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Conclusions
▪ Neural networks are capable of learning from reasoning data
▪ The autoencoder manages to substantially compress the data 

(576 to 42)
▪ The results suggest that behavioral data in its categorical form is 

highly sparse
▪ By finding optimized representations, it might be possible to 

increase general model performance
▪ In prediction tasks, the autoencoder is able to recover 50% 

missing data with a state-of-the-art precision of 48% (random 
baseline of 11%)

▪ Individual patterns can be exploited (better performance than just 
following the most frequent answer)

▪ Autoencoder can be used as baseline model for future 
evaluations

Syllogisms

▪ Quantified statements in one of four moods (All, Some, Some … 
not, and None)

▪ Classical syllogisms consist of two premises and one conclusion
▪ The premises contain terms that can be arranged in one of four 

so-called figures
▪ Structurally, there are 64 possible syllogisms
▪ First-Order Logics is not able to account for human performance

Research Question
▪ Does the representation of data have an impact on general model 

performance?
▪ Which features of the data are important/necessary?
▪ How dense is the information encoded in the data?
▪ Can we find encodings for behavioural data enabling the use of 

general models from computer science and artificial intelligence?
▪ Is machine learning generally suited to analyze behavioral data?
▪ Can we use representation learning techniques to infer meta-

information from the data (e.g., dependencies, redundancies, 
noise, etc.)?
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The Autoencoder
▪ Artificial neural network model finding minimized latent state 

representation for given inputs
▪ The Encoder component represents a function to compress the 

inputs into a latent state
▪ The Decoder component recovers the original data from the 

latent state
▪ Trained via general gradient descent optimization algorithms
▪ After training, encoder and decoder can be applied independently
▪ Applied to reasoning data, the autoencoder can be used to find 

dense latent representations of data

Encodings
▪ Automated modeling approaches benefit from rich data
▪ Categorical data is not suited for numerical methods
▪ Standard encodings such as onehot encoding make categories 

accessible
▪ A syllogistic answer can be encoded using 9 bits:

▪ The usual experimental record of 64 answers produce a sparse 
onehot vector of dimensionality 576

0 0 0 00 0 1 0 0

All Some Some not None NVC
ac ca ac ca ac ca ac ca

No researchers are gods
Some gods are great reasoners
What (if anything) follows?
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