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Abstract

Syllogistic reasoning is one of the core domains of human rea-
soning research. Over its century of being actively researched,
various theories have been proposed attempting to disentangle
and explain the various strategies human reasoners are relying
on. In this article we propose a data-driven approach to behav-
iorally cluster reasoners into archetypal groups based on non-
negative matrix factorization. The identified clusters are inter-
preted in the context of state-of-the-art theories in the field and
analyzed based on the posited key assumptions, e.g., the dual-
processing account. We show interesting contradictions that
add to a growing body of evidence suggesting shortcomings of
the current state of the art in syllogistic reasoning research and
discuss possibilities of overcoming them.
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ing; non-negative matrix factorization; dual-process theory

Introduction
The ability to reason about information is an essential skill
for humans in almost all aspects of their lives. Consequently,
the research of human reasoning has been a key field of study
to advance our understanding about human cognition for an
extensive time span. One of the core domains within the field
is syllogistic reasoning, which is being investigated for over
a century now (Störring, 1908). In its most common form,
a syllogism consist of two quantified statements (premises)
with first-order logic quantifiers (All, Some, No, and Some ...
not), that interrelate three terms (commonly abbreviated by
A, B, and C) via a middle-term as shown in the following
example:

All A are B.
Some B are C.

What, if anything, follows?

The task is to conclude what the relation between the two
end-terms occurring in only one of the premises (A and C) is.
Additionally, there is the possibility that no valid conclusion
(NVC) is possible resulting in a total of nine distinct response
options.

For convenience, syllogisms are often abbreviated. Quan-
tifiers are represented by the letters (All: A, No: E, Some: I
and Some ... not: O). The arrangement of the terms is called
figure. Throughout this paper, we will use the figure notation
from Khemlani and Johnson-Laird (2012), which is shown in
the table below:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

Put together, the syllogism in the example above would
be abbreviated as AI1. Conclusions can be represented in a
similar way, combining the quantifier and the direction (ac or
ca). For example, Some C are A would be abbreviated by Ica.

Given the long history of research, it is not surprising that
a large variety of competing theories and models exist. How-
ever, the field was unable to reach consensus: In a recent
meta-analysis, twelve theories of syllogistic reasoning were
compiled and evaluated, concluding that “none of the exist-
ing theories is correct. Investigators of reasoning need to de-
velop a better theory of monadic reasoning.” (Khemlani &
Johnson-Laird, 2012, p. 23).

Since the inferential mechanisms and strategies are sub-
stantially influenced by individual factors (e.g., working
memory Gilhooly, Logie, Wetherick, & Wynn, 1993) and
are susceptible to the influence of external factors (e.g., con-
tent and personal beliefs; Morgan & Morton, 1944), it is
not surprising that the observed reasoning behavior shows
significant inter-individual differences (e.g., Dames, Klauer,
& Ragni, 2022) that current models struggle to capture
(Riesterer, Brand, & Ragni, 2020a). As human reasoning be-
havior seems to be highly individual, the idea that no single
inferential account may be able to capture every individual
suggests itself (Khemlani & Johnson-Laird, 2012). Conse-
quently, it seems to be more sensible to try to disentangle the
different reasoning strategies.

From a more abstract data-driven perspective, the ob-
served behavior of a human reasoner can be represented as
a task-response-pattern. A model accounting for the behav-
ior then specifies a process that generates the respective pat-
tern. Thereby, it is restricted by its assumptions and the cor-
responding parameter space (for a model-evaluation based on
this principle, see Riesterer et al., 2020a). From this per-
spective, the question of disentangling different strategies can
be reformulated as a question of uncovering a set of latent
(iconic) patterns that are suitable for capturing the patterns
of most individuals to a satisfying degree. In this work, we
utilize clustering methods to uncover the latent response pat-
terns of individual reasoners and present a way to determine
the number of central reasoning strategies.



The rest of the article is structured as follows: First, the
background relevant to this work will be introduced. Second,
our dataset and the clustering approach used to extract the
iconic patterns are described. Third, the obtained patterns are
interpreted with respect to their meaning for the state of the
art in syllogistic reasoning. Finally, the results are discussed
and a general outlook is given.

Background
A common approach aiming at describing the behavioral dif-
ferences observed in reasoning is the dual-processing account
(Evans, 2008), which proposes two mechanisms: a fast-and-
frugal heuristic approach (System 1; S1) and a deliberative,
more logical mechanism (System 2; S2). In the field of syllo-
gistic reasoning, models often fall clearly into one of the two
categories, with heuristics (e.g., PHM; Chater & Oaksford,
1999) belonging to S1 while approaches closer to logic (e.g.,
PSYCOP; Rips, 1994) would generally be considered to rely
on S2.

Probably the most prominent theory incorporating the
idea of dual-processing is the Mental Model Theory (MMT;
Johnson-Laird, 1975) and its implementation mReasoner
(Khemlani & Johnson-Laird, 2013). At its core, MMT as-
sumes that syllogistic inference is a three-step procedure
(Bara, Bucciarelli, & Johnson-Laird, 1995). In the first step,
the premises are interpreted to construct a mental model rep-
resentation of the information. This model is then extended
to also incorporate the information of the second premise. In
the second step, the constructed model is used to derive a con-
clusion candidate. This candidate is then put to the test in the
third step, which consists of a search for counterexamples,
i.e., models that contradict the conclusion but are still con-
sistent with the premise information. If no counterexample
is found, the candidate will be responded as the conclusion.
Otherwise, a new conclusion candidate is generated, which is
then subjected to the search for counterexamples again, or it
is concluded that “no valid conclusion” is possible if no new
candidates can be created.

The expensive search for counterexamples in MMT is as-
sumed to be a S2 process, while conclusions directly inferred
from the initial mental model reflect the more intuition-based
strategy associated with S1.

It is important to note that while the average correctness
of a participant’s responses typically increase with a higher
number of NVC responses (Dames et al., 2022), seemingly
corroborating the notion of S2 being responsible for NVC re-
sponses, invalid syllogisms are over-represented in the syl-
logistic domain with more than half of the syllogisms being
invalid despite NVC being only one out of nine possible re-
sponses. Furthermore, recent work found that the response
times did not increase for NVC responses as it would be as-
sumed when engaging in a exhaustive search for counterex-
amples (Brand, Riesterer, & Ragni, 2022), sowing doubt if
the proposed distinction into S1 and S2 truly reflects the pro-
cesses underlying syllogistic reasoning.

Method
Dataset
The foundation of our analysis is a publicly available dataset
by Dames et al. (2022), which contains the response data
of 106 participants to all 64 syllogistic tasks. In the origi-
nal analysis, participants were asked to complete all 64 tasks
twice to investigate potential retest effects. However, these
effects are out of scope for the present work and the respec-
tive data from the syllogistic retest is therefore excluded. Ad-
ditionally, a variety of individual information about the par-
ticipants is provided, out of which the Cognitive Reflection
Test (CRT; Frederick, 2005) including additional questions
by Toplak, West, and Stanovich (2014) and the participants’
Need for Cognition (NFC; see Cacioppo & Petty, 1982) are
relevant for this work.

Clustering
Clustering refers to an unsupervised learning process of
grouping objects together that are similar with respect to
some similarity measure (for an overview, see Aggarwal,
2015). The clustering methods used in this work are thereby
partitional approaches that grouping objects into disjoint sets
by minimizing a cost function (e.g., euclidean distances be-
tween objects and cluster centroids in k-Means clustering).
For our analysis, we compare the performance of k-Means,
k-Medoids and a clustering method based on Non-Negative
Matrix Factorization (for a similar method, see J. Kim &
Park, 2008). As k-Means and k-Medoids are standard pro-
cedures, they will only briefly be discussed with respect to
potential strengths and weaknesses for the specific analysis.

Of the three methods, k-Means is probably of the most
prominent approach for cluster analyses. As the name sug-
gests, k-Means divides objects into k clusters that are defined
by centroids representing the mean of the respective objects
in the cluster. Thereby, it behaves similar to an aggregation of
the data that is commonly performed to investigate response
distributions, with the difference that k distributions are ob-
tained instead of a single one, thereby having the potential
to provide a better fit for individuals. However, aggregation
of data has been criticized to be problematic when investigat-
ing individual processes (Riesterer, Brand, & Ragni, 2020c),
as different strategies might be entangled by the aggregation
process.

In contrast to k-Means, k-Medoids uses actual datapoints
as the centroids of the clusters. Hence, no aggregation is per-
formed, eliminating the problems associated with it. How-
ever, as the number of participants in reasoning experiments
is very limited compared to typical datasets used in machine
learning, the approach might not find an optimal centroid for
each cluster. Since human data is inherently prone to noise, a
pattern found by k-Medoids might contain artefacts that were
introduced by confounders unrelated to reasoning processes.

Clustering using NMF Non-Negative Matrix Factoriza-
tion has the goal of finding a decomposition for an input-
matrix X . To this end, a basis matrix W = m× k and a co-



efficient matrix H = n×k for a given k need to be found such
that:

X ≈WHT (1)

These matrices can be obtained by using a variety of
solvers, including the commonly used non-negative least
squares solver (H. Kim & Park, 2008).

Formally, clustering can also be understood as a problem
of matrix decomposition (e.g., J. Kim & Park, 2008). The
columns in the W -matrix then represent the centroids of a
cluster, while the H-matrix contains the assignment of a data
point to the respective cluster.

To use NMF clustering on the syllogistic data, it needs
to be represented as a matrix X of shape m × n, where n
corresponds to the number of participants and each column
corresponds to an m-dimensional vector representing the re-
spective participant’s response pattern. To transform the data
accordingly, we first represented the responses of each par-
ticipant as a 64× 9 matrix (for the 9 possible response op-
tions), meaning that each task is represented as a one-hot-
encoded vector. The matrices were subsequently flattened
into a 576-dimensional vector, out of which the final data ma-
trix X containing all participant vectors was created (leading
to X = 576× 106). In order to find the matrices W and H,
we used the non-negative least squares solver included in the
Python package SciPy1 which is based on the algorithm pro-
posed by Lawson and Hanson (1995).

In order to realize clustering via NMF, additional con-
straints on the coefficient matrix H are necessary. As the co-
efficient matrix contains the assignment of the participants to
the respective patterns, it needs to be ensured that each par-
ticipant is only assigned to a single pattern, i.e., that each row
represents a one-hot-encoded vector. We realized the con-
straint by adjusting the H-matrix accordingly after each iter-
ation of the solving algorithm instead of incorporating it into
the minimization function, which has the advantage of guar-
anteeing that the constraint is satisfied.

While constraints on the W -matrices are not necessary,
they can be used to enforce properties that are tailored to
the specific domain. Each column in the W -matrix represents
a complete pattern for all 64 syllogisms, which means that
chunks of 9 values belong to a single syllogism. Therefore,
we normalized each chunk of a column in each iteration of
the NMF algorithm to the Euclidean norm in order to obtain
results that are more distinct compared to the wider distribu-
tions of k-Means. To ensure that the reconstruction remains
unaffected, we adjusted the corresponding column of the H-
matrix accordingly.

Note that these constraints are not applied to the final re-
sults, but after each iteration of the algorithm instead. This
ensures that the final result is optimized with respect to the
given constraints, which is a major advantage of methods like
NMF.

1https://scipy.org

Determining k Given the strong inter-individual differ-
ences and noise that become apparent in syllogistic reasoning,
it is challenging to determine an optimal (but low) number of
clusters since a higher number of clusters would always allow
to capture certain individuals better.

To assess this problem, we used a repeated hold-out valida-
tion (for different values for k with 1000 iterations each), i.e.,
we repeatedly divided the data in random subsets (training-set
and test-set). Both sets had the same number of participants.
We used four metrics to determine the number of clusters and
compare the different clustering methods:

The first metric used is the Inter-Similarity and assesses the
stability of the found patterns with respect to the specific set
of participants. If k is too high, patterns might start to rep-
resent outliers. In these cases, it is unlikely that the results
are stable, as they are likely to jump between different local
minima depending on the dataset at hand. Therefore, cluster-
ing is performed on both, the training- and the test set. The
resulting patterns of both clustering runs are then compared
to each other (pattern vs. pattern) using cosine-similarity:

sim(w1,w2) =
w1 ·w2

|w1||w2|
(2)

Inter-Similarity corresponds to the mean similarity be-
tween the patterns obtained from applying clustering to the
training- and test set. Since the order of patterns might dif-
fer between both runs, the result is only based on the most
optimal ordering of the patterns.

The second metric is the Intra-Similarity, which has a sim-
ilar reasoning behind it: If k is too high, patterns might start
to be too similar to each other. Therefore, the cosine simi-
larity is used to compare the patterns obtained from a single
run of clustering. Intra-Similarity is then defined as the maxi-
mum similarity between two patterns obtained from the same
clustering run. However, the Intra-Similarity is unable to dis-
tinguish between the occurrence of multiple distinct patterns
that are similar to each other and generally less distinct pat-
terns, that have a high similarity because of a more blurry
appearance.

For the above-mentioned reasons, we use our third met-
ric, the Entropy, which indicates how distinct the pattern is:
the more “blurry” a pattern is, the higher the entropy. There-
fore, by definition, k-Medoids has a perfect score, as it uses a
real participant pattern which always has a distinct response
to each task. The entropy for the response distribution for a
specific task is calculated as follows:

H =−∑
i

pi ∗ log2 pi (3)

We use the mean entropy of all tasks of a pattern as the
resulting entropy of a pattern.

Finally, we used the Test-Accuracy, which is defined as the
mean accuracy achieved when using the k patterns obtained
from clustering on the training-set as predictors for the par-
ticipants in the test set. Thereby, the best pattern is selected
for each participant.
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Figure 1: Results of a crossvalidation for kMeans, kMedoids and clustering based on the NMF in terms of inter- and intra-
similarity, mean accuracy on the test set and entropy for different numbers of clusters (k).

The results of the metrics for different values of k are
shown in Figure 1. For the Inter-Similarity, the disadvantage
of k-Medoids becomes apparent: The resulting patterns are
directly based on the participants, which makes it highly sus-
ceptible to changes of the dataset. For NMF and k-Means, a
substantial decrease of stability is noticeable with higher lev-
els of k, with k-Means being more robust to the changes over-
all. However, the downside of k-Means is clearly visible in
the Intra-Similarity, where its mean-based centroids are sub-
stantially less distinct compared to the other methods. For all
methods, a substantial change from k = 2 to k = 3 is apparent,
indicating that even a third pattern already leads to a higher
similarity between the patterns. However, higher values of
k seem to not further increase the similarity to the same ex-
tent. This gets confirmed by the Entropy, where k-Means also
shows to produce less distinct patterns compared to the other
methods. This indicates that the worse score of k-Means in
Intra-Similarity is not due duplicated patterns, but rather an
effect of the aggregation. Both, the NMF and k-Means, show
an improvement with higher values of k, since the additional
clusters allow to build more homogeneous groups. However,
as the Intra-Similarity indicates, this could also lead to over-
fitting in the form of almost identical patterns.

For the Test-Accuracy, k-Means and NMF show almost the
same performance, with k-Medoids falling behind slightly.
Also, the differences for varying number of clusters are neg-
ligible, suggesting diminishing returns for higher values of
k.

Overall, the analysis suggests that a total number of two
clusters seems to offer the best trade-off between accuracy
and stability. For k = 2, the NMF is best suited, since k-
Means has a substantially worse Intra-Similarity and Entropy,
while k-Medoids is lacking stability with and therefore also
generalizability. Hence, the final patterns (see Figure 2) were
obtained with k = 2 by using NMF clustering. In the follow-
ing section, the patterns will be interpreted with respect to
their meaning within the domain of syllogistic reasoning.

Interpreting the Patterns
In the following, we will take a closer look on the obtained
patterns and the groups of participants that were assigned to

Aac Iac Eac Oac NVC

AA1

AI1

AE1

AO1

IA1

II1
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IO1
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EE1

EO1
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Aac Iac Eac Oac NVC

Figure 2: Both response patterns for the 64 syllogistic tasks
found by clustering with Non-negative matrix factorization
(for k = 2). Darker shades denote a higher weight of the re-
spective response.



the respective patterns. For convenience and clarity, we will
reference the two groups by G1 (assigned to the blue pattern)
and G2 (assigned to the red pattern).

When comparing both patterns found by the NMF (see
Figure 2), the main difference seems to be revolving around
NVC. This is in line with previous analyses, which found the
main inter-individual differences to be found with respect to
NVC behavior (e.g., Riesterer, Brand, & Ragni, 2020b; Brand
et al., 2022). With respect to the logical correctness, G2
also shows a substantially higher correctness (mean = .68,
SD = .14) compared to G1 (mean = .4, SD = .14), which
is expected since NVC is integral for a high correctness due
to the high number of invalid syllogisms. While most dif-
ferences between the patterns are just a shift towards NVC,
a slight difference is also apparent for syllogisms with the
quantifier Some not (O) in the first premise, as responses with
the non-negative quantifier Some (I) are present for the blue
pattern, while - if not NVC - only negative conclusions (Oac
and Oca) are present in the red pattern. Besides these differ-
ences, the patterns seem to show identical response patterns.

Given that only two stable patterns were found that differ
substantially with respect to their correctness, it is tempting
to compare them with dual-processing accounts. Following
the idea of dual processes and the respective implementation
in mReasoner (Khemlani & Johnson-Laird, 2013), we clas-
sify the left (blue) pattern as being more likely to represent a
strategy relying on System 1 (S1), while the right (red) pat-
tern be more frequently engaged in the search for counterex-
amples and thereby relying on System 2 (S2). However, it is
important to note that the correctness and number of patterns
on their own do not corroborate a dual-processing account:
Instead, since two stable patterns seem to emerge from the
data that mostly differ with respect to NVC, it shows why
models for syllogistic reasoning tend to converge to describe
inter-individual effects with respect to NVC (i.e., confidences
in the Probability Heuristics Model (PHM; Copeland, 2006;
Riesterer et al., 2020a), NVC aversion in the model TransSet
(Brand, Riesterer, & Ragni, 2020), and the search for coun-
terexamples in MMT (Khemlani & Johnson-Laird, 2013)).
Still, assuming a dual-processing account allows us to de-
rive predictions about the groups of participants assigned to
the respective patterns by the clustering method: First, it is
expected that G2 has a higher response time compared to
G1, since relying on the deliberate inferences of S2 should
be substantially slower than applying fast-and-frugal heuris-
tics. Second, participants in G2 should show a higher cor-
rectness in the Cognitive Reflection Test (CRT), since the
test is designed to mislead participants relying on intuition.
Furthermore, Need for Cognition (NFC), is also expected to
be higher in G2, since participants with high NFC are more
likely to engage in tasks that require cognitive effort and de-
liberative thinking.

With respect to our predictions, we investigated the differ-
ences in Need for Cognition (NFC) and the correctness in a
Cognitive Reflection Task (CRT) as well as the mean response

Table 1: Overview and results of a Mann-Whitney-U test be-
tween the two groups as assigned by the NMF with respect
to Need for Cognition (NFC), Cognitive Reflection Task cor-
rectness (CRT) and the mean response times (RT). Factors
showing significant differences (with Bonferroni corrected
α = 0.0167) are written in bold.

Mean SD U pG1 G2 G1 G2
NFC 4.65 4.73 .9 .84 1224.5 .536
CRT .47 .7 .29 .28 747.0 < .001
RT 15803 13468 5969 6610 1697.0 .001

time needed for the 64 tasks. The results of the comparison
are shown in Table 1. While NFC did not show any signifi-
cant difference, the CRT differed significantly. With a mean
correctness of .47, participants in G1 were substantially more
susceptible for the traps of the CRT compared to G2 with
a mean correctness of .7. This strengthens the assumption
of the dual-process accounts, indicating that G1 relies on a
more intuitive process. However, the differences in response
times showed that G2 was significantly faster than G1. This
contradicts the assumption of a slower, more logical approach
using S2, but is in line with previous findings showing faster
response times for NVC responses (Brand et al., 2022).

Finally, we checked how well the participants would be
classified based on the NFC and CRT. To this end, we re-
assigned the participants to the two patterns based on their
NFC and CRT scores (using the median as a threshold). Sub-
sequently, the accuracy of the respective pattern in predict-
ing the participant’s responses was calculated for each partic-
ipant. Additionally, we included the original assignment as
obtained from the NMF (Fit) and a post-hoc optimal assign-
ment maximizing accuracy. Furthermore, the accuracy of the
Most-Frequent Answer (MFA) strategy was added as a base-
line. The MFA could thereby be understood as the result of a
clustering with k = 1, making it useful to assess the additional
gain by having an additional pattern. The results are depicted
in Figure 3.

As expected from the previous analysis, NFC could not be
used as an assignment strategy, even decreasing the accuracy
(0.514) below the level of the MFA (0.552). However, the
CRT only managed to improve the accuracy slightly (0.555),
illustrating that a significant factor does not necessarily trans-
late into being a powerful predictor on the level of individual
response predictions. Finally, both data-driven assignments
achieve an almost identical performance (0.599) which is a
substantial improvement over both, the CRT and the MFA.

Discussion
The key goal of this article was to find and investigate sta-
ble patterns of human syllogistic reasoning behavior, which
could be considered iconic for the task. Our analysis shows
that first, only two patterns can be identified robustly, and sec-
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Figure 3: Accuracy achieved when comparing the individual
patterns to the two iconic patterns for different assignment
strategies. Individual traits are shown in blue, data-driven as-
signments in green. As a baseline, the most-frequent answer
(MFA; orange) is added. Triangles denote the mean accuracy.

ond that these patterns differ most predominantly in terms of
the frequency of relying on NVC as a conclusion option.

The composition of the two identified patterns explains
why most of the proposed models in syllogistic reasoning
research (e.g., see Khemlani & Johnson-Laird, 2012) con-
verge to a similar distinction between NVC-friendly and an
NVC-averse participants in their response predictions. In-
stead, their key differences are mostly in the explanation of
why these patterns emerge in syllogistic reasoning.

The fact that two patterns are found specifically seems to
corroborate the dual-processing account assumptions under-
lying the search for counterexamples in MMT. This is further
reinforced by the fact, that the reasoners associated with the
more correct pattern also score high on the CRT, which is de-
signed to assess the affinity of reasoning in a deliberative and
logically correct manner. However, the observed response
times associated with the patterns are contradictory to what
is posited by the theory: the logically correct pattern is asso-
ciated with faster instead of slower reaction times. Addition-
ally, the CRT is known to correlate with various measures of
cognitive ability (Frederick, 2005), which could also explain
the a higher performance on syllogistic tasks. As a side-note,
the marginal improvement achieved by using the CRT as an
assignment strategy illustrated a pitfall in cognitive modeling:
Even highly significant factors due not necessarily translate
well to the level of predictors for individual patterns.

The results shown in this article raise the question if tra-
ditional modeling of syllogistic reasoning behavior has hit a
dead end or will hit it soon. As models converge to the same
patterns and only differ in their sets of explanatory assump-
tions, new experiments need to be designed and datasets ac-
quired to more specifically investigate the validity or falsity of
the underlying assumptions. One step towards this goal could
be to integrate more auxiliary information about individuals
for example via extended psychological test batteries. This
could also make it possible to find additional patterns more

nuanced to smaller sub-populations of participants. Further-
more, the explanatory component of models and their under-
lying theories will be of greater importance, since a model
comparison purely based on the general patterns will not suf-
fice for a meaningful distinction between the models’ capa-
bilities. Instead, deriving specific hypotheses tailored to test
certain assumptions of the model will become necessary.

On a technical level, our work showed that clustering, es-
pecially with flexible approaches like Non-Negative Matrix
Factorization, can help to uncover expressive iconic patterns
in human reasoning data. Paired with the proposed metrics,
which allow to assess the robustness of the found patterns
in domains where large inter-individual differences are to be
expected, these approaches are valuable assets in cognitive
modellers’ toolkits, irrespective of the domain of interest.
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