference of the cognitive

[6] Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). Assessing miserly information processing: An expansion of the cognitive reflection test. *Thinking* & *Reasoning*, 20(2), 147-168.

science society (pp. 124–130).

[8] Wason, P. C. (1968). Reasoning about a rule. *Quarterly Journal of Experimental Psychology*, 20(3), 273–281. [9] Aggarwal, C. C. (2016). *Recommender systems: The textbook* (1st ed.). Springer Publishing Company, Incorporated.

