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Abstract

Recently, the TransSet model for human syllogistic reasoning was
introduced and shown to outperform the previous state of the art in
terms of predictive performance. In this article, we pick up the Trans-
Set model and extend it to allow for capturing individual differences
with respect to the conclusion “No Valid Conclusion” indicating
that no logically correct conclusion can be derived from a problem’s
premises. Our evaluation is based on a coverage analysis in which
a model’s ability to capture individuals in terms of its parameters
is assessed. We show that TransSet also outperforms state-of-the-art
models on the basis of individuals and provide further evidence for
the existence of an NVC aversion bias in human syllogistic reasoning.
Keywords: syllogistic reasoning; transset; modeling; transitivity

Introduction
Syllogistic reasoning is one of the longest-standing domains of
reasoning research persisting for over a century now (for an early
investigation, see Störring, 1908). Traditionally, a syllogistic
problem consists of two quantified premises (all, some, no, some
... not) interrelating three terms (e.g., A, B, C):

All A are B
Some B are C

What, if anything, follows?

The goal in syllogistic reasoning is to relate the information
conveyed by both premises via the middle term (B) occurring in
both of them in order to draw a conclusion about the end terms (A,
C). Depending on the arrangement of terms, a syllogistic problem
is said to be in one of four figures (notation taken from Khemlani
& Johnson-Laird, 2012):

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

By considering all combinations of quantifiers and term
orderings, a total of 64 distinct syllogistic problems are obtained
all of which can possibly be concluded by eight quantified relations
between A and C in either direction, or “No Valid Conclusion”
(NVC) indicating that no logically valid conclusion for the pair of
premises exists. This results in a total of nine possible conclusions
to each syllogistic problem.

Research in the domain of syllogistic reasoning quickly came
to understand that human reasoners who are confronted with
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syllogistic tasks do not reason in accordance to classical first
order logic but commit frequent and systematic errors which
require psychological explanation (e.g., Woodworth & Sells, 1935;
Wetherick & Gilhooly, 1995).

Since its early beginnings, the domain has inspired countless
researchers to attempt to postulate and formalize assumptions about
the processes underlying human syllogistic inference which has
led to a wide variety of theories and models being introduced. In a
meta-analysis (Khemlani & Johnson-Laird, 2012), a list consisting
of the twelve most prominent theories of syllogistic reasoning was
compiled and evaluated. The authors’ analysis showed that because
individual theories have their distinct strengths and weaknesses
it is difficult if not impossible to identify a single best account.

More recently, TransSet (Brand et al., 2019), a model focusing
on transitivity-based set interpretation, was introduced and shown
to outperform the state-of-the-art models in terms of its predictive
power on average human reasoning behavior. Still, in their dis-
cussion of TransSet’s success, the authors highlighted the fact that
a lot of potential for model performance remains untapped because
most approaches currently do not account for the inter-individual
differentiation underlying the wide variety of inferential strategies
syllogisms are known to elicit (e.g., Roberts et al., 2001).

In this article, we attempt to push the TransSet model of syllogis-
tic reasoning one step further by extending it to adapt to the behavior
of individuals. By relying on findings from the syllogistic literature,
we essentially integrate processing branches into the model which
enable it to vary response strategies between individuals. We eval-
uate the resulting model based on a prediction task and compare its
performance to both state-of-the-art models and statistical baselines
to measure its success. Finally, we discuss our results as well as the
implications of individualization for cognitive modeling research.

Related Work
The domain of syllogistic reasoning has extensively been ap-
proached from a multitude of directions including formal logics,
probabilities, and various kinds of mental representations (for a
review, see Khemlani & Johnson-Laird, 2012). However, in the last
decade, the traditional model evaluation paradigm based on com-
parisons with group data obtained from experiments yielded results
suggesting that model performances had reached a plateau making
differentiation based on prediction accuracies difficult if not impos-
sible (e.g., Bacon et al., 2003; Khemlani & Johnson-Laird, 2012).

More recently, a paradigm shift concerning the evaluation of
models has started to gain traction. Inspired by theoretical and
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empirical considerations of inter-individual differences (e.g., Mole-
naar, 2004) and the corresponding problem of group-to-individual
generalizability (Fisher et al., 2018), the focus on model evaluation
has shifted from aggregate representations of data to individual
response data (e.g., Riesterer et al., 2019). Evaluating the state of the
art in modeling human syllogistic reasoning in terms of predictions
for individual response data revealed that previous analyses had
overestimated model performances considerably. While Khemlani
& Johnson-Laird (2012) reported values of up to 95%, 93%, and
84% for hits, correct rejections, and correct predictions on aggregate
data, the comparison with individual responses showed that the best
model only accounted for 34% of participants’ responses (Riesterer
et al., 2019). The new analysis produced two crucial results. First,
overall low accuracies on participants’ responses suggest that cur-
rent models are far from what can possibly be considered accurate
explanation of human behavior in syllogistic reasoning experiments.
Second, comparisons with data-driven neural networks illustrated
the considerable potential that remains in the domain especially
when actively considering inter-individual differences.

A recent analysis (Riesterer et al., in press) put the focus of
attention on a different aspect of individualized modeling: model
parameterization. A coverage task was introduced in which models
are fitted to individual response patterns and assessed in terms of
their ability to reproduce the observed behavior from their latent
parameterization. Computing the accuracy of the fitted models
in comparison with the originally observed data allows to derive
a score that enables a parameterization-centric assessment of
individualized model performance. The analysis included two of
the most prominent models for syllogistic reasoning, mReasoner
(Johnson-Laird & Khemlani, 2013) and the Probability Heuristics
Model (PHM; Chater & Oaksford, 1999). Briefly summarized,
mReasoner is an instance of the mental model theory (e.g., Johnson-
Laird, 1983) which assumes that individuals reason by constructing
mental representations of the premises from which conclusion
candidates are generated and potentially revised via a search for
counterexamples. PHM, on the other hand, assumes that individuals
reason in accordance to probabilistic validity as opposed to logic
validity and postulates a set of heuristics to simulate this behavior.

The coverage evaluation (Riesterer et al., in press) revealed that
both models are lacking in their ability to account for individual
behavior. Only PHM managed to outperform the statistical baseline
computed from the most-frequent answer (MFA; the optimal
strategy for aggregate models in this task) and thereby demonstrated
a basic albeit unimpressive ability to accommodate for individual
reasoning behavior in terms of its parameterization. Overall, the
coverage analysis highlighted the need for an increased focus on
individual differences from a different perspective than the previous
prediction-oriented analyses.

The TransSet Model
TransSet (Brand et al., 2019) is a recently introduced model for
syllogistic reasoning which was developed with a different goal in
mind than previous models. The current state of the art has largely
originated from attempts at finding comprehensive explanations of
human reasoning behavior which indirectly assumes the existence
of general syllogistic inference processes available to all reasoners.

However, because of empirical evidence about the variety of
strategies employed in the syllogistic domain (e.g., Roberts et al.,
2001) this assumption has been met with skepticism in the past
(e.g., Bacon et al., 2003). TransSet acknowledges the existence of
distinct inferential strategies and focuses on a specific type of naive
reasoner who is untrained in the task of solving syllogistic problems
and therefore relies on intuitive reasoning based on the prominent
surface features of syllogisms, i.e., quantifiers and term order. In
particular, it expects reasoners to rely on the general concept of
transitivity because of its relevance and importance in everyday
reasoning (e.g., for argumentation). In doing so, TransSet reflects
a single-strategy model that uses the surface features of syllogisms
(e.g., quantifiers or the order of terms) to derive its predictions. Its
inferential mechanisms are built on the assumption that reasoning
can be defined on the basis of a set-based interpretation of premises
and a transitivity-based inference scheme.

TransSet generates predictions for syllogistic problems based
on a two-step process consisting of phases for conclusion direction
and quantifier selection. The direction selection phase depends on
the arrangement of terms in the premises. If the premises directly
define a transitive path between the end terms (i.e., A-B;B-C
or B-A;C-B), TransSet uses the positions of the end terms in
the paths as the direction of the conclusion. Otherwise, it is
assumed that reasoners attempt to modify the premises in order
to create a transitive path. This is done by reversing one of the
premises containing a universal quantifier, i.e., “All” or “No”, with
a preference for “All”. If this is not possible, either because there
is no universal quantifier or because of ties when both quantifiers
are equal, NVC is returned aborting the inferential process.

The Quantifier selection phase uses the transitive path to infer
the conclusion quantifier. The general assumption behind this
phase is that individuals propagate information along the path. If
the first quantifier is affirmative, both quantifiers are combined
in accordance to the Atmosphere hypothesis (Woodworth & Sells,
1935). If the first quantifier is negative, information propagation
is not possible directly. Here, TransSet assumes that if the second
quantifier is “All”, the disrupted flow of information along the path
can be recovered by substituting the middle term with the last term
on the path resulting in a “No” conclusion. If this is not possible,
TransSet predicts NVC.

Crucially, the inferential mechanism proposed by TransSet does
not incorporate traditional processes for deliberative reasoning (e.g.,
logics or the construction of mental representations) but focuses
on a restricted mapping from syllogistic problems to specific
conclusion predictions based on surface-features alone. As such,
TransSet does not follow the goal to be an adequate explanation of
the general behavior of human reasoners but assumes the existence
of a subset of reasoners which follow the nonlogical (e.g., Evans,
1972) procedures it assumes. Still, it could be shown that TransSet
outperforms the existing state of the art by a substantial margin
(Brand et al., 2019). This does not necessarily mean that the
processes assumed by TransSet are representative of the cognitive
processes driving human inference. However, they currently give
the best account of the data. It would be premature to consider
TransSet generally superior to other models in its current state. Still,
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Figure 1: Overview over the individualized TransSet model.

it is a wake-up call for the proponents of the prevailing theories
to justify their approaches on the level of response predictions.

Even though TransSet focuses on a single inferential strategy,
it offers much potential for alteration with respect to the integration
of individual differences. One of them is its handling of the
NVC conclusion. Currently, NVC is generated either in cases
where transitive paths cannot be formed or if information cannot
be propagated along the path. However, research in syllogistic
reasoning has produced two important findings with respect to
NVC conclusions. First, response data suggests that reasoners are
biased against producing NVC conclusions resulting in what could
be considered an NVC aversion bias (e.g., Dickstein, 1976; Roberts
et al., 2001). Although the reasons for this NVC aversion have
not been conclusively determined as of yet, it seems reasonable
to assume that individuals differ with respect to the influence it has
on their reasoning making NVC aversion a promising component
of an individualized model. Second, recent research has shown
that certain forms of syllogism might invite NVC responses which
suggests that NVC handling of individuals might not just simply
be inhibited by aversion biases but also encouraged by certain
combinations of premises (e.g., Galotti et al., 1986; Riesterer et
al., 2020). As such, in the following sections we introduce and
evaluate an extension of TransSet in terms of its NVC handling.

Individualizing TransSet
Our individualization which is summarized in Figure 1 focuses on
NVC which is a peculiar conclusion in the syllogistic domain for
various reasons. On the one hand, the NVC response itself might be
ambiguous. Besides its intended meaning as an indication that no
conclusion follows logically from the premises, NVC might also be
interpreted as “giving up” signaling that a participant failed to arrive

Table 1: Parameter configurations and preconditions for NVC rules
in the quantifier selection phase where Q1 and Q2 refer to the first
and second quantifier of the transitive path, respectively.

Rule paversion pneg ppart Precondition

Negativity
None true - Q1 negative
Low true - Q1 negative, Q2 not All
High true - Q1,Q2 negative

Particularity - - true Q1,Q2 particular
PartNeg None true true Q1,Q2 not All

at a quantified conclusion (Ragni et al., 2019). This interpretation
can be an incentive for reasoners to “try harder” to avoid NVC
responses which effectively invites illogical behavior. On the other
hand, it is the logically correct answer for 37 out of the 64 problems
(58%), i.e., for the majority of the domain. As there are nine possible
conclusions, this imbalance might be unintuitive for some reasoners,
especially since it is also unusual for riddles or puzzles, which
the experimental setting might seem similar to, to be “unsolvable”.
This could lead to the NVC aversion phenomenon which has
been discussed before (Roberts et al., 2001). However, the over-
representation of NVC might also encourage the use of simple rules
that can quickly derive an NVC response (e.g., Galotti et al., 1986).

One of the main concepts of TransSet is the separation of the de-
duction process into the direction selection and quantifier selection
phases which each provide rules to check if the respective goals
can be achieved. If any phase fails, NVC is concluded. However,
the available rules and the likelihood to abort a phase may differ
between individual reasoners which is why using them as starting
points for the adaption to individual reasoners seems promising.

To allow TransSet to capture the effects of NVC, we introduced
four parameters: paversion, panchor, ppart , and pneg. The first param-
eter, paversion, represents the susceptibility to the NVC aversion bias
of a reasoner (e.g., Dickstein, 1976) with possible values in [None,
Low, High]. The parameter is used in both phases and determines
the likelihood of accepting NVC responses. When NVC aversion is
high, the phases of TransSet are less likely to fail since participants
try to find a way around responding with NVC. For the direction
selection phase, this means that a direction has to be selected, even
if it is not clear if the conclusion should relate the end terms from A
to C or vice versa (which can only occur for Figure 3 and Figure 4
syllogisms). In these cases, it is assumed that individual preferences
decide if the end-term read first (A) is selected as an anchor point (re-
sulting in the direction A!C) or if the most recent term (C) is cho-
sen (resulting in the directionC!A). This preference is captured by
the parameter panchor using the values [most-recent, first] which re-
flect the choice of anchor term. Note, however, that panchor is a con-
ditional parameter which will only take effect when paversion is high.

TransSet’s second phase, in which the conclusion quantifier is
determined, originally only had a single rule to derive NVC: When
a transitive path starts with a negative quantifier (“No”, “Some
... not”), the propagation of information along the path is pre-
vented, which result in an NVC response in most cases (Brand et
al., 2019). In this work, we extend the existing rule, allowing for
several nuances depending on the aforementioned paversion parame-
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ter. In doing so, we integrate additional rules to derive NVC which
have recently been shown to improve predictive performance when
incorporated into various state-of-the-art models for syllogistic rea-
soning (Riesterer et al., 2020). In particular, we incorporate the
rules related to negative quantifiers, i.e., EmptyStart and Negativity,
into TransSet’s original process handling negativity in the quanti-
fier determination phase. The paversion parameter is used to either
strengthen or weaken the precondition starting from TransSet’s
original rule, which corresponds to paversion = low. The remaining
rules proposed by Riesterer et al. (2020), i.e., Particularity and Part-
Neg, are integrated as additional rules. Individual availability of the
above-mentioned rules is controlled via two binary parameters, pneg
and ppart which can either be set to true or to false. Table 1 summa-
rizes the rules with the respective parameter configurations and the
preconditions, that need to be fulfilled to derive NVC responses.

The proposed parameterization of TransSet is a natural extension
of its original account. To match the behavior of the original Trans-
Set model, the paversion needs be set to “low” with pneg being set to
“true”. Since paversion is “low”, the determination of the direction
fails (resulting in a NVC response), which means that panchor has no
effect. As a dedicated rule to derive NVC based on the particularity
was not part of the original model, ppart needs to be set to “false”.

It is important to note that all introduced parameters are
categorical, i.e., rely on discrete values with all parameters except
for paversion being binary. While continuous parameter values are
generally useful to describe the probabilities or relative importances
of effects occurring in populations, a deterministic model with
discrete parameters is a preferable description of individuals. Since
the data only represents a snapshot of an individual’s reasoning
behavior, we cannot derive probabilities for their decisions
(especially if each syllogistic problem was only solved once
per individual). On an individual level, probabilities are only
meaningful if each individual repeatedly provided responses to
the same tasks. Thus, we have to resort to evaluating the ability
of a model to reproduce exact patterns which naturally suggests
deterministic model behavior and parameter usage.

Method
The core objective of the following analysis is to evaluate our exten-
sion of TransSet in terms of its ability to account for the inferential
behavior of individual human reasoners. To this end, we rely on a
coverage task (Riesterer et al., in press) in which the goal is to cap-
ture the response behavior of individuals in the model’s parameters.
By assessing the residual error, an estimate of the model’s ability
to account for inter-individual differences is obtained. Additionally,
the parameter configurations resulting from fitting the model to indi-
viduals allows for an interpretation of the variation in the observable
reasoning behavior in terms of the processes assumed by the model.

Coverage Analysis Setting
Our analysis focuses on evaluation TransSet’s ability to recover
individual reasoning behavior from its latent parameterization. Put
differently, we assess the degree to which TransSet’s parameter
space covers individuals (Riesterer et al., in press).

Note, that the justification of coverage analyses depends on the
models being included. In the case of database-like models which

fit by storing the observed information, coverage will always be
perfect since behavior can simply be recalled from the database.
In the case of cognitive models, however, parameters usually have
an associated meaning and try to capture essential properties of the
assumed mental processes. As such, coverage gives a meaningful
estimate of a model’s ability to accommodate for individuals.

To increase the expressiveness of our analysis by providing a
reference frame for the obtained coverage scores, we include the
models from the previous coverage analysis (Riesterer et al., in
press): mReasoner (Johnson-Laird & Khemlani, 2013) and the
Probability Heuristics Model (Chater & Oaksford, 1999), as well
as a random uniform model and the Most-Frequent Answer (MFA)
model which generates predictions based on the most frequently
observed response to a syllogistic problem in a dataset.

Dataset & Implementation
For our analysis, we rely on the Cognitive Computation for
Behavioral Reasoning Analysis (CCOBRA) framework1 for model
evaluation. The dataset we use is the “Ragni2016” dataset for
syllogistic reasoning which is openly available as part of the frame-
work and has been used as benchmark data in many evaluations
of syllogistic models including the previously introduced coverage
analysis (Riesterer et al., in press). It consists of a total of 139
participants who were presented with the full set of 64 syllogisms
and asked to select which of the nine possible responses followed
from syllogistic premises. The data, model implementation, and
analysis scripts developed for this article are available on GitHub2

Analysis & Results
Performance Analysis
Figure 2 depicts the results of the coverage evaluation obtained from
CCOBRA. The box plots provide a descriptive view of coverage
scores, i.e., the models’ abilities to reconstruct reasoning behavior
from their parameterizations, while the dots represent the scores
for the 139 individuals from the dataset. When fitted to individual
reasoners, TransSet significantly improves over the original
model (median coverage scores of 0.50 and 0.44, respectively;
Mann-Whitney U Test, U =7783.5, p= .0025) and substantially
outperforms mReasoner and PHM (median coverage scores of
0.38 and 0.45, respectively). TransSet and PHM also surpass the
performance of the MFA (median coverage score of 0.45), which
is the upper bound for models disregarding individual differences,
showing that the concepts underlying their parameters are suited
to capture the behavior of individuals. However, it is important
to note that TransSet only describes a specific strategy that some
individuals might use. When considering the results for specific
individuals, it becomes apparent that a substantial amount is still
not sufficiently covered by the model. While this might partially
be due to guessing-like behavior or non-systematic mistakes, it also
possible that some of these individuals are using different strategies.

The general improvement of TransSet achieved by our individual-
ization indicates that the incorporation of NVC biases is a promising
way for models to account for different individuals. This is not

1https://github.com/CognitiveComputationLab/ccobra
2https://github.com/Shadownox/iccm-transset-indiv
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Figure 2: Accuracies of models for the coverage task. The suffix
“(fit)” indicates that the model was fitted to an individual’s responses.

surprising, given the special status of the NVC due to the imbalance
of the syllogistic task and ambiguity of the response. On a more
general level, the improvement also shows that it is possible to
significantly boost the performance of a model by focusing on rules
and mechanisms that are able to differentiate between individuals.
This highlights the importance of an evaluation based on individual
data, as improvements beyond the performance of the MFA cannot
be assessed on the basis of aggregated analyses. Additionally, these
analyses provide a starting point for further investigations of individ-
uals that are not covered sufficiently by most state-of-the-art models.
For now, it is unknown to which extent this can be attributed to
noise (e.g., due to guessing-like behavior). An in-depth analysis
of these individuals might help to better estimate the proportion
of noise and uncover additional strategies and biases in the data.

Parameter Distribution Analysis
Apart from allowing models to be fitted to individual reasoners, the
utilization of parameters is also an important property of models
based on which their internal integrity can be assessed. Ideally,
parameters in cognitive models have specific meaning in relation
to the assumed inference process. For instance, in the case of
TransSet, the NVC aversion parameter paversion is indicative for
the model’s behavior to pursue alternative conclusions to avoid
NVC. Optimally, the use of parameters in cognitive models should
be limited to the minimum that still enables the capturing of
distinct and important differences between individuals (principle
of parsimony). This, in turn, means that all parameter assignments
should be relied on by the model to account for a population of
reasoners. If certain parameter configurations are only used for
negligible amounts of individuals, either the corresponding group
of individuals was not part of the data or, more likely, the model
has an inefficient use of parameters and should be revised in order
to reduce its parameter complexity and increase its explainability.

Figure 3 shows the distributions for TransSets’s parameters. For
each possible value of a parameter, the number of participants that
are described best by using the respective value is shown. When
analyzing the distribution for paversion, we see that paversion = high
yields the best results for the majority of individuals, indicating that
incorporating NVC aversion is indeed beneficial for individualized
models of syllogistic reasoning. The particularity rule, despite being
inactive for the majority of participants, still seems to be a valuable
addition, as it still improved the fit for a third of the individuals.

Figure 3: Parameter distributions for the individualized TransSet’s
parameters resulting from fitting the model to individuals from
the “Ragni2016” dataset.

While the optimal parameterization for the majority of the data
has the biggest importance for the fit, all parameter configurations
still represent a substantial number of individuals. In the case of
paversion, the majority of participants is not even represented by
the most prominent value (“high”). The original TransSet model
corresponds to paversion = low, which does not reflect the NVC
aversion of most individuals, but instead describes the data better
on an aggregate level. This highlights the importance of individual
modeling in general: A model describing the average reasoner
might not be able to reflect the most prevalent traits of reasoning.

With respect to the hypothesis of an aversion against NVC,
the distribution of paversion is intriguing. A substantial number
of participants are described by high NVC aversion, leading to
response patterns with little to no NVC responses. However, while
this group does in fact seem to avoid NVC wherever possible,
the majority of participants have a low or no NVC aversion at all.
Therefore, the aversion against NVC conclusions seems to be a
highly individual behavior that affects a substantial proportion of the
participants but might not necessarily be a universal factor in human
syllogistic reasoning behavior. Since only a group of individuals
seems to avoid the NVC response consistently, this hints at general
misunderstandings of the NVC response itself for this group.

General Discussion
In this article, we presented and evaluated an individualization of
the recently introduced TransSet model for syllogistic reasoning
(Brand et al., 2019). To integrate the capability to differentiate
between individuals we focused our attention on the conclusion “No
Valid Conclusion” (NVC) which has been in the focus of attention
before for its ability to evoke aversion biases (e.g., Dickstein,
1976; Roberts et al., 2001) and for being a conclusion which was
neglected by a number of models in the past (Riesterer et al., 2020).

TransSet’s original specification already contained rules to derive
NVC conclusions directly from surface features of syllogistic
premises which were invoked when the construction of transitive
paths or the propagation of information along them failed (Brand
et al., 2019). Our individualization of the model extends on these
rules by introducing parameters with the goal to capture individual
differences in NVC behavior. We assume a total of four parameters
reflecting (1) the magnitude of the aversion against NVC responses,
(2) a figure anchor providing the direction of the conclusion
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generated in alternative to NVC following the NVC aversion, and
the susceptibility to directly conclude NVC based on (3) negativity
or (4) particularity of the premises (Riesterer et al., 2020).

Our results illustrate the success of TransSet’s individualization.
In a coverage analysis (for an introduction to the paradigm, see
Riesterer et al., in press), the model is shown to outperform not
only the statistical model following a response strategy focusing
on the conclusions most frequently selected by participants
(most-frequent answer, MFA), but also the two state-of-the-art
models mReasoner (Johnson-Laird & Khemlani, 2013) and the
Probability Heuristics Model (PHM; Chater & Oaksford, 1999)
which have been separately analyzed in a coverage analysis by
Riesterer et al. (in press). Investigating the parameter distribution
that follows from fitting TransSet to individuals illustrates the
quality of the assumed factors for individualization. The parameter
space is evenly distributed with no value being only assigned to
a negligible number of participants. Further, the distribution of
the aversion parameter adds to the evidence for such a bias in
syllogistic reasoning (e.g., Dickstein, 1976; Ragni et al., 2019).

Overall, our results add to the growing corpus of modeling
research on the level of individual responses. Despite the fact that
TransSet is intended to only capture a distinct subset of reasoners,
namely those who rely on surface-level features of the problem
domain (e.g., quantifiers and term order), it currently outperforms
even the most comprehensive and general models of the state of
the art both on the aggregate and individual level. While we should
refrain from considering it an overall superior explanation of human
cognition in this task, especially given its current lack of grounding
in terms of psychological/neuroscientific concepts, it should serve
as a wake-up call to theorists and modelers alike. Our results
demonstrate that the previous signs of a performance-based plateau
were merely due to the choice of a severely restricted evaluation
paradigm which can be overcome by adopting the perspective of
individual responses.
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