A Machine Learning Approach for Syllogistic Reasoning

Nicolas Riesterer, Daniel Brand, Marco Ragni Cognitive Computation Lab, Department of Computer Science, University of Freiburg

Syllogisms

No researchers are gods Some gods are great reasoners What (if anything) follows?

 Quantified statements in one of four moods (All, Some, Some ... not, and None)

- Classical syllogisms consist of two premises and one conclusion
- The premises contain terms that can be arranged in one of four so-called figures
- Structurally, there are 64 possible syllogisms
- First-Order Logics is not able to account for human performance

Encodings

- Automated modeling approaches benefit from rich data
- Categorical data is not suited for numerical methods
- Standard encodings such as onehot encoding make categories accessible
- A syllogistic answer can be encoded using 9 bits:

All		Some		Some not		None		NVC
ac	са	ac	са	ac	са	ac	са	
0	0	1	0	0	0	0	0	0

 The usual experimental record of 64 answers produce a sparse onehot vector of dimensionality 576

Research Question

- Does the representation of data have an impact on general model performance?
- Which features of the data are important/necessary?
- How dense is the information encoded in the data?
- Can we find encodings for behavioural data enabling the use of general models from computer science and artificial intelligence?
- Is machine learning generally suited to analyze behavioral data?
- Can we use representation learning techniques to infer metainformation from the data (e.g., dependencies, redundancies, noise, etc.)?

The Autoencoder

- Artificial neural network model finding minimized latent state representation for given inputs
- The Encoder component represents a function to compress the inputs into a latent state
- The Decoder component recovers the original data from the latent state

Conclusions

- Neural networks are capable of learning from reasoning data
- The autoencoder manages to substantially compress the data (576 to 42)
- The results suggest that behavioral data in its categorical form is highly sparse
- By finding optimized representations, it might be possible to increase general model performance
- In prediction tasks, the autoencoder is able to recover 50% missing data with a state-of-the-art precision of 48% (random baseline of 11%)
- Trained via general gradient descent optimization algorithms
- After training, encoder and decoder can be applied independently
- Applied to reasoning data, the autoencoder can be used to find dense latent representations of data
- Individual patterns can be exploited (better performance than just following the most frequent answer)
- Autoencoder can be used as baseline model for future evaluations

References

Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis. Psychological bulletin, 138(3), 427.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning internal representations by error propagation. In Parallel distributed processing: explorations in the microstructure of cognition, vol. 1). MIT Press, Cambridge, MA, USA 318-362.

✓ riestern@tf.uni-freiburg.de