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1 Convex Functions

Convex functions (functionals) play an important role in many fields of

mathematics such as optimization, control theory, operations research,

geometry, differential equations, functional analysis etc., as well as in

applied sciences and practice, e.g. in economics, finance.

They have a lot of interesting and fruitful properties, e.g. continuity

and differentiability properties or the fact that a local minimum turns out

to be a global minimum etc. They even allow to establish a proper and

general theory of convex functions, moreover together with convex sets,

the so-called theory of Convex Analysis, which is important not only for itself

but also for its many applications in the theory of convex and also non-convex

optimization.

Within this lecture on Convex Analysis we do not want to develop various

basic facts on convex sets, because our intention is more to come faster

to the relevant and essential results for convex functions. They will only

be summarized without proofs, sometimes at the point where we need them

within the representation of the lecture, as so-called ”Standard Preliminaries”.

One could also see them as material of an Appendix.

The main Chapters of our lecture are devoted to convex functions (func-

tionals, respectively), so-called conjugate functions, convex optimization,

subdifferential calculus, duality assertions and variational equalities

supplemented by some special topics (Cones, Convex Processes, saddle-

functions etc.).

The exercises proposed to the reader within this lecture are solved in the Ap-

pendix.

Definition 1.1. Let X be a given linear space (we consider only real linear

spaces), denote R = R ∪ {−∞, +∞} and consider a function f : X → R.

(a) f is called convex if (and only if)

f
(
(1 − λ)x1 + λx2

)
≤ (1 − λ)f(x1) + λf(x2) (Jensen’s inequality)

for all x1, x2 ∈ X and λ ∈ (0, 1) for which the right-hand side is meaningful
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(i.e. x1, x2 with f(x1) and f(x2) simultaneously infinite with opposite signs

are not to be considered). If Jensen’s inequality is fulfilled without equality

for all x1 6= x2, then the function f is called strictly convex. We call the

function f concave if −f is convex.

(b) The set defined by

dom f = {x ∈ X : f(x) < ∞}

is called the effective domain of f (cf. Figure 1.1).

(c) The epigraph of the function f is the set (cf. Figure 1.1)

epi f = {(x, α) ∈ X × R : f(x) ≤ α}.

Figure 1.1

(d) The function f is said to be proper if dom f 6= ∅ and f(x) > −∞ ∀x ∈ X.

Proposition 1.1. Let X be a given linear space and the function f : X → R.

Then the following statements are valid.

(a) f is convex if and only if epi f is convex.
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(b) If f is convex then dom f is convex.

Proof.

(a) Necessity. Let f be convex and (x1, α1), (x2, α2) ∈ epi f , that is f(x1) ≤ α1

and f(x2) ≤ α2. Let also be λ ∈ (0, 1). From the convexity of f and the

definition of the epigraph we have

f
(
λx1 + (1 − λ)x2

)
≤ λf(x1) + (1 − λ)f(x2)

≤ λα1 + (1 − λ)α2.

This means that
(
λx1 + (1 − λ)x2, λα1 + (1 − λ)α2

)
∈ epi f or λ(x1, α1) +

(1 − λ)(x2, α2) ∈ epi f , i.e. epi f is convex.

Sufficiency. Let epi f be convex and this implies (cf. (b)) that dom f is

convex. It is sufficient to verify Jensen’s inequality over dom f . Thus, let

us take x1, x2 ∈ dom f and choose a, b such that f(x1) ≤ a and f(x2) ≤ b,

i.e. (x1, a), (x2, b) ∈ epi f . By the assumptions follows
(
λ(x1, a) + (1 −

λ)(x2, b)
)
∈ epi f for all λ ∈ [0, 1] and this implies

f(λx1 + (1 − λ)x2) ≤ λa + (1 − λ)b.

If f(x1) and f(x2) are finite, one can take a = f(x1) and b = f(x2) to

conclude the assertion of the proposition.

If either f(x1) or f(x2) is −∞ one can let tend a or b to −∞ and thus

Jensen’s inequality is also fulfilled.

(b) Clear, because epi f is convex and therefore dom f as its projection, too.�

Remarks: Why do we allow the value +∞ for proper functions?

(i) Let f be a functional f : A ⊂ X → R and define f̃ : X → R by

f̃ =

{
f(x), if x ∈ A,

+∞, if x /∈ A.

The functional f̃ is convex if and only if A is convex and f : A → R is

convex. Therefore we need only to consider functions defined on X every-

where.

5



(ii) Let A ⊂ X. Define the indicator functional of A

χA : X → R, χA(x) =

{
0, if x ∈ A,

+∞, if x /∈ A.

Then A is a convex subset if and only if χA is convex (dom χA = A).

Thus the study of convex sets can be reduced to the study of convex functions.

Remark: We do not prove trivialities within this lecture. Therefore we only

mention shortly some simple facts about convex functions.

(i) If f is convex and λ ≥ 0 then λf is convex.

(ii) If f, g are convex then f + g is convex.

(iii) If (fi)i∈I is any family of convex functions from X into R, their pointwise

supremum f : X → R, f(x) = sup
i∈I

fi(x) is convex, because epi f =
⋂
i∈I

epi fi

that is convex as intersection of convex sets (see Figure 1.2).

Figure 1.2

Examples 1.1.
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(i) Let X be a real normed space. Then f : X → R, f(x) = ‖x‖n, n ≥ 1 is

a convex function. If n=1 we can apply the triangle inequality; the case

n > 1 remains as an exercise for the reader.

(ii) Analogously for the function f : X → R, f(x) = ‖x − x̄‖n, where x̄ is a

fixed point from X.

(iii) Let X be a reflexive real Banach space (i.e. X∗∗ = (X∗)∗ ∼= X). By

X∗ we denote the topological dual space to X, i.e. the space of linear

continuous functionals defined on X. The value of a functional x∗ ∈ X∗ at

a point x ∈ X is usually denoted by 〈x∗, x〉 := x∗(x).

The linearity of x∗ ∈ X∗ is obvious, for all α, β ∈ R and x1, x2 ∈ X it is sure that

〈x∗, αx1 + βx2〉 = α〈x∗, x1〉 + β〈x∗, x2〉.
When X = R

n, by considering the value of the functional x∗ ∈ (Rn)∗ at some

point x ∈ R
n we obtain actually the Euclidean scalar product 〈x∗, x〉 =

n∑
i=1

x∗
i xi.

If x = (x1, ..., xn)T ∈ R
n we have x∗ = (x∗

1, ..., x
∗
n)T ∈ R

n and that implies

R
n∗ ∼= R

n and further R
n∗∗ ∼= R

n.

For X Hilbert space it follows that x∗(x) = 〈x∗, x〉 is a scalar product.

We have x∗ ∈ X∗ ∼= X and this leads to X∗∗ = X.

Now (cf. above) let be X a reflexive real Banach space and let be B : X →
X∗ a linear bounded (continuous)(i.e. B ∈ L(X,X∗)) non-negative self-adjoint

operator (mapping), i.e. 〈Bx, x〉 ≥ 0 ∀x ∈ X and B∗ : X∗∗ = X → X∗, B∗ = B.

Exercise 1.1.

(i) The function f : X → R, f(x) = 〈Bx, x〉 is convex.

(ii) If we consider X = R
n, B = (bij)i,j=1,...,n a n × n symmetric positive semi-

definite matrix and the quadratic function f(x) = 〈Bx, x〉 = 〈x,Bx〉 =
n∑

i,j=1

bijxixj ≥ 0, x = (x1, ..., xn)T , then f is convex.

The following result is well-known from the basic lecture courses of analysis and

optimization, respectively.
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Proposition 1.2. Let f be a twice continuously differentiable real-valued

function on an open convex set C in R
n. Then f is convex on C if and only

if its Hessian matrix Qx = (qij(x))i,j=1,..,n, x = (x1, ..., xn)T where qij(x) =
∂2f

∂xi∂xj
(x1, ..., xn) is positive semi-definite for every x = (x1, ..., xn)T ∈ C.

Definition 1.2. Let f1, ..., fm be proper functions on a linear space X. Then

we call the function

f(x) := inf{f1(x1) + ... + fm(xm) : x1 + ... + xm = x, xi ∈ X, i = 1, ...,m}

infimal convolution, usually denoted f = f1�f2�...�fm =
m

�
i=1

fi.

Exercise 1.2. Show that the function f is convex. Hint: it comes from the

fact that for only two functions f1, f2, after setting x2 → y and x1 → x− y there

is

(f1�f2)(x) = inf{f1(x − y) + f2(y)},

but this is analogous to the classical formula for integral convolution

(
∫

f1(x − y)f2(y)dy).

Examples 1.2.

(i) Considering the indicator function of the set {a}

δ(x|a) =

{
0, if x = a,

+∞, otherwise,

then f �δ(·|a) = f(x− a) (translation of the graph of f horizontally by a).

If a = 0 then f � δ(·|0) = f(x) (identity).

(ii) If f(x) = ‖x‖ and g(x) = χC(x), x ∈ X (the indicator function of the set

C), then (f � g)(x) = inf
y∈X

{‖x−y‖+χC(y)} = inf
y∈C

‖x−y‖ = d(x, y), which

is actually a distance function. This means that the distance function for

a convex set C is a convex function.

Remark: There is another representation of f1�f2,

f1�f2 = inf{µ : ∃x ∈ X such that (x, µ) ∈ (epi f1 + epi f2)}.
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In this way f1�f2 may be defined even in the case when f1 and f2 are

not necessarily proper convex functions, i.e. for any functions mapping

from X to [−∞, +∞].

The operation ”�” has the following properties

� commutativity: f1�f2 = f2�f1;

� associativity: f1�(f2�f3) = (f1�f2)�f3;

� preserves the convexity;

� δ(·, 0) acts as its identity element.

(iii) Support functional of a convex set C ⊂ X

SC(x) = S(x|C) = sup
y∈C

〈x, y〉.

Geometrical interpretation. (cf. Figure 1.3)

Figure 1.3

Consider a hyperplane in X, HX,d = {y : 〈x, y〉 = d}, with d = sup
y∈C

〈x, y〉.
The tangent hyperplanes are supporting the set C.

SC(x) is convex as the pointwise supremum of a certain collection of linear

functions (i.e. convex) 〈·, y〉 as y ranges over C. (Family of functions

fy(x) = 〈x, y〉, y ∈ C which is an index set.)
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(iv) A gauge of a set C is defined by

{
γC(x) = γ(x|C) = inf{λ : λ ≥ 0, x ∈ λC}, x ∈ X,

γC(x) = +∞, if there is no λ ≥ 0 such that x ∈ λC,

and is also called Minkowski (gauge) functional (cf. Figure 1.4).

Figure 1.4

Exercise 1.3. If C is convex, then γC(x) is convex, too.

Definition 1.3. A functional p : X → R̄ is said to be sublinear if

(i) p(tx) = tp(x) whenever t ≥ 0 (positive homogeneousity),

(ii) p(x + y) ≤ p(x) + p(y) (subadditivity).

Remark: Of course, it is trivial to show that a sublinear functional is also

convex.

In this sense a sublinear functional is a generalization of a norm in a

linear space.
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Remark: Usually, defining a gauge by a convex set C it is additionally

supposed that 0 ∈ int(C) (the interior of C).

Let be C ⊂ X, where X is a normed space (or more general a linear topolog-

ical locally convex space). Then, for all x ∈ X we have γC(x) < ∞. Otherwise

there are x ∈ X with γC(x) = +∞ (cf. Figure 1.5, where there is no λ ≥ 0 such

that x ∈ λC and Figure 1.6).

Figure 1.5 Figure 1.6

Exercise 1.4. Prove that γC is sublinear.

Exercise 1.5. If f is a positively homogeneous proper convex function, then

the following statements are true.

(a) f(λ1x1+...+λmxm) ≤ λ1f(x1)+...+λmf(xm), whenever λ1 > 0, ..., λm > 0.

(b) f(−x) ≥ −f(x) for every x ∈ X.

The closure of a convex set C, 0 ∈ int C, can be described using its gauge

C̄ = {x ∈ X : γC(x) ≤ 1, i.e. x ∈ λnC for a sequence λn → 1, λn > 1 ∀n ∈ N},

that coincides to C when it is closed, while the interior of C is

int C = {x ∈ X : γC(x) < 1}
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and its boundary

∂C = {x ∈ X : γC(x) = 1}.

Thus C plays the role of the unit ball as for the case when the gauge is a norm

C = B0,1 = {x ∈ X : ‖x‖ ≤ 1}

If from x ∈ C follows −x ∈ C for every x ∈ C (C is symmetric), then

γC(−x) = γC(x) and therefore γC(x) = ‖x‖C defines a norm if 0 ∈ int C and

C is bounded because ‖λx‖C = |λ|γC(x) also for λ < 0. Of course 0 ∈ int C is

supposed and C is bounded so γC(0) = ‖0‖ = 0 and γC(x) > 0, γC(x) 6= ∞ for

x 6= 0 (cf. Figure 1.7).

Figure 1.7

Let X be a normed space and C ⊂ X convex, 0 ∈ int C. Then there exists

M > 0 such that

γC(x) ≤ M‖x‖ ∀x ∈ X,

i.e. γC is a bounded functional. To point out that, take a ball with radius r

centered at 0 and contained in C, B0,r = {x ∈ X : ‖x‖ ≤ r} ⊂ C (this is possible

because 0 ∈ int C). Since B0,r ⊂ C it follows

γC(x) = inf{λ : λ ≥ 0, x ∈ λC}

≤ γB0,r
= inf{λ : λ ≥ 0, x ∈ λB0,r} =

‖x‖
r

.
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If we take M = 1
r

we obtain γC(x) ≤ M‖x‖ ∀x ∈ X. From that follows that

γC(x) is continuous (see Figure 1.8).

Figure 1.8

Let be the sequence xn → x and we have γC(xn − x) ≤ M‖xn − x‖ → 0 when

n → ∞. This does not prove yet the continuity, as we need |γC(xn)−γC(x)| → 0

when n → ∞.

But as for a norm, we can also for a gauge (or more general for a sublinear

function) estimate in an analogous manner

γC(xn) = γC(xn − x + x) ≤ γC(xn − x) + γC(xn)

and from here

γC(xn) − γC(x) ≤ γC(xn − x) ≤ M‖xn − x‖, n ∈ N.

Moreover,

γC(x) = γC(x − xn + xn) ≤ γC(x − xn) + γC(xn),

implying

γC(x) − γC(xn) ≤ γC(x − xn) ≤ M‖x − xn‖ = M‖xn − x‖, n ∈ N.
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From the above inequalities we obtain

−M‖xn − x‖ ≤ γC(xn) − γC(x) ≤ M‖xn − x‖

which is nothing but the continuity of γC(x),

|γC(xn) − γC(x)| ≤ M‖xn − x‖, n ∈ N.

Exercise 1.6. Conversely, any positively homogeneous, subadditive (i.e. sub-

linear), non-negative and continuous function p on X is of the form γC , i.e. is a

gauge.

Lemma 1.1. Let be X a real normed space, f a convex function over an open

set D (f is considered on int(dom f)). If x0 ∈ D, then for each h ∈ X the ”right

hand” directional derivative

d+f(x0)(h) = lim
t→0+

f(x0 + th) − f(x0)

t

exists and is a sublinear function on X.

Proof. We point out that the difference quotient is nonincreasing as t → 0+

and bounded below by the corresponding difference quotient from the left. Thus

the limit exists.

Figure 1.9
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To prove this, we assume that x0 = 0 and f(x0) = 0 (possible by a translation

of X and f , cf. Figure 1.9). Let be 0 < t < s. By convexity, with th =
t
s
(sh) +

(
1 − t

s

)
0, we have

f(th) ≤ t

s
f(sh) +

s − t

s
f(0) =

t

s
f(sh)

and so 1
t
f(th) ≤ 1

s
f(sh). This proves the monotonicity of the difference quotient

f(x0 + th) − f(x0)

t
=

f(th)

t
≤ f(sh)

s
=

f(x0 + sh) − f(x0)

s
.

We apply this to (−h) in place of h (we see that f(x0 + t(−h)) = f(x0 − th)).

It follows that − f(x0+th)−f(x0)
t

is nondecreasing as t → 0+. By convexity we have

for t > 0

f(x0) = f

(
1

2
(x0 − 2th) +

1

2
(x0 + 2th)

)
≤ 1

2
f(x0 − 2th) +

1

2
f(x0 + 2th).

Therefore

2f(x0) ≤ f(x0 − 2th) + f(x0 + 2th).

Transforming this inequality and dividing by 2t, we obtain

−[f(x0 − 2th) − f(x0)]

2t
≤ [f(x0 − 2th) − f(x0)]

2t
.

Because the left hand side is nondecreasing as t → 0+ and the right hand side

is nonincreasing as t → 0+, this shows that the right hand side (the difference

quotient) is bounded below and the left hand side is bounded above. So both

limits exist.

The left limit is denoted by −d+f(x0)(−h) and it holds

−d+f(x0)(−h) ≤ d+f(x0)(h) ∀h ∈ X.

Obviously d+f(h) is positively homogeneous (cf. definition of d+f(h))

d+f(x0)(λh) = lim
t→0+

f(x0 + tλh) − f(x0)

t

= lim
t→0+

λ
f(x0 + (tλ)h) − f(x0)

tλ

= λ lim
t→0+

f(x0 + th) − f(x0)

t

= λd+f(x0)(h),
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where λ > 0 and t̄ = tλ. The fact that d+f(h) is subadditive follows by convexity

f(x0 + t(h1 + h2)) = f

(
1

2
(x0 + 2th1) +

1

2
(x0 + 2th2)

)

≤ 1

2
f(x0 + 2th1) +

1

2
f(x0 + 2th2).

By subtracting from both hand sides −f(x0) and dividing by t > 0, we obtain

f(x0 + t(h1 + h2)) − f(x0)

t
≤ f(x0 + 2th1) − f(x0)

2t
+

f(x0 + 2t(h2) − f(x0)

2t
.

Taking limits as t → 0+, follows

d+f(x0)(h1 + h2) ≤ d+f(x0)(h1) + d+f(x0)(h2).�

Definition 1.4. If the functional h 7−→ d+f(x0)(h) is linear (instead of only

sublinear) then the convex function is said to be Gateaux differentiable at

x0 ∈ D. The functional is in this case denoted by df(x0)(h) and d(f(x0)) (as a

linear functional, continuity is not assumed) is called the Gateaux derivative

(differential) of f at x0.

Figure 1.10

Remark: It is clear that f is Gateaux differentiable at x0 if and only if

−d+t(x0)(−h) = d+t(x0)(h).
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What does this equality mean? Let us see (cf. Figure 1.10)

−d+f(x0)(−h) = − lim
t→0+

f(x0 − th) − f(x0)

−t

= lim
t→0−

f(x0 + th) − f(x0)

t

= lim
t→0+

f(x0 + th) − f(x0)

t
= d+f(x0)(h),

i.e. the two-sided limit exists and so does the limit itself. Therefore we can say

that the convex function f is Gateaux differentiable at x0 ∈ D if and only if

df(x0)(h) = lim
t→0+

f(x0 + th) − f(x0)

t
=

d

df
f(x0 + th)|t=0

and the limit exists!

Exercise 1.7. Prove that a sublinear functional p is linear if and only if for

all x ∈ X it holds p(−x) = −p(x).
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2 Continuity of Convex Functions

Lemma 2.1. If a convex function f : X → R, with X a normed space (more

general locally convex space), has a neighborhood of a point x ∈ X where f is

bounded above by a finite constant, then f is continuous at x.

Proof. We reduce again the problem by translation to the case where x = 0

and f(x) = 0, too.

Let U be a neighborhood of the origin, such that f(x) ≤ c < ∞ for all x ∈ U .

It follows that V = U ∩ (−U) is a symmetric neighborhood of the origin.

Consider further ε ∈ (0, 1) and x ∈ ε V = {y : y = εv, v ∈ V }. Due to the

convexity of f and because x is a convex combination of 0 and 1
ε
x, i.e.

x = (1 − ε)0 + ε

(
1

ε
x

)
,

one has

f(x) ≤ (1 − ε)f(0) + εf

(
1

ε
x

)
≤ εc, (2. 1)

the last inequality taking place because 1
ε
x ∈ V ⊆ U and so f( 1

ε
x) ≤ εc.

Analogously we obtain from

0 =
1

1 + ε
x +

ε

1 + ε

(
−1

ε
x

)
,

i.e. 0 is a convex combination of x and
(
−1

ε
x
)
∈ V ⊆ U , because from x ∈ εV

follows that −x ∈ εV , V being symmetric, the following

f(0) ≤ 1

1 + ε
f(x) +

ε

1 + ε
f

(
−1

ε
x

)
.

Multiplying the last relation by (1 + ε) we obtain

f(x) ≥ (1 + ε)f(0) − εf

(
−1

ε
x

)
≥ −εc (2. 2)

From (2.1) and (2.2) we have that | f(x) |≤ εc ∀x ∈ εV , and this means, by the

definition of continuity, that f is continuous at x = 0. �

Proposition 2.1. Let X be a normed space and f : X → R be a convex

function. The following statements are equivalent to each other.
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(i) There is a non-empty open set M on which f is not everywhere equal to

−∞ and is bounded above by a constant c < +∞ (i.e. M ⊂ int(dom f)

since M is open).

(ii) f is a proper function and it is continuous over the interior of its effective

domain int(dom f) which is non-empty.

Proof. It is clear that (ii) implies (i). Let us conclude (ii) from (i).

Let M ⊂ int(dom f) and x ∈ M such that f(x) > −∞ (cf.(i)). Lemma 2.1

shows that f is continuous at x (observe that from M open follows that x is an

inner point of M). Therefore, f is finite on a neighborhood U of x and hence

proper.

As U we can choose a ball B(x, ρ) around x with radius ρ. The reason is that

a convex function which takes the value −∞ at x, f(x) = −∞, has the property

that on every half-line starting from x either f is identically equal to −∞ or f

has the value −∞ between x and a point x̂, any value at x̂, and +∞ beyond x̂.

Thus, a function which is finite in a neighborhood of a point x can take

nowhere the value −∞. If it would be −∞ at x, i.e. f(x) = −∞, then connect x

with x by a straight line and so arises a contradiction to the fact that f is finite

on a neighborhood of x.

Let be x ∈ int(dom f) an arbitrary point. It follows that there exists δ > 1

such that y = x + δ(x − x) ∈ int(dom f). (cf. Figure 2.1)

Figure 2.1
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Then the closed ball B(x, (1 − 1
δ
)ρ) is included in int(dom f). A geometrical

explanation follows.

Figure 2.2

In Figure 2.2 one may notice some similar triangles, so it follows

δ‖x̄ − x‖
ρ

=
(δ − 1)‖x̄ − x‖

r
.

The value of the radius of the small ball is

r =
δ − 1

δ
ρ =

(
1 − 1

δ

)
ρ,

so y = x + δ‖x̄ − x‖ belongs to int(dom(f)).

These considerations can be modified in order to hold also for locally convex

topological vector spaces.

By convexity, let x0 ∈ B(x, (1 − 1
δ
ρ)). Then there exists a z ∈ B(0X , ρ) such

that x0 = x +
(
1 − 1

δ

)
z. It follows that

f(x0) = f

(
x +

(
1 − 1

δ

)
z

)
= f

(
x +

(
1 − 1

δ

)
x +

(
1 − 1

δ

)
(x + z)

)

= f

(
1

δ
(x + δ(x − x)) +

(
1 − 1

δ

)
(x + z)

)

≤ 1

δ
f(x + δ(x − x)) +

(
1 − 1

δ

)
f(x + z) ≤ 1

δ
f(y) +

(
1 − 1

δ

)
c = α.

To obtain the last inequality we used the following facts x + δ(x − x) = y,

f(y) < ∞ (because y ∈ int(dom f)) and f(x + z) ≤ c.
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It is clear that α does not depend on x0 ∈ B
(
x,
(
1 − 1

δ

)
ρ
)
. It follows that

f is bounded on the neighborhood B
(
x,
(
1 − 1

δ

)
ρ
)

of x ∈ int(dom f). Again by

Lemma 2.1, it follows that f is continuous at x. But x is an arbitrary point of

int(dom f), hence f is continuous on the whole int(dom f). �

Proposition 2.2. Let X be a normed space, f convex and continuous at

x0 ∈ int(dom f). Then f is locally Lipschitzian at x0, that is, there exist L > 0

and δ > 0 such that

B(x0, δ) = {x ∈ X : ‖x − x0‖ ≤ δ} ⊂ int(dom f)

and | f(x) − f(y) |≤ L‖x − y‖, whenever x, y ∈ B(x0, δ).

Proof. The continuity of f at x0 implies that f is locally bounded there, i.e.

there exist L1 > 0 and δ > 0 satisfying | f |≤ L1 on B(x0, 2δ) ⊂ int(dom f).

Now, let be x, y distinct points in B(x0, δ), α := ‖x − y‖ and let

z = y +
δ

α
(y − x) = y + δ

y − x

‖y − x‖ =

(
1 +

δ

α

)
y − δ

α
x.

We have that

‖z − x0‖ =

∥∥∥∥y − x0 + δ
y − x

‖y − x‖

∥∥∥∥ ≤ ‖y − x0‖ + δ ≤ 2δ,

and hence z ∈ B(x0, 2δ).

Because

y =
α

α + δ
z +

δ

α + δ
x

is a convex combination lying in B(x0, 2δ), it follows that

f(y) ≤ α

α + δ
f(z) +

δ

α + δ
f(x).

Subtracting from both left and right hand side f(x), we obtain

f(y) − f(x) ≤ α

α + δ
[f(z) − f(x)] ≤ α

δ
2L1 ≤

2L1

δ
‖x − y‖

(since | f |≤ L1). Interchanging x and y, yields

f(x) − f(y) ≤ 2L1

δ
‖x − y‖ .
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This is equivalent to

f(y) − f(x) ≥ −2L1

δ
‖x − y‖ .

Hence we obtained | f(y) − f(x) |≤ L‖y − x‖, with L = 2L1

δ
. �

Corollary 2.1. Let f be a convex and continuous function at x0 ∈ int(dom f).

Then d+f(x0) is a continuous sublinear function on X and therefore df(x0) (if

it exists) is a continuous linear function (df(x0) is the Gateaux-differential or

Gateaux-derivative of f at the point x0).

Proof. With Proposition 2.2 follows for x0 ∈ int(dom f) and h ∈ X

f(x0 + th) − f(x0) ≤ L‖x0 + th − x0‖ = Lt‖h‖,

provided that t > 0 is sufficiently small such that x0 + th ∈ B = B(x0, δ) (cf.

Proposition 2.2). It follows that

d+f(x0)(h) = lim
t→0+

f(x0 + th) − f(x0)

t
≤ L‖h‖ ∀h ∈ X.

Hence d+f(x0) is continuous. �

If the Gateaux-differential (Gateaux-derivative) df(x0) (which is by definition

linear) is even continuous (which is true e.g. under the assumptions of Corollary

2.1), then the following representation formula is valid

lim
t→0

f(x0 + th) − f(x0)

t
=

d

df
f(x0 + th) |t=0= df(x0)(h) = 〈f ′(x0), h〉,

i.e. df(x0) is now also denoted by f ′(x0) ∈ X∗.

Thus f ′ : X → X∗ defines a (in general nonlinear) mapping from X into X∗.

f ′ is also said to be the gradient of f , and f ′(x0) is said to be the gradient of

f(x0) (f at x0).

We give now another Corollary, namely to Proposition 2.1.

Corollary 2.2. A finite convex function f on an open convex set D ⊂ R
n

(n ≥ 1) is continuous.

22



Proof. We set f(x) = +∞ for x /∈ D. Then f is a convex function (as a

function f : R
n → R. Let x ∈ D and consider for example n = 2.

Figure 2.3

Choosing a triangle ∆ (Figure 2.3) spanned by x1, x2, x3 ∈ D with x ∈ int ∆ ⊆ D,

we see that x may be represented as convex linear combination

x = λ1x1 + λ2x2 + λ3x3, 0 ≤ λi ≤ 1, i = 1, . . . , 3, λ1 + λ2 + λ3 = 1.

Due to the convexity of f there holds

f(x) ≤ λ1f(x1) + λ2f(x2) + λ3f(x3).

This means that f is bounded from above on the triangle D which is a neighbor-

hood of x and thus the assertion follows from Proposition 2.1.

For n > 2 (n = 1) the proof is analogous: x may be represented as a convex

linear combination of (n + 1) points x1, . . . , xn+1 spanning a simplex S which

contains x in is interior. �
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3 Lower Semicontinuity of (Convex) Functions

Let X be a Banach space (more generally it may be a topological locally convex

space).

Definition 3.1. The function f : X → R is said to be lower (upper) semi-

continuous at x0 ∈ X if for ε > 0 there exists a neighborhood U(x0) of x0 such

that ε < (>)f(x) − f(x0) for all x ∈ U(x0).

Remark: Of course, if f is both lower and upper semicontinuous at x0 then

f is continuous at x0, i.e. |f(x) − f(x0)| < ε for all x ∈ U(x0).

Consideration of continuous functions turns out to be an unnecessary restric-

tion (limitation) in particular within optimization theory and convex analysis.

For example, regarding minimization of a continuous function f over a compact

set D (the minimum exists due to the Weierstrass theorem), we can define

f̃(x) =

{
f(x), if x ∈ D,

+∞, otherwise.

Then min
x∈D

f(x) = min
x∈X

f̃(x) (minimizing over the entire space X). Of course f̃ is

not necessarily continuous on the whole X, but lower semicontinuous. Moreover,

for continuous functions, there are a lot of properties and assertions in convex

analysis and optimization which can be generalized to semicontinuous (lower or

upper and weakly semicontinuous respectively) functions. As an example consider

the Weierstrass theorem. It is true also for lower semicontinuous functions in

the sense that a lower (upper) semicontinuous function f on a compact

set B attains its minimum (maximum). The proof can remain as an exercise

for the reader.

Remarks: The following assertions result immediately from the definition.

(i) If f is continuous, then f is lower (upper) semicontinuous.

(ii) If f, g are lower semicontinuous and λ > 0, then λf and f + g are lower

semicontinuous.
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(iii) If f is upper semicontinuous, then −f is lower semicontinuous.

Exercise 3.1. The function f is lower semicontinuous at x0 if and only if

lim
x→x0

f(x) ≥ f(x0).

Definition 3.2. The function f : X → R is said to be sequentially lower

semicontinuous at x0 ∈ X if and only if f(x0) ≤ lim
n→+∞

f(xn) holds for each

sequence (xn), xn ∈ X, satisfying lim
n→+∞

xn = x0.

Again, trivially by definition, for X Banach space (as supposed above) a se-

quentially lower semicontinuous function is lower semicontinuous at x0 and vicev-

ersa (as for continuous functions at x0, where the inferior limit has to be replaced

by the limit)(e.g. for X = R
n). The lower semicontinuity can be characterized

in different ways as the following theorem says.

Theorem 3.1. Let be X a Banach space and f : X → R. The following

conditions are equivalent.

(i) The function f is lower semicontinuous on X (for all x ∈ X).

(ii) The set {x ∈ X : f(x) > k} is an open set for each k ∈ R.

(iii) The set Ek := {x ∈ X : f(x) ≤ k} is an closed set (level set) for each

k ∈ R.

(iv) The set epi f is closed (as subset of X × R).

Proof. ”(i) ⇒ (ii)” Let be x0 such that f(x0) > k, k ∈ R. Because f is lower

semicontinuous at x0, to a given ε = 1
2
(f(x0) − k) there exists a neighborhood

W (x0) of x0 such that (by definition)

f(x) > f(x0) − ε = f(x0) − 1

2
(f(x0) − k) =

1

2
(f(x0) + k) > k ∀x ∈ W (x0).

This implies that the set {x ∈ X : f(x) > k} is open.

”(ii) ⇒ (i)” Consider any x0 and any ε > 0. Because of (ii) the set

M =
{
x ∈ X : f(x) > k = f(x0) − ε

}
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is open and f(x0) ∈ M since f(x0) > k = f(x0)−ε. From here follows that there

exists a neighborhood U(x0) of x0 contained in M : U(x0) ⊂ M . That means

that for all x ∈ U(x0) holds f(x) > f(x0) − ε, which is indeed the definition of

lower semicontinuity for f at x0.

”(ii) ⇐⇒ (iii)” Trivial, because Ek is the complement set of the set from (ii).

”(i) ⇐⇒ (iv)” We define a new function F : X × R → R : F (x, λ) := f(x) − λ.

In order to continue the proof the following result is required.

Lemma 3.1. F is lower semicontinuous if and only if f is lower semicon-

tinuous (on X × R and X respectively).

Proof. Sufficiency. Let f be lower semicontinuous on X. Assume F is not

lower semicontinuous. Because of (ii) ⇐⇒ (iii) from the previous theorem (for

F ) the set

M :=
{
(x, λ) ∈ X × R : F (x, λ) = f(x) − λ ≤ L

}

is not closed for at least one L ∈ R and that means that there exists a limit point

(x0, λ0) ∈ ∂M\M fulfilling f(x0) − λ0 > L.

Thus for any neighborhood U(x0, λ0) of the point (x0, λ0) there exists a point

(x, λ) ∈ U(x0, λ0) ∩ M , i.e. f(x) − λ ≤ L. Especially let |λ − λ0| < δ which

implies λ < λ0 + δ for a sufficiently small δ > 0.

Because f is lower semicontinuous at x0 for ε := 1
2
(f(x0) − (L + λ0)) − δ > 0

there follows the existence of a neighborhood V (x0) of x0 such that

f(x) > f(x0) − ε

= f(x0) −
[
1

2

(
f(x0) −

(
L + λ0

))
− δ

]

=
1

2

(
f(x0) + L + λ0

)
+ δ

> L + λ0 + δ ∀x ∈ V (x0).

Thus we can choose as U(x0, λ0) the set U(x0, λ0) = V (x0) × (λ0 − δ, λ0 + δ).

Then for all (x, λ) ∈ U(x0, λ0) there is f(x) > L + λ0 + δ > L + λ. But for

(x, λ) ∈ U(x0, λ0) holds f(x) ≤ L + λ which is a contradiction.

Necessity. Let f be lower semicontinuous on X for all x ∈ X. Assume that
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F is not lower semicontinuous. Because of (ii) ⇔ (iii) (for F ) the set

M = {(x, λ) ∈ X × R : F (x, λ) = f(x) − λ ≤ L}

is not closed for at least an L ∈ R and that means that there exists a limit

point (x0, λ0), i.e. boundary point of M , but not belonging to M , that yields

the existence of a sequence (xn, λn) ∈ M with (xn, λn) → (x0, λ0) ∀n ∈ N,

i.e. f(xn) − λn ≤ L ∀n ∈ N and f(x0) − λ0 > L. This is a contradiction

since lim
xn→x0

f(xn) ≥ f(x0) (because f is lower semicontinuous), but from the

inequalities above we get

lim
n→∞

(f(xn) − λn) = lim
n→∞

f(xn) − λ0 ≤ L,

followed by f(x0) − λ0 ≤ L, which contradicts f(x0) − λ0 > L. �

Continuation of the Proof of Theorem 3.1. ”(i) ⇐⇒ (iv)” Let f be

lower semicontinuous, which means nothing but that F is lower semicontinuous

(from Lemma 3.1). Because of (iii) F lower semicontinuous implies that the level

set

{(x, λ) : F (x, λ) ≤ µ}

is closed for all µ ∈ R. But F (x, λ) = f(x)− λ ≤ µ implies f(x) ≤ µ + λ and we

can write

{(x, λ) : F (x, λ) ≤ µ} = {(x, λ) : (x, λ + µ) ∈ epi f} = epi f − (0, µ),

which is a translation of epi f and so this is equivalent with epi f is closed. �

Example 3.1. The indicator function

χA(x) =

{
0, if x ∈ A,

+∞, otherwise,

is lower semicontinuous if and only if A is closed (follows from (iii) in the theorem).

Remark: Let fi(x) be lower semicontinuous functions on X, i ∈ I. Then

f(x) = sup
i∈I

fi(x)
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(the pointwise supremum of a family of lower semicontinuous functions) is a lower

semicontinuous function.

Proof. Since fi, i ∈ I are lower semicontinuous functions then epi fi is a

closed set for all i ∈ I. But because the intersection of infinitely many closed sets

is closed we have that epi f =
⋂
i∈I

epi fi is a closed set. �

Definition 3.3. The largest lower semicontinuous minorant of the function

f : X → R is called the lower semicontinuous regularization of f and is

denoted by f .

Remark: It exists as the pointwise supremum of those lower semicontinuous

functions everywhere less than f (cf. Remark above). It can be characterized by

the following statement.

Proposition 3.1. Let be f : X → R and f its lower semicontinuous regular-

ization. Then epi f = epi f and f(x) = lim
y→x

f(y) ∀x ∈ X.

Proof. Because f(x) ≤ f(x), as f is lower semicontinuous, we have epi f ⊇
epi f .

Figure 3.1
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But epi f is closed and this implies that epi f ⊇ epi f .

Conversely, epi f can be considered as epigraph of a function g, epi g = epi f

(see Figure 3.1).

Since epi g is closed, then g is a lower semicontinuous function with g(x) ≤
f(x) and this implies g(x) ≤ f(x) because the definition of f is as the largest

lower semicontinuous minorant of f and from here follows epi g = epi f ⊇ epi f .

Getting these two inclusions together, we obtain that epi f = epi f . Consequently

f = lim
y→x

f(y) ∀ x ∈ X. �

We need an even more general definition, so-called weak semicontinuity.

Consider X a real normed space (not necessary a Banach space). We intro-

duce the notion of weak convergence.

Definition 3.4. A sequence (xn)n∈N, xn ∈ X is said to be weakly con-

vergent to x ∈ X if for all continuous linear functionals x∗ ∈ X∗ we have

lim
n→∞

〈x∗, xn〉 = 〈x∗, x〉. Moreover, x is called the weak limit of the sequence

(xn) and the following notations are usually used xn ⇀ x or w − lim
n→∞

xn = x.

Example 3.2. Consider the Hilbert space l2 of all real sequences x = (xi)i∈N

with
∞∑
i=1

|xi|2 < ∞, scalar product is 〈x, y〉 =
∞∑
i=1

xiyi, x, y ∈ l2.

We study the special sequence in l2 (i.e. a sequence of l2-sequences) x1 =

(1, 0, 0, 0, ...), x2 = (0, 1, 0, 0, ...), x3 = (0, 0, 1, 0, ...) etc. Then xn ⇀ 0l2 =

(0, 0, 0, ...) because a continuous linear functional x∗ ∈ l∗2 can be identified with

an element y = (yi) ∈ l2, i ∈ N (H∗ ∼= H for Hilbert spaces) and 〈x∗, x〉
can be considered by the scalar product 〈x∗, x〉 = 〈y, x〉 =

∞∑
i=1

yixi. Since

∞∑
i=1

|yi|2 < ∞, we have lim
n→∞

〈x∗, xn〉 = lim
n→∞

〈y, xn〉 = lim
n→∞

yn = 0. On the other

hand, 〈x∗, 0l2〉 = 〈y, 0l2〉 =
∞∑
i=1

yi · 0 = 0 and hence lim
n→∞

〈x∗, xn〉 = 〈x∗, 0l2〉 = 0

and so xn ⇀ 0l2 .

But xn → 0l2 does not stand because ‖xn‖l2 =
√
〈xn, xn〉 =

√
∞∑
i=1

(xi)2 = 1

∀ n ∈ N.

Definition 3.5. Let X be a real normed space (X, ‖ · ‖). The function f :
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X → R is called weak (sequentially) lower semicontinuous at x0 if for every

sequence (xn)n∈N converging weakly to x0, i.e. xn ⇀ x0, holds f(x0) ≤ lim
n→∞

f(xn).

Comparing this to the definition of sequentially lower semicontinuous func-

tions one may notice that the only difference consists in that there was xn → x0

instead of xn ⇀ x0.

Remark: Instead of ”weak sequentially lower semicontinuous” we simply say

”weak-lower semicontinuous”.

Definition 3.6. Let (X, ‖ · ‖) be a normed space. A non-empty subset D of

X is called (cf. Figure 3.2)

(i) weakly (sequentially) closed if for every weakly convergent sequence

xn ⇀ x, xn ∈ D, follows x ∈ D,

(ii) weak sequentially compact if every sequence in D contains a weakly

convergent subsequence whose weak limit belongs to D.

Figure 3.2
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Remark: D weak (sequentially) closed implies that D is closed. To prove

this, let be xn → x, xn ∈ D which assures that xn ⇀ x, so xn ∈ D and this

means that D is closed. The converse is, in general, not true. This leads to a

modification (generalization) of the Weierstrass Theorem as follows.

Theorem 3.2. Let be X a normed space, D a non-empty weak sequentially

compact set and f weak-lower semicontinuous on D. Then there exists at least

one x ∈ D with f(x) ≤ f(x) ∀ x ∈ D, i.e. the optimization problem min
x∈D

f(x)

has at least one solution.

Proof. First, (xn)n∈N is assumed to be an infimal sequence in D,

lim
n→∞

f(xn) = inf
x∈S

f(x).

Because D is weak sequentially compact, there exists a subsequence (xni
), i ∈ N

with xni
⇀ x, where x is some x ∈ D.

Since f is weak-lower semicontinuous we have

f(x) ≤ lim
i→∞

f(xni
) = inf

x∈D
f(x)

and our proof is complete. �

Remark: Obviously, f weak-lower semicontinuous (weak (sequentially)

lower semicontinuous) in a Banach space implies f is lower semicontinuous, but

not viceversa.

Proof. In a Banach space a sequentially lower semicontinuous function is

lower semicontinuous and viceversa. Let f be weak-lower semicontinuous and

xn → x0 any sequence. Then xn ⇀ x0 and f(x0) ≤ lim
n→∞

f(xn), which implies

that f is lower semicontinuous. �

Example 3.3. Let be (X, ‖ · ‖) a Banach space. Then f(x) = ‖x‖ is weak-

lower semicontinuous.
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To prove this, we need a conclusion of the famous Hahn-Banach Theorem.

Theorem 3.3. Let X be a real linear space and f : X → R a sublinear func-

tional. Then there exists a linear functional l on X such that l(x) ≤ f(x) ∀ x ∈
X.

This is a so-called basic version of the Hahn-Banach Theorem. There exist

some further versions of it. We give another formulation of the Hahn-Banach

Theorem a so-called Continuation Theorem.

Theorem 3.4. (Hahn-Banach Continuation) Let X be a real (or even

complex) linear space, p a seminorm on X and L ⊂ X a linear subspace of X.

Further, let f be a linear functional defined on L, fulfilling the estimation

|f(x)| ≤ p(x) ∀ x ∈ X.

Then there exists a linear functional f̃ defined on whole X (i.e. f̃ ∈ X ′, where

X ′ is the algebraic dual space to X) such that

f̃ = f(x) ∀x ∈ L and |f̃(x)| ≤ p(x) ∀x ∈ X.

Therefore f̃ turns out to be a continuation of f from L to X which satisfies the

estimation by the semi-norm p on the whole X, too.

A proof is available in [2].

From this general version (the space X is only supposed to be a linear space

etc.) one can deduce the so-called Hahn-Banach- Continuation Theorem for

normed spaces.

Theorem 3.5. (Hahn-Banach-Continuation for normed spaces) Let

(X, ‖ · ‖) be a normed space and f a linear continuous functional on a linear

subspace L ⊂ X. Then there exists a linear continuous functional f̃ on X (i.e.

f̃ ∈ X∗) which is a continuation of f from L to X keeping the norm

f̃(x) = f(x) ∀x ∈ L and ‖f̃‖X∗ = ‖f‖L.
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Proof. The function p(x) := ‖f‖L‖x‖ defines a semi-norm on X. Indeed we

have p(x) ≥ 0 ∀ x ∈ X, p(λx) = ‖f‖L‖λx‖ = |λ|p(x), λ ∈ R and p(x + y) =

‖f‖L‖x + y‖ ≤ ‖f‖L(‖x‖ + ‖y‖) = p(x) + p(y). From the definition of ‖ · ‖L we

obtain |f(x)| ≤ ‖f‖L‖x‖ = p(x) ∀ x ∈ L. With the Hahn-Banach Continuation

Theorem (Theorem 3.4) follows the existence of a continuation f̃ of f , f̃ linear

functional on X, satisfying the estimation

f̃(x) = f(x) ∀x ∈ L and ‖f̃‖ ≤ p(x) = ‖f‖L‖x‖ ∀x ∈ X.

This means that f̃ is continuous, i.e. f̃ ∈ X∗ and ‖f̃‖X∗ ≤ ‖f‖L (by definition).

But we also have |f(x)| = |f̃(x)| ≤ ‖f̃‖X∗‖x‖ for all x ∈ X (in particular even

for all x ∈ L) which means ‖f̃‖X∗ ≤ ‖f‖L. Consequently, ‖f̃‖X∗ = ‖f‖L. �

There is also an interesting conclusion of this statement (as announced above).

Conclusion 3.1. Let (X, ‖ · ‖) be a linear normed space, 0 6= x0 ∈ X any

element. Then there exists a linear continuous functional f̃ = x∗ ∈ X on X such

that ‖x∗‖∗ = 1 and 〈x∗, x0〉 = ‖x0‖.

Proof. Let L = {αx0} be a one dimensional linear subspace of X, α ∈ R

(i.e. L is spanned by x0). Define on L the linear continuous functional f(x) =

f(αx0) := α‖x0‖, x = αx0 ∈ L. Consequently f(x) = ‖x‖ ∀x ∈ X, especially

f(x0) = ‖x0‖. The functional f is linear because f(λx) = f(λαx0) = λα‖x0‖ =

λf(x), λ ∈ R and f(x+y) = f(α1x0 +α2x0) = f((α1 +α2)x0) = (α1 +α2)‖x0‖ =

α1‖x0‖ + α2‖x0‖ = f(x) + f(y).

Because ‖f(x)‖ = ‖x‖ ∀x ∈ L, we have ‖f‖L = 1. Using Theorem 3.5 (Hahn-

Banach for normed spaces) follows the existence of a linear continuous functional

denoted f̃ = x∗ fulfilling for each x ∈ L

〈x∗, x〉 = f(x) = ‖x‖,

in particular 〈x∗, x0〉 = ‖x0‖, since x0 ∈ L and

‖x∗‖∗ = ‖f̃‖∗ = ‖f‖L = 1.

�
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Now we return to Example 3.3. We need to prove that the norm attached to

a Banach space is a weak-lower semicontinuous function.

Proof. Considering a sequence xn ⇀ x0, we show ‖x0‖ ≤ lim
n→∞

‖xn‖.
Let us suppose the contrary, i.e.

‖x0‖ > lim
n→∞

‖xn‖.

Consequently there exists c ∈ R such that

‖x0‖ > c > lim
n→∞

‖xn‖.

By the definition of the limit there exists a subsequence (xnk
)k∈N such that ‖x0‖ >

c > ‖xnk
‖. From Conclusion 3.1 follows the existence of a functional x∗ ∈ X∗,

‖x∗‖∗ = 1 and 〈x∗, x0〉 = ‖x0‖ > c. On the other hand,

‖x∗, xnk
‖ ≤ ‖x∗‖∗‖xnk

‖ = ‖xnk
‖ < c,

so

〈x∗, x0〉 lim
nk⇀∞

〈x∗, xnk
〉 ≤ c (weak convergence).

This contradicts the result obtained above, so the norm is weak-lower semicon-

tinuous indeed. �

Remark: Previously, we have remarked that a weak (sequentially) closed

set is also closed. The converse assertion is not true in general. A closed set is

also weak (sequentially) closed if and only if the set is also convex. The proof is

not trivial, but we omit it here, being available in [1].

The following conclusion follows from the last remark.

Conclusion 3.2. The indicator function χD(x) of a convex closed set D ⊂ X

(X normed space or, more general, locally convex topological vector space - in this

case weak-lower semicontinuity is defined by means of the weak topology) is weak-

lower (sequentially) semi-continuous .

Proof. Let xn ⇀ x0.
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(i) If x0 ∈ D, we have χD(x0) = 0, so

0 = χD(x0) ≤ lim
n→∞

χD(xn) =

{
+∞, if xn /∈ D,

0, if xn ∈ D.

(ii) If x0 /∈ D, it follows that there is no n0 such that for any n > n0, xn /∈ D.

Otherwise there would exist a subsequence xnk
⇀ x0 such that xnk

∈ D,

implying x0 ∈ D (D is weak sequential closed, since is closed and convex)

and this is a contradiction. Hence

+∞ = χD(x0) = lim
n→∞

χD(xn) = +∞,

so χD(x0) ≤ lim
n→∞

χD(xn). �

Now we prove that a convex function f : X → R, which has a continu-

ous Gateaux-differential (gradient) is weak-lower semicontinuous (X is a normed

space). To show this we need the following statement first.

Proposition 3.2. Let X be a real linear normed space, f : X → R a Gateaux-

differentiable convex function, f ′ : X → X∗ a linear continuous function. Then

f(y) − f(x) ≥ 〈f ′(x), y − x〉 ∀x, y ∈ X.

Proof. Let 0 < λ ≤ 1. Because f is convex, we have

f(λy+(1−λ)x) = f(x+λ(y−x)) ≤ λf(y)+(1−λ)f(x) = f(x)+λ(f(y)−f(x)).

It follows that
f(x + λ(y − x)) − f(x)

λ
≤ f(y) − f(x)

We build the limit λ → 0. By the definition of Gateaux-derivative, we obtain

〈f ′(x), y − x〉 ≤ f(y) − f(x). �

Proposition 3.3. Let X be a real linear normed space, f : X → R a Gateaux-

differentiable convex function, f ′ : X → X∗ a linear continuous function. Then

f is weak-lower semicontinuous.
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Proof. Let be x0 ∈ X an arbitrary element, (xn) a sequence such that

xn ⇀ x0. From Proposition 3.2 follows f(xn) ≥ f(x0) + 〈f ′(x0), xn − x0〉 and

lim
n→+∞

f(xn) ≥ f(x0) + lim
n→+∞

〈f ′(x0), xn − x0〉 = f(x0),

as xn ⇀ x0 implies 〈f ′(x0), xn − x0〉 → f(x0). �

Exercise 3.2. Let X be a reflexive Banach space, B : X → X∗ a linear,

bounded, non-negative operator (i.e. 〈Bx, x〉 ≥ 0 ∀x ∈ X), B∗ : X → X∗

its adjoint operator and the function f : X → R, f(x) = 〈Bx, x〉. Then

f ′(x) = Bx + B∗x.

Exercise 3.3. Let be X a Hilbert space, f(x) = ‖x‖ = 〈x, x〉 1

2 . Then

f ′(x) =
x

‖x‖ , x 6= 0.

Example 3.4. Let be X a reflexive Banach space, B : X → X∗ a linear,

bounded, non-negative and self-adjoint operator (B = B∗). Then f(x) = 〈Bx, x〉
is weak-lower semicontinuous.

To prove this we apply Proposition 3.3., as f is convex (cf. above). From

Exercise 3.2 above, follows that f ′(x) = Bx +B∗x = 2Bx is gradient. Now, from

Proposition 3.3 it follows that f is weak-lower semicontinuous.

Now we are going to prove some properties (monotony) of the gradient f ′.

Definition 3.7. Let X be a linear normed space. A : X → X∗ is said to be a

(i) monotone operator (mapping) if 〈Ax − Ay, x − y〉 ≥ 0 ∀x, y ∈ X,

(ii) strictly monotone if 〈Ax − Ay, x − y〉 > 0 ∀x, y ∈ X, x 6= y,

(iii) strongly monotone if 〈Ax − Ay, x − y〉 ≥ γ‖x − y‖2
X , γ > 0.

Theorem 3.6. Let be X a linear normed space, f : X → R a convex and

Gateaux-differentiable function, f ′ : X → X∗. Then the gradient f ′ is a mono-

tone operator.
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Remark: This is a generalization of the fact that for f : R → R convex and

differentiable, f ′ : R → R is monotonously increasing.

Proof. Because of Proposition 3.2, we have

〈f ′(x), y − x〉 ≤ f(y) − f(x) and 〈f ′(y), x − y〉 ≤ f(x) − f(y).

It follows 〈f ′(x), y − x〉 ≤ −(f(x) − f(y)) ≤ 〈f ′(y), y − x〉. Therefore 〈f ′(y) −
f ′(x), y − x〉 ≥ 0 ∀x, y ∈ X. Hence, f ′ is monotone. �

The reverse assertion stands, too.

Theorem 3.7. Let be X a linear normed space, f : X → R Gateaux-

differentiable and f ′ : X → X∗ monotone. Then f is convex.

In order to prove the assertion, we need the following intermediate result.

Lemma 3.2. (Lagrange formula, mean value theorem) Let X be a

linear normed space and f : X → R have a gradient (Gateaux derivative) at each

point x ∈ X: f ′ : X → X∗. Then for x, y ∈ X there exists a δ ∈ (0, 1) such that

f(x + y) − f(x) = 〈f ′(x + δy), y〉.

Proof. Define ϕ : R → R, ϕ(t) := f(x + ty). Then

ϕ′(t) =
d

dt
f(x + ty) = lim

τ→0

f(x + ty + τy) − f(x + ty)

τ
= 〈f ′(x + ty), y〉.

Applying the mean value theorem for function ϕ, we get a δ ∈ (0, 1) such that

f(x + y) − f(x) = ϕ(1) − ϕ(0) = ϕ′(δ) = 〈f ′(x + δy), y〉.�

Remark: When X = R, the mean value theorem says

f(x + y) − f(x) = f ′(x + δy)y,

where x + δy is a point between x and y.
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Proof of Theorem 3.7. Let be given any x, y ∈ X. We verify Jensen’s

inequality. First set

d := λf(x) + (1 − λ)f(y) − f(λx + (1 − λ)y).

We want to show that d ≥ 0. We have

d = λ[f(x) − f(λx + (1 − λ)y)] + (1 − λ)[f(y) − f(λx + (1 − λ)y)]. (3. 1)

There is x = [λx + (1− λ)y] + (1− λ)(x− y), as well as y = [λx + (1− λ)y] +

λ(y − x). Using Lemma 3.2, we obtain

d = λ[f(λx + (1 − λ)y + (1 − λ)(x − y)) − f(λx + (1 − λ)y)]

+ (1 − λ)[f(λx + (1 − λ)y + λ(y − x))] − f(λx + (1 − λ)y)

= λ〈f ′(λx + (1 − λ)y + δ1(1 − λ)(x − y)), (1 − λ)(x − y)〉
+ (1 − λ)〈f ′(λx + (1 − λ)y + δ2λ(y − x)), λ(y − x)〉,

where 0 < δ1, δ2 < 1. Denote V := λx + (1 − λ)y + δ1(1 − λ)(x − y) and

W := λx + (1 − λ)y + δ2λ(y − x). It follows

V − W = δ1(1 − λ)(x − y) − δ2λ(y − x) = (δ1(1 − λ) + δ2λ)(x − y).

To ease the calculations we introduce another variable, µ := δ1(1 − λ) + δ2λ and

d can be written as

d = λ(1−λ)[〈f ′(V ), x−y〉−〈f ′(W ), x−y〉 =
λ(1 − λ)

µ
〈f ′(V )−f ′(W ), V −W 〉 ≥ 0,

since f is monotone. �

We come back to weak-lower semi-continuity.

Theorem 3.8. Let be X a linear normed space, f : X → R. Then the

following assertions are equivalent to each other

(i) f is weak-lower semicontinuous.

(ii) Ek = {x ∈ X : f(x) ≤ k} is weakly (sequentially) closed for each k ∈ R.
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(iii) epi f is weakly (sequentially) closed.

Proof. We omit the proof here because is a slightly modified version of the

proof of Theorem 3.1. It can remain as an exercise. �

Remark: Comparing Theorem 3.1 to the last one, it is not difficult to notice

that that was the analogous assertion for lower semicontinuous functions.
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4 Subdifferential

For convex Gateaux-differentiable functions, due to Proposition 3.2, one has

f(y) − f(x) ≥ 〈f ′(x), y − x〉 ∀x, y ∈ X.

But this can be generalized by the so-called subdifferential (subgradient).

Definition 4.1. Let X be a linear normed space, f a proper function on X

(i.e. dom f 6= ∅, f > −∞) . Then x∗ ∈ X∗ is said to be subgradient of f at

x ∈ dom f if

f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X.

The set of all subgradients of f at x is called subdifferential and is denoted by

∂f(x),

∂f(x) := {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}.

The function f is called subdifferentiable at x if ∂f(x) 6= ∅.

Remark: Here f does not need to be convex.

Geometrical interpretation. (cf. Figure 4.1)

Figure 4.1
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f(x)+〈x∗, y−x〉 is supporting f (and epi f) at (x, f(x)). Thus the subdifferential

generalizes the classical concept of derivative.

Example 4.1. Let X be a Banach space equipped with the norm ‖ · ‖ and

f : X → R+, f(x) = ‖x‖. Then

∂f(x) =

{
{x∗ ∈ X∗ : ‖x∗‖X∗ ≤ 1}, if x = 0,

{x∗ ∈ X∗ : ‖x∗‖X∗ = 1, 〈x∗, x〉 = ‖x‖}, if x 6= 0.

To prove this we slit into two cases. Let us consider first that x = 0. Then

x∗ ∈ ∂f(0) if and only if

‖y‖ − ‖0‖ ≥ 〈x∗, y − 0〉 ∀y ∈ X,

that is equivalent to ‖y‖ ≥ 〈x∗, y〉. Further

‖y∗‖X∗ := sup
y 6=0

〈x∗, y〉
‖y‖ ≤ 1.

Take now x 6= 0. Let be x∗ ∈ X∗ such that

〈x∗, x〉 = ‖x‖X and 1 = ‖x∗‖x∗ := sup
y 6=0

〈x∗, y〉
y‖X

.

It follows 〈x∗,y〉
‖y‖X

≤ 1 ∀y ∈ X, i.e. 〈x∗, y〉 ≤ ‖y‖X∀y ∈ X. Consequently

‖y‖X − ‖x‖X ≥ 〈x∗, y〉 − 〈x∗, x〉 = 〈x∗, y − x〉 ∀y ∈ X,

i.e. x∗ ∈ ∂f(x).

Conversely, for an x∗ in ∂f(x) we have

−‖x‖X = ‖0‖X − ‖x‖X ≥ 〈x∗, 0 − x〉 = −〈x∗, x〉,

so 〈x∗, x〉 ≥ ‖x‖. But on the other hand we have

‖x‖X = ‖2x‖X − ‖x‖X ≥ 〈x∗, 2x − x〉 = 〈x∗, x〉,

followed by ‖x‖X = 〈x∗, x〉. For some y ∈ X and λ > 0 it holds

lay + x‖X − ‖x‖X ≥ 〈x∗, λy,
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i.e. ∥∥∥y +
x

λ

∥∥∥
X
− 1

λ
‖x‖X ≥ 〈x∗, y〉 ∀y ∈ X.

Setting λ to tend towards +∞ we get for all y ∈ X ‖y‖ ≥ 〈x∗, y〉, i.e. ‖x∗‖X∗ ≤ 1.

According to a result obtained above the last expression turns into equality.

Especially for X = R it holds ‖x‖ = |x| and, as the scalar product in R is

the usual product and the dual of R is also R, we can distinguish three cases (see

also Figure 4.2)

Figure 4.2

1. When x = 0, we have f(y)−f(0) ≥ 〈x∗, y−0〉 ⇒ |y|−0 ≥ x∗y ⇒ x∗y ≤
|y| ⇒ −1 ≤ x∗ ≤ 1 ⇒ |x∗| ≤ 1 ⇒ ‖x∗‖ ≤ 1.

2. When x < 0, we have f(y) − f(x) = |y| − |x| ≥ (−1)(y − x) = x − y ⇒
x∗ = −1 is subgradient. Moreover 〈x∗, x〉 = (−1)x = |x| = ‖x‖ and

‖x∗‖X∗ = | − 1| = 1.

3. The case x > 0 gives analogously x∗ = 1 as subgradient.

Example 4.2. Let be X a reflexive Banach space, B : X → X∗ a linear,

bounded, non-negative, self-adjoint operator. Let be f(x) = 〈Bx, x〉 = xT Bx, x ∈
X = R

n. In the first chapter, we have shown that f is convex. Now, taking in

consideration the previous result

f(y) − f(x) ≥ 〈2Bx, y − x〉 ∀y ∈ X,

it follows that 2Bx ∈ ∂f(x).
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Theorem 4.1. Let X be a real linear normed space and f : X → R a proper

functional having at each point of X a subgradient (f subdifferentiable on X).

Then f is convex and weak-lower semicontinuous (over the whole X).

Proof. Let x ∈ X and x∗ ∈ ∂f(x). Then for x1 and x2 ∈ X we have

f(x1) ≥ f(x) + 〈x∗, x1 − x〉

and

f(x2) ≥ f(x) + 〈x∗, x2 − x〉.

After multiplying the first expression by λ ∈ (0, 1) and the second by (1−λ), we

sum up the two resulting relations. Hence

λf(x1) + (1 − λ)f(x2) ≥ f(x) + 〈x∗, λx1 + (1 − λ)x2 − x〉.

Setting x = λx1 + (1 − λ)x2 − x, we obtain

λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2 − x),

so f is a convex function.

To prove that f is also weak-lower semicontinuous, consider a weakly conver-

gent sequence xn ⇀ x and x∗ ∈ ∂f(x). Then f(xn) ≥ f(x) + 〈x∗, xn − x〉 and

consequently

lim
n→∞

f(xn) ≥ f(x) + lim
n→∞

〈x∗, xn − x〉.

Hence f is weak-lower semicontinuous. �

Now we will give a generalization to Theorem 3.6 (monotony of the gradient).

Theorem 4.2. Let X be a linear normed space and f : X → R a proper

function having at each x ∈ X the subgradient x∗ = Ax ∈ X∗ (A is in general a

nonlinear operator). Then A : X → X∗ is a monotone operator.

Remark: Because of Theorem 4.1 f is convex.
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Proof. We have

f(y) − f(x) ≥ 〈Ax, y − x〉 ∀x, y ∈ X

and

f(x) − f(y) ≥ 〈Ay, x − y〉 ∀x, y ∈ X.

By summing these two inequalities, we obtain

0 ≥ 〈Ax − Ay, y − x〉 ∀x, y ∈ X,

equivalent to

〈Ay − Ax, y − x〉 ≥ 0 ∀x, y ∈ X,

therefore A is monotone. �

Theorem 4.3. Let X be a linear normed space, A : X → X∗ a monotone

operator and Ax the gradient of the proper function f : X → R. Then Ax ∈ X ∗

is a subgradient of f at x and ∂f(x) = {Ax}.

Proof. Because of Theorem 3.7, it follows that f is convex. So when x is any

fixed element of X we have for all λ ∈ (0, 1) and all y ∈ X

f(x + λ(y − x)) ≤ λf(y) + (1 − λ)f(x) = f(x) + λ(f(y) − f(x)).

Hence
f(x + λ(y − x)) − f(x)

λ
≤ f(y) − f(x).

For λ → 0 follows

〈f ′(x), y − x〉 = 〈Ax, y − x〉 ≤ f(y) − f(x),

therefore Ax ∈ ∂f(x).

Let us consider a subgradient x∗ ∈ ∂f(x). It follows

f(x + λy) − f(x) ≥ 〈x∗, x + λy − x〉 = λ〈x∗, y〉.

Dividing by λ and letting λ → 0, we get 〈f ′(x), y〉 ≥ 〈x∗, y〉 ∀y ∈ X, i.e.

〈f ′(x) − x∗, y〉 ≥ 0 ∀y ∈ X, hence x∗ = f ′(x) = Ax. �
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Theorem 4.4. Let X be a linear normed space and f : X → R a convex

function finite and continuous at x0 ∈ X. Then ∂f(x0) 6= ∅, i.e. f is subdiffer-

entiable at x0.

Remarks:

(i) This a central (main) theorem in Convex Analysis and Optimization, with

various applications.

(ii) With our former result (Proposition 2.1), we have ∂f(x) 6= 0 for all x ∈
int(dom f), if f is bounded above in a neighborhood of x.

Proof. We divide the proof into five steps because of its complexity.

(i) From f convex and continuous at x0 follows that int(epi f) 6= ∅, because

there exists an open neighborhood U(x0) of x0 to any given ε > 0 such that

|f(x) − f(x0)| < ε ∀x ∈ U(x0). Then the set

D := {(x, α) ∈ X × R : α > f(x0) + ε, x ∈ U(x0)}

is open and

D ⊂ epi f ⇒ int(epi f) 6= ∅.

Especially, there is x0 ∈ int(dom f).

(ii) Further, (x0, f(x0)) ∈ ∂ epi f (by the definition of epi f).

(iii) The next step is to use a Separation Theorem, whose proof is available

in the literature ([3]).

Theorem 4.5. Let be X a linear normed space and V and W convex

sets such that int V 6= ∅ and (int V ) ∩ W = ∅. Then there exists x∗ ∈
X∗ (x∗ 6= 0) separating V and W , i.e. there exists a c ∈ R : 〈x∗, y〉 ≤ c ≤
〈x∗, x〉 ∀x ∈ V ∀y ∈ W (so-called weak separation).

To apply this Separation Theorem, we set V = epi f , that is a convex set, so

int V = int(epi f) 6= ∅ (cf. above), W = (x0, f(x0)) and X is replaced by
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X ×R. Follows the existence of a functional (x∗, α∗) ∈ (X ×R)∗ = X∗ ×R

such that ∀(x, α) ∈ epi f we have

〈(x∗, α∗), (x0, f(x0))〉 = 〈x∗, x0〉 + α∗f(x0) ≤ 〈x∗, x〉 + α∗α. (4. 1)

(iv) Now we conclude that α∗ > 0. It is true because α∗ = 0 means 〈x∗, x0〉 ≤
〈x∗, x〉 ∀x ∈ epi f , i.e x∗ separates x0 and dom f , which is a contradiction

since x0 ∈ int(dom(f)). For α∗ ≤ 0 similar calculations guide us to another

contradiction. By (4.1) follows

〈x∗, x − x0〉 ≥ α∗(f(x0) − α) ∀(x, α) ∈ epi f. (4. 2)

Consider a neighborhood U(x0) of x0 where for given ε > 0 holds |f(x) −
f(x0)| < ε, so in particular also f(x) < f(x0) + ε. Choose α such that

α > f(x0) + ε > f(x) ∀x ∈ U(x0). So (x, α) ∈ epi f ∀x ∈ U(x0) (cf. Figure

4.3).

Figure 4.3

Inserting this α (or any α ≥ α) into (4.2) leads to f(x0) − α < 0. For the

supposed α∗ < 0 results α∗(f(x0) − α) > 0, i.e. (cf. (4.2)) 〈x∗, x − x0〉 >

0 ∀x ∈ U(x0). But this is a contradiction (e.g. set x = x0).
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(v) We divide in (4.1) by α∗(> 0) and set α = f(x) (since (x, f(x)) ∈ epi f).

It follows
〈

x∗

α∗
, x0

〉
+ f(x0) ≤

〈
x∗

α∗
, x

〉
+ f(x) ∀x ∈ dom f.

Hence, 〈
−x∗

α∗
, x − x0

〉
≤ f(x) − f(x0) ∀x ∈ X.

For x /∈ dom f this is trivially fulfilled, because f(x) = +∞ there. The last

inequality means actually that − x∗

α∗
∈ ∂f(x0), so f is subdifferentiable at

x0. �

Now, we present some important properties of the subgradient (subdifferen-

tial), partially without proof.

Theorem 4.6. Let X be a linear normed space and f : X → R a subdiffer-

entiable function. Then ∂f(x) is convex and weak (sequentially) closed.

Proof.

(i) Let be x∗
1, x

∗
2 ∈ ∂f(x) and λ ∈ (0, 1). It follows

λf(y) − λf(x) ≥ 〈λx∗
1, y − x〉 ∀y ∈ X

and

(1 − λ)f(y) − (1 − λ)f(x) ≥ 〈(1 − λ)x∗
2, y − x〉 ∀y ∈ X.

By summing up these two inequalities, we obtain

f(y) − f(x) ≥ 〈λx∗
1 + (1 − λ)x∗

2, y − x〉 ∀y ∈ X,

i.e. λx∗
1 + (1 − λ)x∗

2 ∈ ∂f(x), so ∂f(x) is a convex set.

(ii) Let {x∗
n} ∈ ∂f(x) be a sequence with the property that x∗

n ⇀ x∗. It follows

f(y) − f(x) ≥ 〈x∗
n, y − x〉 ∀y ∈ X.

Taking n → ∞ we have

f(y) − f(x) ≥ lim
n→∞

〈x∗
n, y − x〉 = 〈x∗, y − x〉 ∀y ∈ X.

So x∗ ∈ ∂f(x), i.e. the set ∂f(x) is weak (sequentially) closed. �
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What about the usual well-known rules for differentiation for (classical) dif-

ferentiable functions? These rules may be generalized to subdifferentials (sub-

gradients), partially with some modifications and additional assumptions. This

is called the subdifferential calculus.

For example, let be f : X → R and λ > 0. Then we have (obviously, by the

definition of the subdifferential)

∂(λf)(x) = λ∂f(x).

By the definition of the subgradient also immediately follows

∂(f1 + f2)(x) ≥ ∂f1(x) + ∂f2(x).

Proof. Let be x∗
1 ∈ ∂f1(x) and x∗

2 ∈ ∂f2(x). By the definition of subgradient,

follows

f1(y) − f1(x) ≥ 〈x∗
1, y − x〉 ∀y ∈ X

and

f2(y) − f2(x) ≥ 〈x∗
2, y − x〉 ∀y ∈ X.

By summing this two inequalities, one gets

(f1 + f2)(y) − (f1 + f2)(x) ≥ 〈x∗
1 + x∗

2, y − x〉 ∀y ∈ X,

so x∗
1 + x∗

2 ∈ ∂(f1 + f2)(x). �

The following question arises, as a generalization of the same rule of the

classical differential calculus: When does equality ∂(f1+f2)(x) = ∂f1(x)+∂f2(x)

hold?

We use the algebraic sum of sets

A,B ⊂ X : A + B = {a + b : a ∈ A, b ∈ B}

and A + ∅ = A.

Theorem 4.7. (Moreau, Rockafellar) The sum rule

∂(f1 + . . . + fn)(x) = ∂f1(x) + . . . + ∂fn(x), n ≥ 2
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holds for all x ∈ X (where X is a normed space or, more general, real locally

convex space) (cf. [4], p. 389), when the following assumptions are fulfilled

simultaneously

(i) f1, . . . , fn : X → R are proper and convex functions.

(ii) There exists an x0 ∈ X such that all fi(x0), i = 1, . . . , n, are finite and

all fi’s, except at most one fj, j ∈ {1, . . . , n} are continuous at x0 (in

particular x0 ∈
n⋂

i=1

dom fi).

The proof is available in [4], so we omit it here.

Remark: The main idea and part of the proof consists in the usage of the

Separation Theorem 4.5 again!

49



5 Conjugate Functionals

Conjugate functionals play an important role in Convex Analysis, in par-

ticular in the duality theory. They have useful and interesting properties and

important connections to subdifferentials.

Let X be a linear normed space and X∗ its topological dual space.

Definition 5.1. Consider the function f : X → R. The function f ∗ : X∗ →
R

f ∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)}

is called conjugate functional to f (sometimes also denoted as polar func-

tional).

Geometrical interpretation. (cf. Figure 5.1)

Figure 5.1

According to the definition we have

inf
x∈X

{f(x) − 〈x∗, x〉} = − sup
x∈X

{〈x∗, x〉 − f(x)} = −f ∗(x∗).

There is also another geometrical interpretation. Consider affine func-

tions less than f(x) (affine minorants) 〈x∗, x〉 − α ≤ f(x) ∀x ∈ X. This is
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equivalent to

〈x∗, x〉 − f(x) ≤ −α ∀x ∈ X.

The smallest such α exists for sup
x∈X

{〈x∗, x〉−f(x)} which is f ∗(x∗) and this holds

for the greatest −α which defines by 〈x∗, x〉 − α the greatest affine function

less than f .

Examples 5.1.

(i) Let f(x) = x2, x ∈ R. Its conjugate function is f ∗(x∗) = sup
x∈R

{x∗x − x2}.
To determine a simplified formula to it, denote h(x) = x∗x − x2, that is

a derivable function. Then h′(x) = x∗ − 2x = 0 implies x = 1
2
x∗. The

second derivative is h′′(x) = −2 < 0 ∀x ∈ R, therefore the function h has

a maximum (global, since lim
x→±∞

h(x) = −∞) point at x = 1
2
x∗. It follows

that f ∗(x∗) = max
x∈R

h(x) = h(1
2
x∗) = x∗ 1

2
x∗ − (1

2
x∗)2 = 1

4
x∗2. Moreover, for

f(x) = 1
2
x2, we have f ∗(x∗) = 1

2
x∗2 hence f ∗ ≡ f , as functions defined on

R.

(ii) Let f(x) = ex, x ∈ R. Then f ∗(x∗) = sup
x∈R

{x∗x − ex}. Again we denote

the function used to compute the conjugate function by h(x) = x∗x − ex,

a derivable function. Consequently, h′(x) = x∗ − ex = 0 yields x∗ > 0 and

x = ln x∗. Since h′′(x) = −ex < 0 ∀x ∈ R, h has a maximum (global, since

lim
x→±∞

h(x) = −∞) at x = ln x∗. Hence

f ∗(x∗) =





x∗(ln x∗ − 1), if x∗ > 0,

0, if x∗ = 0,

∞, if x∗ < 0.

(iii) Let f(x) =





x(ln x − 1), if x > 0,

0, if x = 0,

+∞, if x < 0.

Then f ∗(x∗) = sup
x>0

{x∗x − x(ln x − 1)}. Let us introduce the function h

defined by h(x) = x∗x− f(x) for x > 0, h(0) = 0 and h(x) = −∞ if x < 0.

It is derivable on (0, +∞). For x > 0 we have h′(x) = x∗− (ln x−1)−x 1
x

=
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x∗ − ln x = 0 that implies x = ex∗. Because h′′(ex∗) = − 1
ex∗

< 0 it follows

that ex∗ is a point where h attains its maximum over (0, +∞). But this is

a global maximum, because

lim
x→0+

h(x) = lim
x→0+

x(x∗ − (ln x − 1)) = lim
x→0+

x∗ − ln x + 1
1
x

= lim
x→0+

− 1
x

− 1
x2

= 0 = h(0)

and lim
x→∞

h(x) = −∞ = h(x) ∀x < 0 ∀x∗ ∈ R. It follows f ∗(x∗) =

x∗ex∗ − ex∗(ln ex∗ − 1) = ex∗ ∀x∗ ∈ R.

Remark: From (ii) and (iii) follows for f(x) = ex, f ∗∗(x) = (f ∗)∗(x) =

f(x) (i.e. f ∗∗ ≡ f).

Later we will see that this property (f ∗∗ ≡ f) is fulfilled for each weak-lower

semicontinuous and proper function on X.

(iv) Let us consider an affine function on R f(x) = mx + n. Then f ∗(x∗) = sup
x∈R

{x∗x −(mx + n)}. As before, denote h(x) = x∗x − (mx + n). Because it

is a derivable function, we can proceed to determine its maximum point by

the well-known method.

Figure 5.2
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Therefore h′(x) = x∗ − m = 0 implies x∗ = m, so f ∗(m) = −n. Consider

x∗ 6= m. If x∗ > m then h(x) tends to +∞ when x → +∞, while for

x∗ < m one has h(x) → +∞ when x → −∞.

Hence (see also Figure 5.2)

f ∗(x∗) =

{
−n, if x∗ = m,

+∞, otherwise .

(v) Let F : R → R, f(x) =

{
−n, if x = m,

+∞, otherwise.

It follows f ∗(x∗) = sup
x∈R

{x∗x − f(x)} = x∗m + n, hence f ∗∗ ≡ f .

(vi) Let f(x) = 1
3
x3, x ∈ R. This is a non-convex function. Then f ∗(x∗) =

sup
x∈R

{
x∗x − 1

3
x3
}

. Denote h(x) = x∗x − 1
3
x3, that is derivable. Further

h′(x) = x∗ − x2 = 0 implies x =
√

x∗ for x∗ ≥ 0 supposed. Regarding the

second derivative one has h′′(x) = −2x = −2
√

x∗ < 0 if x∗ > 0. Thus

x =
√

x∗, where x∗ ≥ 0 is a maximum point, but it is only local, because

lim
x→−∞

h(x) = lim
x→−∞

x(x∗− 1
3
x2) = ∞ ∀x∗ ∈ R hence f ∗(x∗) ≡ +∞ ∀x∗ ∈ R,

i.e. f ∗ is not a proper function.

(vii) If f(x) = 1
3
|x|3 (a convex and weak-lower semicontinuous function), then

f ∗∗ ≡ f . Moreover, f ∗(x∗) = 2
3
‖x∗‖ 3

2 .

(viii) More general: let be f(x) = 1
p
|x|p, p > 1. Then (cf [3]) f ∗(x∗) = 1

q
|x∗|q, 1 <

q < +∞, 1
p

+ 1
q

= 1.

(ix) Let be A a convex set and consider its indicator function,

χA =

{
0, x ∈ A,

+∞, otherwise.

The conjugate function to χA is

χ∗
A(x∗) = sup

x∈X
{〈x∗, x〉 − χA(x)} = sup

x∈A
〈x∗, x〉 = SA(x∗),

and this is actually the support functional of A (cf. Chapter 1).
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(x) Let (X, ‖ · ‖) be a normed space and f(x) = ‖x‖, x ∈ X. To calculate the

conjugate function to f ,

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − ‖x‖},

two cases are distinguished during calculations

(a) If ‖x‖ ≤ 1, then 〈x∗, x〉 ≤ ‖x∗‖‖x‖ ≤ ‖x‖ ∀x ∈ X. Therefore 〈x∗, x〉−
‖x‖ ≤ 0, equality being attained for example at x = 0. Hence f ∗(x∗) =

0 when ‖x‖ ≤ 1.

(b) If ‖x‖ > 1, then

‖x∗‖X∗ := sup
x6=0,x∈X

{〈x∗, x〉
‖x‖

}
> 1,

so there is and x0 ∈ X\{0} such that 〈x∗,x0〉
‖x0‖

> 1, i.e. 〈x∗, x0〉−‖x0‖ >

0. Then

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − ‖x‖}

≥ sup
λ>0

{〈x∗, λx0〉 − ‖λx0‖}

= sup
λ>0

λ(〈x∗, x0〉 − ‖x0‖) = +∞

Therefore f ∗(x∗) =

{
0, if ‖x∗‖∗ ≤ 1,

+∞, if ‖x∗‖∗ > 1.

Hence f ∗(x∗) = χB∗(x∗) the indicator functional of the dual unit ball

B∗ in X∗, B∗ = {x∗ ∈ X∗ : ‖x∗‖∗ ≤ 1}.

(xi) Let be ϕ : R → R a proper even function, ϕ∗ its conjugate and X a normed

space. Let be f(x) = ϕ(‖x‖), x ∈ X. Then f ∗(x∗) = ϕ∗(‖x∗‖∗) because

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − ϕ(‖x‖)}

= sup
t≥0

sup
‖x‖=t

{〈x∗, x〉 − ϕ(t)}

= sup
t≥0

[
sup
‖x‖=t

{〈x∗, x〉 − ϕ(t)}
]

= sup
t≥0

{t‖x∗‖∗ − ϕ(t)}.
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Since ϕ(t) = ϕ(−t), we have

f ∗(x∗) = sup
t∈R

{t‖x∗‖∗ − ϕ(t)} = ϕ∗(‖x∗‖∗).

For example, let be ϕ(t) = 1
2
t2. Then ϕ∗(t∗) = 1

2
t∗2. Consequently,

f(x) = ϕ(‖x‖) =
1

2
‖x‖2 and f ∗(x∗) = ϕ∗(‖x∗‖2

∗).

Some Elementary Properties of Conjugate Functionals

Let X be a linear normed space and X∗ its topological dual space. The

functions that appear below are defined on X and have real values.

(1) (Young’s inequality) f(x) + f ∗(x∗) ≥ 〈x∗, x〉 ∀x ∈ X ∀x∗ ∈ X∗.

This result follows immediately from the definition of f ∗.

(2) f ∗(0) = sup
x∈X

〈0, x〉 − f(x)} = sup
x∈X

(−f(x)) = − inf
x∈X

f(x). Many applications

in optimization use the equivalent formulation inf
x∈X

f(x) = −f ∗(0).

(3) f ≤ g implies f ∗ ≥ g∗.

(4) (sup
i∈I

fi)
∗ ≤ inf

i∈I
f ∗

i , where I is any index set, because

(sup
i∈I

fi)
∗(x∗) = sup

x∈X
{〈x∗, x〉 − (sup

i∈I
fi(x)}

≤ sup
x∈X

{〈x∗, x〉 − fi(x)}

= f ∗
i (x∗) ∀i ∈ I ∀x∗ ∈ X∗.

Analogously, there holds (inf
i∈I

fi)
∗ ≥ sup

i∈I
f ∗

i .

(5) (λf)∗(x∗) = λf ∗( 1
λ
x∗) ∀λ > 0, because

(λf)∗(x∗) = sup
x∈X

{〈x∗, x〉 − (λf(x))}

= sup
x∈X

{
λ

[〈
1

λ
x∗, x

〉
− f(x)

]}
= λf ∗

(
1

λ
x∗

)
.
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(6) Consider the translation function fα(x) = f(x − α), α ∈ X, x ∈ X. One

has

(f ∗
α(x∗) = sup

x∈X
{〈x∗, x〉 − f(x − α)}

= sup
x∈X

{〈x∗, x − α〉 − f(x − α)} + 〈x∗, α〉

= f ∗(x∗) + 〈x∗, α〉.

Proposition 5.1. Let X be a linear normed space and f : X → R. Then f ∗

is convex and weak-lower semicontinuous.

Proof.

(a) Let be x∗
1, x

∗
2 ∈ X∗ and λ ∈ [0, 1]. Concerning the convexity of f ∗ we have

f ∗(λx∗
1 + (1 − λ)x∗

2 = sup
x∈X

{〈λx∗
1 + (1 − λ)x∗

2, x〉 − f(x)}

≤ λ sup
x∈X

{〈x∗
1, x〉 − f(x)} + sup

x∈X
{〈x∗

2, x〉 − f(x)}

= λf ∗(x∗
1) + (1 − λ)f ∗(x∗

2).

(b) Let be x∗
n ⇀ x∗ (in X∗). Applying Young’s inequality, we obtain

f ∗(x∗
n) ≥ 〈x∗

n, x〉 − f(x) ∀x ∈ X.

Then follows

lim
n→∞

f ∗(x∗
n) ≥ lim

n→∞
{〈x∗

n, x〉 − f(x)} = 〈x∗, x〉 − f(x) ∀x ∈ X.

Hence

lim
n→∞

f ∗(x∗
n) ≥ sup

x∈X
{〈x∗, x〉 − f(x)} = f ∗(x∗),

therefore f is weak-lower semicontinuous. �

Proposition 5.2. Let X be a linear normed space and f : X → R a proper

convex and weak-lower semicontinuous function. Then f ∗ is a proper functional.

Proof. To help the reader acquire a better understanding of the proof we

divide it into four steps. A separation theorem is also being used.
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• Because f is proper, it follows the existence of an x ∈ X such that f(x) < ∞
and so

f ∗(x∗) = sup
y∈X

{〈x∗, y〉 − f(y)} ≥ 〈x∗, x〉 − f(x) > −∞ ∀x∗ ∈ X∗.

• Since epi f is (sequentially) weakly closed, epi f is closed (cf. Theorem 3.8).

For any d > 0 and x ∈ X such that f(x) < +∞ holds (x, f(x)− d) /∈ epi f .

Now we prove a Separation Theorem, which is a conclusion of the Separation

Theorem 4.5.

Separation Theorem 5.1. Let X be a linear normed space, W ⊂ X closed

and convex and x0 /∈ W . Then there exists x∗ ∈ X∗, x∗ 6= 0, strictly separat-

ing W and x0, i.e. there is a c ∈ R such that 〈x∗, x〉 < c ∀x ∈ W and 〈x∗, x0〉 > c.

Proof. Since W is closed and x0 is not in W , it follows that there exists an

open convex neighborhood of x0 V = U(x0) such that W ∩ V = W ∩ int V = ∅.
Thus we can use the Separation Theorem 4.5. It follows that there exist x∗ ∈ X∗,

x∗ 6= 0 and d ∈ R such that V and W are weakly separated, i.e. (see also Figure

5.3) 〈x∗, x〉 ≤ d ≤ 〈x∗, y〉 ∀x ∈ W ∀y ∈ U(x0) = V .

Figure 5.3
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This supporting hyperplane may be translated a little bit in the direction of x0

(because separates U(x0)) such that strict separation holds

∃c ∈ R : 〈x∗, x〉 < c < 〈x∗, x0〉 ∀x ∈ W.�

Now we continue with the proof of Proposition 5.2.

• Applying Separation Theorem 5.1 to W = epi f (epi f is a closed convex

set), x0 = (x, f(x) − d) /∈ W and X replaced by X × R, we obtain some

x∗ ∈ X∗ and α ∈ R such that

〈(x∗, α∗), (x, f(x) − d)〉 = 〈x∗, x〉 + α∗(f(x) − d)

> 〈(x∗, α∗), (y, α)〉
= 〈x∗, y〉 + α∗α ∀(y, α) ∈ epi f. (5. 1)

We want to divide by −α∗.

• We show that α∗ < 0.

To the contrary, let be α∗ > 0. It follows that the right-hand side of the

above relation tends to +∞ (with α → ∞) and this is a contradiction to

the same relation.

For α∗ = 0 holds 〈x∗, x〉 > 〈x∗, y〉 ∀y ∈ dom f . Since x ∈ dom f this is a

contradiction, too.

• Setting x∗
1 := − x∗

α∗
and α := f(y) for y ∈ dom f((y, α) ∈ epi f), (5.1)

leads to 〈x∗
1, x〉 − f(x) + d > 〈x∗

1, y〉 − f(y) ∀y ∈ dom f and even y ∈ X,

since f(y) = +∞ if y /∈ dom f . Therefore +∞ > 〈x∗
1, x〉 − f(x) + d ≥

sup
y∈X

{〈x∗
1, y〉 − f(y)} = f ∗(x∗

1), i.e. f is proper. �

There is possible to introduce also the so-called biconjugate of a function

(functional) f .

Definition 5.2. Let f ∗ : X∗ → R be the conjugate function to f : X → R,

with X a linear normed space and X∗ its dual. Then the function

f ∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f ∗(x∗)}
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is called the biconjugate function to f .

Remark: From Young’s inequality it follows

f ∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f ∗(x∗)} ≤ sup
x∗∈X∗

{〈x∗, x〉 − 〈x∗, x〉 + f(x)} = f(x),

therefore f ∗∗(x) ≤ f(x) always stands.

The following statement gives an answer to the natural question regarding

the equality case between f and f ∗∗.

Theorem 5.2. Let f : X → R be a proper function and X a linear normed

space. Then f is convex and weak-lower semicontinuous if and only if f ∗∗ ≡ f

(i.e. f ∗∗(x) = f(x) ∀x ∈ X).

Proof. Necessity. Let the proper functional f be convex and weak-lower

semicontinuous. Then f ∗∗(x) ≤ f(x) ∀x ∈ X (cf. remark above).

We show the reverse inequality f ∗∗(x) ≥ f(x) ∀x ∈ X. Let be x /∈ dom f ∗∗,

i.e. f ∗∗(x) = ∞. Because of Proposition 5.1 f ∗ is convex and weak-lower semi-

continuous and so f ∗∗ enjoys the same properties, too. Because of Proposition

5.2 f ∗ is a proper function and again from Proposition 5.2 (replacing f by f ∗

and f ∗ by f ∗∗) follows that f ∗∗ is proper. Consequently f ∗∗(x) > −∞ ∀x ∈ X.

Therefore for x /∈ dom f ∗∗, ∞ = f ∗∗ ≥ f(x) is fulfilled.

Now, let be x ∈ dom f ∗∗ and suppose f(x) > f ∗∗(x). Let us introduce also

d := 1
2
(f(x) − f ∗∗(x)) > 0. We apply the considerations from the proof of

Proposition 5.2, i.e. we use the Separation Theorem 5.1 to separate W = epi f

(closed and convex set) and (x, f(x)−d) /∈ W . Then there exists x∗
1 ∈ X∗, x∗

1 6= 0,

such that

〈x∗
1, x〉 − f(x) +

1

2
(f(x) − f ∗∗(x)) ≥ f ∗(x∗

1)

and therefore

〈x∗
1, x〉 −

1

2
f(x) − 1

2
f ∗∗(x) ≥ f ∗(x∗

1) ≥ 〈x∗
1, x〉 − f ∗(x1).

So f ∗∗(x) ≥ f(x). But this contradicts our assumption ⇒ f ∗∗ ≡ f .

Sufficiency. Now consider f ∗∗ ≡ f and f proper. Then f ∗∗, as the conjugate of
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f ∗, is convex and weak-lower semicontinuous (cf. Proposition 5.1) and therefore

f is convex and weak-lower semicontinuous, too. �

Remark: It is not necessary for the function f to be proper in order to prove

the sufficiency in Theorem 5.2.

Conclusion 5.1. For any function f there is f ∗∗∗ ≡ f ∗. (If f ∗ is proper,

then the assertion is straightforward, but if this is not the case the assertion is

not trivial).

Proof. Because of Proposition 5.1, f ∗ is convex and weak-lower semicontin-

uous. Using Theorem 5.2 with f replaced by f ∗, we see that f ∗∗∗ ≡ f ∗, if f ∗ is

proper. When f ∗ is not proper, we have to consider two cases.

(i) If there is an x∗
0 such that f ∗(x∗

0) = −∞ one has

f ∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f ∗(x∗)} = ∞ ∀x ∈ X.

Moreover

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)} ≥ −∞ = f ∗(x∗
0) = sup{〈x∗

0, x〉 − f(x)}

and so f(x) = ∞ ∀x ∈ X. Therefore f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)}
∀x∗ ∈ X∗, i.e. f ∗ ≡ −∞.

Finally, f ∗∗∗(x∗) = sup
x∈X

{〈x∗, x〉 − f ∗∗(x)} = −∞ ∀x∗ ∈ X∗ leading to

f ∗∗∗(x∗) = f ∗(x∗) = −∞ ∀x∗ ∈ X∗.

(ii) Suppose that there is no x∗
0 such that f ∗(x∗

0) = −∞ (otherwise f ∗ would

be proper). It follows

f ∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f ∗(x∗)} = −∞ ∀x ∈ X.

Further we have

f ∗∗∗(x∗) = sup
x∈X

{〈x∗, x〉 − f ∗∗(x)} = +∞ ∀x∗ ∈ X∗

therefore

f ∗∗∗ ≡ f ∗ ≡ +∞.�
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Now we are going to derive assertions concerning the connections between

conjugate functionals and subdifferentials.

Theorem 5.3. Let X be a linear normed space, the function f : X → R

and its conjugate f ∗ : X∗ → R. Then for all x ∈ X, x∗ ∈ ∂f(x) if and only if

f(x) + f ∗(x∗) = 〈x∗, x〉.

Remark: In general Young’s inequality asserts

f(x) + f ∗(x∗) ≥ 〈x∗, x〉.

Therefore, it is fulfilled here as equality.

Proof. Necessity. Let be x∗ ∈ ∂f(x). Then we have

f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X,

i.e.

〈x∗, x〉 − f(x) ≥ 〈x∗, y〉 − f(y) ∀y ∈ X,

that implies

〈x∗, x〉 − f(x) ≥ sup
y∈X

{〈x∗, y〉 − f(y)} = f ∗(x∗).

On the other hand, because of Young’s inequality, we have 〈x∗, x〉 − f(x) ≤
f ∗(x∗), therefore one can conclude

f(x) + f ∗(x∗) = 〈x∗, x〉.

Sufficiency. Assume that for an x ∈ X and x∗ ∈ X∗ we have f(x)+f ∗(x∗) = 〈x∗,

x〉. Then

〈x∗, x〉 − f(x) = f ∗(x∗) = sup
y∈X

{〈x∗, y〉 − f(y)} ≥ 〈x∗, y〉 − f(y) ∀y ∈ X.

Hence

f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X,

i.e. x∗ ∈ ∂f(x). �
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Conclusion 5.2. From Theorem 5.3 immediately follows

∂f(x) = {x∗ ∈ X∗ : f(x) + f ∗(x∗) ≤ 〈x∗, x〉}.

This means f(x) + f ∗(x∗) = 〈x∗, x〉, since f(x) + f ∗(x∗) ≥ 〈x∗, x〉 is true in any

case.

Theorem 5.4. Let be X a linear normed space.

(a) Let be f : X → R a proper functional. If x∗ ∈ ∂f(x), then x ∈ ∂f ∗(x∗).

(b) Let be f : X → R a proper, convex and weak-lower semicontinuous function.

Then x∗ ∈ ∂f(x) if and only if x ∈ ∂f ∗(x∗).

Proof.

(a) Let be x∗ ∈ ∂f(x). For any y∗ ∈ X∗ by Young’s inequality follows

f ∗(y∗) = sup
y∈X

{〈y∗, y〉 − f(y)}) ≥ 〈y∗, x〉 − f(x).

Theorem 5.3 yields f(x) = 〈x∗, x〉−f ∗(x∗), therefore f ∗(y∗) ≥ 〈y∗−x∗, x〉+
f ∗(x∗), i.e. x ∈ ∂f ∗(x∗).

(b) Let f be proper, convex and weak-lower semicontinuous. Because of (a) it

remains to point out that from x ∈ ∂f ∗(x∗) follows x∗ ∈ ∂f(x). Therefore,

let be x ∈ ∂f ∗(x∗). Theorem 5.2 implies f ∗∗ ≡ f . Applying assertion (a)

in this theorem to f ∗ instead of f yields that from x ∈ ∂f ∗(x∗) follows

x∗ ∈ ∂f ∗∗(x) = ∂f(x). �

Theorem 5.5. Let X be a linear normed space and f : x → R a function. If

∂f(x0) 6= ∅, then f(x0) = f ∗∗(x0) (i.e. f is subdifferentiable at x0).

Proof. From a previous remark, we know that f ∗∗(x0) ≤ f(x0). Therefore it

is enough to show f ∗∗(x0) ≥ f(x0). By assumption there exists an x∗
0 ∈ ∂f(x0).

With Theorem 5.3 we conclude f(x0) + f ∗(x∗
0) = 〈x∗

0, x0〉. Hence

f ∗∗(x0) = sup
x∗∈X∗

{〈x∗, x0〉 − f ∗(x∗)} = 〈x∗
0, x0〉 − f ∗(x∗

0) = f(x0).�
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Theorem 5.6. Let be X a linear normed space. If for x0 ∈ X applies

f(x0) = f ∗∗(x0), then ∂f(x0) = ∂f ∗∗(x0).

Proof. Let x0 ∈ ∂f(x0). Using Theorem 5.3 and Conclusion 5.1, as well as

f(x0) = f ∗∗(x0), we have

〈x∗
0, x0〉 = f(x0) + f ∗(x∗

0) = f ∗∗(x0) + f ∗∗∗(x∗
0).

Again, by Theorem 5.3 (opposite direction and f ∗∗ instead of f) follows x∗
0 ∈

∂f ∗∗(x0), implying ∂f(x0) ⊆ ∂f ∗∗(x0). Now, let x∗
0 ∈ ∂f ∗∗(x0). As above,

(Theorem 5.3, applied to f ∗∗ instead of f), follows

〈x∗
0, x0〉 = f ∗∗(x0) + f ∗∗∗(x∗

0) = f(x0) + f ∗(x∗
0).

Again, Theorem 5.3 provides x∗
0 ∈ ∂f(x0), that yields ∂f ∗∗(x0) ⊆ ∂f(x0). Fur-

ther this prompts ∂f ∗∗(x0) = ∂f(x0). �

Remark: If ∂f(x0) 6= ∅ follows f(x0) = f ∗∗(x0) and by Theorem 5.6 one gets

∂f ∗∗(x0) = ∂f(x0).
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6 Duality and Convex Analysis

6.1 Primal and Dual Optimization Problems

In this section we associate a so-called dual problem to a given convex opti-

mization problem, in this context called primal problem. For both problems

we will prove duality assertions. Conjugate functionals and subdifferen-

tials (and therefore implicitly and explicitly separation theorems) play an

important role for that together with the notion of stability.

Let us introduce first some general assumptions used within this chapter.

Let X and Y be linear normed spaces and f : X → R a proper function. We

consider an optimization problem called primal problem (P)

(P) inf
x∈X

f(x).

Definition 6.1. A function Φ : X × Y → R is said to be a perturbation

function of f if Φ(x, 0) = f(x) ∀x ∈ X.

For all y ∈ Y the problem

(Py) inf
x∈X

Φ(x, y)

is called a perturbed problem to (P). The variable y is termed the pertur-

bation variable (or parameter). For y = 0, clearly,

(P0) ∼= (P),

i.e. (P0) is nothing but (P).

Now we are going to define a dual problem (P∗) to (P). This is defined by

means of the conjugate function Φ∗ : (X × Y )∗ ∼= X∗ × Y ∗ → R,

Φ∗(x∗, y∗) = sup
x∈X,y∈Y

{〈x∗, x〉 + 〈y∗, y〉 − Φ(x, y)}.

Then we define the dual problem of (P) by

(P∗) sup
y∗∈Y ∗

{−Φ∗(0, y∗)}.

This is a dual problem with respect to the perturbation function Φ.
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Remark: We denote the infimum for problem (P) by inf(P) (analogously for

(P∗) the supremum is termed sup(P∗)).

Between (P) and (P∗) there is the relationship stated in the following asser-

tion.

Proposition 6.1. (weak duality) For problems (P) and (P ∗) we have

−∞ ≤ sup(P∗) ≤ inf(P) ≤ +∞.

Remark: Convexity for (P) is not assumed.

Proof. Let be y∗ ∈ Y ∗. It follows

Φ∗(0, y∗) = sup
x∈X,y∈Y

{〈0, x〉 + 〈y∗, y〉 − Φ(x, y)}.

Setting y = 0 we have Φ∗(0, y∗) ≥ 〈y∗, 0〉 − Φ(x, 0) ∀x ∈ X, so −Φ∗(0, y∗) ≤
Φ(x, 0) ∀x ∈ X ∀y∗ ∈ Y ∗. Thus

sup
y∗∈Y ∗

{−Φ∗(0, y∗)} ≤ inf
x∈X

Φ(x, 0) = inf(P)

hence sup(P∗) ≤ inf(P). �

Of course, (P∗) may be rewritten as infimum problem and interpreted as

primal problem. Then a dual problem (P∗∗) to it and its relationship to the

original (P) are of interest, e.g. the question: are there conditions under which

(P∗∗) may be identified with (P), i.e. (P∗∗) ∼= (P)?

Proceeding with this idea we get

(P∗) sup
y∗∈Y ∗

{−Φ∗(0, y∗)} = − inf
y∗∈Y ∗

{Φ∗(0, y∗)}.

We consider the problem

(−P∗) inf
y∗∈Y ∗

{Φ∗(0, y∗)}

and use Φ∗(x∗, y∗) as perturbation function with the perturbation variable

x∗. Following the above construction of the dual problem we obtain as dual to

(−P∗) the following problem

sup
x∈X

{−Φ∗∗(x, 0)}.
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Therefore we consider as bidual problem (P∗∗) to (P)

(P∗∗) − sup
x∈X

{−Φ∗∗(x, 0)} = inf
x∈X

Φ∗∗(x, 0).

As perturbation to (P∗∗) one can in a natural way consider the problem

(P∗∗
y ) inf

x∈X
Φ∗∗(x, y),

with the perturbation variable y ∈ Y . The corresponding dual problem reads as

(P∗∗∗) sup
y∗∈Y ∗

{−Φ∗∗∗(0, y∗)}.

But because Φ∗∗∗ ≡ Φ∗ follows (P∗∗∗) ≡ (P∗). Thus we see the following.

Remark: When the perturbation function Φ(x, y) is proper, convex and

weak-lower semicontinuous, then Φ∗∗ = Φ (cf. Theorem 5.2), therefore inf
x∈X

Φ(x, 0) = inf
x∈X

Φ∗∗ (x, 0), i.e. (P) = (P∗∗): the bidual problem coincides with the

primal problem, thus there is symmetry.

Remark: As we have remarked before, for X and Y Banach spaces and f

proper convex lower semicontinuous function, follows f weak-lower semicontinu-

ous. The reversed assertion holds in any case. If Φ(x, y) is proper, convex and

lower semicontinuous we have Φ∗∗ = Φ and (P∗∗) = (P). Of course, in this

case the original function f in (P) has to be convex (Φ(x, 0) = f(x)) and lower

semicontinuous.

6.2 Stability

We define the infimal value function

h(y) = inf(Py) = inf
x∈X

Φ(x, y).

It follows h(0) = inf(P) = inf
x∈X

Φ(x, 0) = inf
x∈X

f(x).

Proposition 6.2. Let Φ : X ×Y → R be convex. Then h : Y → R is convex.
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Proof. We show that Jensen’s inequality holds. Consider a and b such that

h(y) < a < +∞ and h(z) < b < +∞. Then there exist some points x and ξ such

that h(y) ≤ Φ(x, y) ≤ a and h(z) ≤ Φ(ξ, z) < b. Because Φ is convex, it follows

that for α ∈ (0, 1) we have

h(αy + (1 − α)z) = inf
w∈X

Φ(w, αy + (1 − α)z)

≤ Φ(αx + (1 − α)ξ, αy + (1 − α)z)

≤ αΦ(x, y) + (1 − α)Φ(ξ, z)

≤ αa + (1 − α)b.

Letting converge a towards h(y) and b to h(z) we obtain

h(αy + (1 − α)z ≤ αh(y) + (1 − α)h(z).

If h(y) = +∞ or h(z) = +∞ the proof is trivial. �

Proposition 6.3. We have h∗(y∗) = Φ∗(0, y∗) ∀y∗ ∈ Y ∗.

Proof. The following calculations go naturally

h∗(y∗) = sup
y∈Y

{〈y∗, y〉 − h(y)}

= sup
y∈Y

{〈y∗, y〉 − inf
x∈X

Φ(x, y)}

= sup
y∈Y

sup
x∈X

{〈y∗, y〉 − Φ(x, y)} = Φ∗(0, y∗).�

Lemma 6.1. Using the previous notations we have sup(P∗) = h∗∗(0).

Proof. Using the definitions we have

sup(P∗) = sup
y∗∈Y ∗

{−Φ(0, y∗)}

= sup
y∗∈Y ∗

{−h∗(y∗)}

= sup
y∗∈Y ∗

{〈0, y∗〉 − h∗(y∗)}

= h∗∗(0).�

Remark: The well-known inequality h∗∗(0) ≤ h(0) means but sup(P∗) ≤
inf(P).

67



Definition 6.2. The problem

(P) inf
x∈X

f(x)

is said to be stable if h(0) is finite and ∂h(0) 6= ∅ (subdifferentiable).

Proposition 6.4. The set of solutions to problem (P∗) is identical to ∂h∗∗(0).

Proof. Let z∗ ∈ Y ∗ be a solution to (P∗). It follows that

−Φ∗(0, z∗) ≥ −Φ∗(0, y∗) ∀y∗ ∈ Y ∗.

Because of Proposition 6.3, we have

−h∗(z∗) ≥ −h∗(y∗) ∀y∗ ∈ Y ∗

≥ sup
y∗∈Y ∗

{〈0, y∗〉 − h∗(y∗)} = h∗∗(0).

Therefore

h∗∗(0) + h∗(z∗) ≤ 0 = 〈z∗, 0〉.

On the other hand, from Young’s inequality, we have

h∗∗(0) + h∗(z∗) ≥ 〈z∗, 0〉.

Hence h∗∗(0) + h∗(z∗) = 0. Theorem 5.3 implies z∗ ∈ ∂h∗∗(0). If z∗ ∈ ∂h∗∗(0)

then all steps may be done in the reversed direction, yielding that z∗ solves (P∗).

�

Theorem 6.1. (strong duality) The problem (P) is stable if and only if

the following two conditions are simultaneously fufilled.

(i) (P∗) has a solution.

(ii) inf(P) = max(P∗) < ∞.

Remark: That means there is no duality gap. Therefore this situation is

called strong duality.
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Proof. Necessity. Let (P) be stable. This means that h(0) is finite and

∂h(0) 6= ∅. Let be z∗ ∈ ∂h(0). From Theorem 5.3 we have h(0) + h∗(z∗) =

〈z∗, 0〉 = 0, i.e. h(0) = −h∗(z∗). Therefore

h∗∗(0) = sup
y∗∈Y ∗

{−h∗(y∗)} ≥ −h∗(z∗) = h(0).

On the other hand we have h∗∗(0) ≤ h(0), so h∗∗(0) = h(0). We apply now

Theorem 5.6 and we get ∂h∗∗(0) = ∂h(0). This implies z∗ ∈ ∂h∗∗(0) and by

Proposition 6.4 we obtain that z∗ solves (P∗), i.e. (i) is true.

Moreover, Lemma 6.1 says

sup(P∗) = max(P∗) = h∗∗(0) = h(0) = inf(P) < ∞,

so also (ii) is true.

Sufficiency. Let (i) and (ii) be fulfilled and z∗ a solution of (P∗). Proposi-

tion 6.4, again, implies z∗ ∈ ∂h∗∗(0) and (ii) with Lemma 6.1 tells us h∗∗(0) =

max(P∗) = inf(P) = h(0) < ∞. Using Theorem 5.6 we obtain ∂h(0) = ∂h∗∗(0),

so z∗ ∈ ∂h(0) and thus (P) is stable. �

Remark: As one may notice within the proof

sup(P∗) = h∗∗(0) = h(0) = inf(P)

means strong duality (no duality gap). Another strong duality assertion is the

following.

Theorem 6.2. (strong duality) Let Φ : X × Y → R be proper, convex and

weak-lower semicontinuous. Then the following assertions are equivalent to each

other.

(i) Each of (P) and (P∗) admits a solution and min(P) = max(P∗) < ∞.

(ii) (P) and (P∗) are stable.

(iii) (P) is stable and has a solution.

Remarks:
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(a) For X Banach space a convex the lower semicontinuous functional f is weak-

lower semicontinuous (Satz 2.5 in [1], p. 91). The converse implication

always holds.

(b) Stability for (P∗) is defined analogously as for (P).

Proof. ”(i) ⇐⇒ (ii)” Necessity. From Theorem 6.1 (sufficiency) follows that

(P) is stable. We show the stability of (P∗).

Because Φ is proper, convex and weak-lower semicontinuous there is (P ∗∗) =

(P) since Φ∗∗ = Φ. We apply Theorem 6.1 to (P∗) instead of (P) taking into

consideration that (P∗∗) = (P). Thus we obtain as Corollary to Theorem 6.1 the

following result.

Corollary 6.1. (strong duality) Let Φ : X ×Y → R be proper, convex and

weak-lower semicontinuous. Then (P∗) is stable if and only if the following two

conditions are fulfilled concomitantly.

(i) Problem (P) has a solution.

(ii) sup(P∗) = min(P) < ∞.

From Corollary 6.1 follows by Theorem 6.2(i) that (P ∗) is stable.

Sufficiency. If (P) and (P∗) are stable, then Theorem 6.1 and Corollary 6.1

imply that (P) and (P∗) have solutions, moreover

min(P) = max(P∗) < ∞.

”(ii) ⇐⇒ (iii)” Necessity. If (P) and (P∗) are stable, then with Corollary 6.1

follows the existence of a solution to (P), i.e. (iii) is satisfied.

Sufficiency. Let (P) be stable and suppose it has a solution. From Theorem

6.1 we have min(P) = max(P∗) < ∞. Because of Corollary 6.1 we obtain that

(P∗) is stable. �

To prove the stability directly by means of the definition is not so easy in

many cases. Thus, so-called stability to more verifiable conditions are very use-

ful. We give now such a stability criterion.
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Theorem 6.3. (stability criterion) Let Φ be convex, f proper and −∞ <

inf
x∈X

f(x) < +∞. Further, let us suppose that there exists an x0 ∈ X such that the

functional Φ(x0, ·) : Y → R is finite and continuous at 0 ∈ Y . Then (P) is stable.

Proof. The function h(y) = inf(Py) is convex and finite at y = 0. Since

Φ(x0, ·) is convex and continuous at 0 ∈ Y , then there exists a neighborhood U

of 0 ∈ Y such that Φ(x0, y) ≤ c < +∞ for all y ∈ U . From here follows

h(y) = inf
x∈X

Φ(x, y) ≤ Φ(x0, y) ≤ c,

i.e. h(y) is convex and locally bounded above on a neighborhood of 0.

By Lemma 2.1 follows that h is continuous at 0 ∈ Y . Theorem 4.4 assures

∂h(0) 6= ∅, moreover h(0) is finite (by assumption) which implies that (P) is

stable by definition. �

6.3 Optimality Conditions

Theorem 6.4. (optimality conditions)

(i) Assume (P) and (P∗) have as solutions x0 and y0∗, respectively, where

strong duality is fulfilled

−∞ < f(x0) = inf(P) = sup(P∗) = −Φ∗(0, y0∗) < +∞. (6. 1)

Then the following optimality conditions hold

Φ(x0, 0) + Φ∗(0, y0∗) = 0 (6. 2)

and

(0, y0∗) ∈ ∂Φ(x0, 0). (6. 3)

(ii) Let x0 ∈ X and y0∗ ∈ Y ∗ satisfy (6.2) or (6.3). Then x0 is a solution to

(P) and y0∗ is a solution to (P∗). Moreover, (6.1) holds.

Proof.
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(i) At first we show that (6.2) and (6.3) are equivalent. From (6.1) we have

Φ(x0, 0) + Φ∗(0, y0∗) = 〈0, x0〉X + 〈y0∗, 0〉Y
= 〈(0, y0∗), (x0, 0)〉X×Y = 0.

But by Theorem 5.3 this is equivalent to (0, y0∗) ∈ ∂Φ(x0, 0), i.e. (6.3)

stands.

Because of Proposition 6.1 we have sup(P∗) ≤ inf(P). With

(P) inf
x∈X

Φ(x, 0) = inf
x∈X

f(x)

and

(P∗) sup
y∗∈Y ∗

{−Φ∗(0, y∗)}

follows

−Φ∗(0, y∗) ≤ Φ(x, 0) ∀x ∈ X y∗ ∈ Y ∗. (6. 4)

From (6.1) holds with x0 solution to (P) and y0∗ solution to (P∗) −Φ∗

(0, y0,∗) = Φ(x0, 0), i.e. (6.2) stands.

(ii) Let x0, y0∗ satisfy (6.2) (equivalent to (6.3)), i.e. −Φ∗(0, y0,∗) = Φ(x0, 0).

Because of (6.4) we have that x0 solves (P), y0∗ solves (P∗) and obviously

strong duality holds, i.e. (6.1). �
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7 Lagrangians and Saddle Points

In this chapter we will define the so-called Lagrange functional in a general matter

and then show the relation between the conjugate duality (Fenchel-Rockafellar

duality) and the well-known Lagrange duality.

Definition 7.1. The function L : X × Y ∗ → R defined by

L(x, y∗) = − sup
y∈Y

{〈y∗, y〉 − Φ(x, y)}

is said to be the Lagrangean of the problem (P) relative to the given perturbation.

Obviously, one can write

L(x, y) = −Φ∗
x(y

∗),

where Φx denotes the function y → Φ(x, y) for a fixed x ∈ X and Φ∗
x denotes

the conjugate function of Φx. From Proposition 5.1 we have that Φ∗
x : Y ∗ → R is

convex and weak-lower semicontinuous.

Lemma 7.1. The function Lx : y∗ → L(x, y∗), x ∈ X, is concave and weak-

upper semicontinuous mapping Y ∗ into R. If Φ is convex, then for all y∗ ∈ Y ∗,

the function Ly∗ : x → L(x, y∗) is convex mapping X into R.

Proof. Because Lx(y
∗) = L(x, y∗) = −Φ∗

x(y
∗), Lx is convex and weak-upper

semicontinuous. We know L(x, y∗) = inf
y∈Y

{Φ(x, y)〈y∗, y〉}. Let be x1, x2 ∈ X and

λ ∈ (0, 1). If L(x1, y
∗) = +∞ or L(x2, y

∗) = +∞ it holds

L(λx1 + (1 − λ)x2, y
∗) ≤ λL(x1, y

∗) + (1 − λ)L(x2, y
∗).

Therefore assume L(x1, y
∗) < ∞ and L(x2, y

∗) < ∞ and choose a, b such that

a > L(x1, y
∗), b > L(x2, y

∗) (a and b are fixed).

Because of the definition of L there exist some y1, y2 ∈ Y such that

L(x1, y
∗) ≤ Φ(x1, y1) − 〈y∗, y1〉 ≤ a

and

L(x2, y
∗) ≤ Φ(x2, y2) − 〈y∗, y2〉 ≤ b.
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In the same time we have

L(λx1 + (1 − λ)x2, y
∗) = inf

y∈Y
{Φ(λx1 + (1 − λ)x2, y) − 〈y∗, y〉}

≤ Φ(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

− 〈y∗, λy1 + (1 − λ)y2)〉
≤ λ[Φ(x1, y1) − 〈y∗, y1〉] + (1 − λ)[Φ(x2, y2) − 〈y∗, y2〉]
≤ λa + (1 − λ)b.

Setting a to tend to L(x1, y
∗) and b towards L(x2, y

∗), we get Jensen’s inequality

for L, so L is convex. �

Now we can represent (P) and (P∗) in terms of the Lagrangian L

Φ∗(x∗, y∗) = sup
x∈X
y∈Y

{〈x∗, x〉 + 〈y∗, y〉 − Φ(x, y)}

= sup
x∈X

{〈x∗, x〉 + sup
y∈Y

[〈y∗, y〉 − Φ(x, y)]}

= sup
x∈X

{〈x∗, x〉 − L(x, y∗)},

hence (setting x∗ = 0)

−Φ∗(0, y∗) = inf
x∈X

L(x, y∗).

So, without assuming anything about Φ, we have

(P∗) sup
y∗∈Y ∗

{−Φ∗(0, y∗)} = sup
y∗∈Y ∗

inf
x∈X

L(x, y∗).

The assumption for Φ to be convex and weak-lower semicontinuous on X × Y

yields that for all x ∈ X the function Φx : y → Φ(x, y) is convex and weak-lower

semicontinuous and therefore (cf. Theorem 5.2) Φ∗∗
x = Φx. Hence

Φ(x, y) = Φ∗∗
x (y)

= sup
y∗∈Y ∗

{〈y∗, y〉 − Φ∗
x(y

∗)}

= sup
y∗∈Y ∗

{〈y∗, y〉 + L(x, y∗)},

and setting y = 0 we obtain

Φ(x, 0) = sup
y∗∈Y ∗

L(x, y∗).
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Consequently (if Φx : y 7→ Φ(x, y) is convex and weak-lower semicontinuous) we

can derive

(P) inf
x∈X

f(x) = inf
x∈X

Φ(x, 0) = inf
x∈X

sup
y∗∈Y ∗

L(x, y∗).

Remark: Introducing the Lagrangian we see that (P) and (P∗) are related

to min-max problems and the weak duality relation

sup(P∗) ≤ inf(P)

is actually the inequality

sup
y∗∈Y ∗

inf
x∈X

L(x, y∗) ≤ inf
x∈X

sup
y∗∈Y ∗

L(x, y∗)

well known in game theory.

Definition 7.2. (x̄, ȳ∗) ∈ X × Y ∗ is said to be a saddle point of L if

L(x̄, y∗) ≤ L(x̄, ȳ∗) ≤ L(x, ȳ∗) ∀x ∈ X ∀y∗ ∈ Y ∗.

Theorem 7.1. (saddle point theorem) Let Φ : X ×Y → R be convex and

weak-lower semicontinuous. Then the following conditions are equivalent to each

other.

(i) (x̄, ȳ∗) is a saddle point of L.

(ii) x̄ solves (P), ȳ∗ solves (P∗) and min(P) = max(P∗) (i.e. strong duality).

Proof.

”(i) ⇒ (ii)” We have

L(x̄, ȳ∗) = inf
x∈X

L(x, ȳ∗) = −Φ∗(0, ȳ∗)

and

L(x̄, ȳ∗) = sup
y∗∈Y ∗

L(x̄, y∗) = Φ(x̄, 0).

Therefore

Φ(x̄, 0) + Φ∗(0, ȳ∗) = 0.

75



Thus Theorem 6.4 demonstrates that x̄ solves (P), ȳ∗ solves (P∗) and strong

duality holds.

”(ii) ⇒ (i)” We know that

−Φ∗(0, ȳ∗) = inf
x∈X

L(x, ȳ∗) ≤ L(x̄, ȳ∗)

and

Φ(x̄, 0) = sup
y∗∈Y ∗

L(x̄, y∗) ≥ L(x̄, ȳ∗).

But since strong duality holds, x̄ solves (P), ȳ∗ solves (P∗) and we have

Φ(x̄, 0) + Φ∗(0, ȳ∗) = 0.

Therefore we can write

L(x̄, ȳ∗) ≤ sup
y∗∈Y ∗

L(x̄, y∗) = Φ(x̄, 0)

= −Φ∗(0, ȳ∗) = inf
x∈X

L(x, ȳ∗)

≤ L(x̄, ȳ∗),

that implies

sup
y∗∈Y ∗

L(x̄, y∗) = inf
x∈X

L(x, ȳ∗) = L(x̄, ȳ∗).

So we can conclude

L(x̄, y∗) ≤ L(x̄, ȳ∗) ≤ L(x, ȳ∗) ∀y∗ ∈ Y ∗ ∀x ∈ X.�

Theorem 7.2. (saddle point theorem) Let Φ : X × Y → R̄ (Φ 6= ±∞)

be convex and weak-lower semicontinuous and (P) is assumed to be stable. Then

x̄ ∈ X is a solution to (P) if and only if there exists an ȳ∗ ∈ Y ∗ such that (x̄, ȳ∗)

is saddle point of L.

Proof. Necessity. Let x̄ ∈ X be a solution to (P). Because (P) is stable

(P∗) has a solution ȳ∗ and min(P) = max(P∗). Theorem 7.1 implies that (x̄, ȳ∗)

is saddle point of L.

Sufficiency. This is a direct consequence of Theorem 7.1 (i) ⇒ (ii). �
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8 Important Special Cases of Dual Optimiza-

tion Problems

8.1 Case I

Given X,Y normed spaces, A ∈ L(X,Y ) (linear continuous operator mapping

from X into Y ), A∗ ∈ L(Y ∗, X∗) transpose, f to be minimized has the form

f(x) := q(x,Ax) where q : x × Y → R and our primal problem is

(P) inf
x∈X

q(x,Ax).

To establish a dual problem we have to introduce a perturbation function Φ(x, y).

Thus we propose

Φ(x, y) := q(x,Ax − y).

Now we deduce the dual problem according to the approach in Chapter 6. We

need

Φ∗(0, y∗) = sup
x∈X
y∈Y

{〈y∗, y〉 − q(x,Ax − y)}

= sup
x∈X

sup
y∈Y

{〈y∗, y〉 − q(x,Ax − y)}.

Introducing a new variable p instead of y setting p := Ax − y (for a fixed x) we

obtain

Φ∗(0, y∗) = sup
x∈X

sup
p∈Y

{〈y∗, Ax〉 − 〈y∗, p〉 − q(x, p)}

= sup
x∈X
p∈Y

{〈A∗y∗, x〉 + 〈−y∗, p〉 − q(x, p)}

= q∗(A∗y∗,−y∗)

and the dual problem is

(P∗) sup
y∗∈Y ∗

{−q∗(A∗y∗,−y∗)}.

Remarks:

(i) q convex implies Φ convex.
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(ii) q weak-lower semicontinuous with q 6= ±∞ implies Φ weak-lower semicon-

tinuous and Φ 6= ±∞.

Theorem 8.1. (strong duality) Assume q convex, −∞ < inf(P) < +∞.

Moreover, let there exist an x0 ∈ X such that q(x0, Ax0) < +∞ and let the func-

tion y → q(x0, y) be continuous at Ax0. Then (P) is stable, (P∗) has a solution

ȳ∗ and inf(P) = max(P∗).

Proof. The assumption says that y → Φ(x0, y) = q(x0, Ax0 − y) is finite and

continuous at 0 ∈ Y . That means that Theorem 6.3 renders stability of (P) and

Theorem 6.1 implies the assertion. �

Theorem 8.2. (optimality conditions) The following conditions are equiv-

alent to each other.

(i) x̄ solves (P), ȳ∗ solves (P∗) and min(P) = max(P∗).

(ii) x̄ ∈ X and ȳ∗ ∈ Y ∗ satisfy the optimality conditions (extremality relation)

q(x̄, Aȳ)+q∗(A∗ȳ∗,−ȳ∗) = 0 which is equivalent to (A∗ȳ∗,−ȳ∗) ∈ ∂q(x̄, Ax̄).

Proof. Applying Theorem 6.4 yields that (0, ȳ∗) ∈ ∂Φ(x̄, 0) is equivalent to

0 = Φ(x̄, 0) + Φ∗(0, ȳ∗)

= q(x̄), Ax̄) + q∗(A∗ȳ∗,−ȳ∗)

= 〈(x̄), Ax̄), (A∗ȳ∗,−ȳ∗)〉,

so Theorem 5.3 leads to (A∗ȳ∗,−ȳ∗) ∈ ∂q(x̄, Ax̄). �

Remark: We consider the further specialization

q(x,Ax) := f(x) + g(Ax)

(q is decomposed). The primal problem is in this case

(P) inf
x∈X

{f(x) + g(Ax)}.
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The conjugate of the primal objective function is

q∗(x∗, y∗) = sup
x∈X,
y∈Y

{〈x∗, x〉 + 〈y∗, y〉 − q(x, y)}

= sup
x∈X

{〈x∗, x〉 − f(x)} + sup
y∈Y

{〈y∗, y〉 − g(y)}

= f ∗(x∗) + g∗(y∗).

So the dual problem reads as

(P∗) sup
y∗∈Y ∗

{−q∗(A∗y∗,−y∗)}

that is in this case

(P∗) sup
y∗∈Y ∗

{−f ∗(A∗y∗) − g∗(−y∗)}.

Remarks: We note that if

(i) f and g are convex then q and hence Φ is convex.

(ii) f and g are convex and weak-lower semicontinuous and f, g 6= ±∞ then q

and Φ are convex and weak-lower semicontinuous and q, Φ 6= ±∞.

The stability criterion from Theorem 8.1 can be written in the following way.

There exists x0 ∈ X such that f(x0) < +∞, g(Ax0) < +∞, g being continu-

ous at Ax0, f and g convex and inf(P) finite. Then can be applied Theorem 8.1

(strong duality) and Theorem 8.2 (optimality conditions).

The optimality conditions of Theorem 8.2 can be decomposed

0 = q(x̄), Ax̄) + q∗(A∗ȳ∗,−ȳ∗)

= f(x̄) + g(Ax̄) + f ∗(A∗ȳ∗) + g∗(−ȳ∗)

= f(x̄) + f ∗(A∗ȳ∗) + g(Ax̄) + g∗(−ȳ∗)

= [f(x̄) + f ∗(A∗ȳ∗) − 〈A∗ȳ∗, x̄〉] + [g(Ax̄) + g∗(−ȳ∗) − 〈−ȳ∗, Ax̄〉].

But because of Young’s inequality both expression in square brackets are greater

or equal to zero and the left hand side of the equation above is equal to zero,

we have that f(x̄)+f ∗(A∗ȳ∗)−〈A∗ȳ∗, x̄〉 = 0 and g(Ax̄)+g∗(−ȳ∗)−〈−ȳ∗, Ax̄〉 = 0.
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Corollary 8.1. (strong duality) Assume f and g are convex and −∞ <

inf(P) < +∞. Let there exist an x0 ∈ X such that f(x0) < +∞, g(Ax0) < +∞
and assume g continuous at Ax0. Then (P) is stable, (P∗) has a solution ȳ∗ and

inf(P) = max(P∗).

Corollary 8.2. (optimality conditions) The following conditions are

equivalent to each other.

(i) (x̄ solves (P), ȳ∗) solves (P∗) and min(P) = max(P∗).

(ii) x̄ ∈ X and ȳ∗ ∈ Y ∗ satisfy the optimality conditions (extremality relations)

f(x̄) + f ∗(A∗ȳ∗) = 〈A∗ȳ∗, x̄〉

and

g(Ax̄) + g∗(−ȳ∗) = 〈−ȳ∗, Ax̄〉,

which are equivalent to A∗ȳ∗ ∈ ∂f(x̄) and −ȳ∗ ∈ ∂g(Ax̄).

Exercise 8.1. Consider

(P) inf
x∈X

{
f(x) +

m∑

i=1

gi(Aix)

}
.

Determine its dual problem and calculate the corresponding optimality condi-

tions.

8.2 Case II

Let X be a linear space.

Definition 8.1. A set C ⊆ X is said to be a cone if λC ⊆ C ∀λ ≥ 0 (cone

with vertex 0).

Let C be convex, additionally. Define a partial ordering ” ≤ ” (or ” ≥ ”) by

setting

x1 ≤ x2 ⇐⇒ x2 − x1 ∈ C.

Obviously x ≤ x ∀x ∈ X and if x1 ≤ x2 and x2 ≤ x3 follows x1 ≤ x3.
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The partial ordering is compatible with the structure of the vector space X

in the sense

• if x ≥ 0 then λx ≥ 0 ∀λ ≥ 0,

• if x1 ≥ x2 then x1 + x ≥ x2 + x ∀x ∈ X.

The partial ordering introduced above induces also the following sets

(i) C = {x ∈ X : x ≥ 0} is the set of positive elements

and

(ii) −C = {x ∈ X : x ≤ 0} is the set of negative elements.

Now let X be a linear normed space and X∗ its topological dual space.

Definition 8.2. Let C ⊆ X be a cone. The set

C∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0, ∀x ∈ C}

is called the dual cone to the cone C.

In the dual cone the partial ordering is x∗
1 ≤ x∗

2 ⇐⇒ x∗
2 − x∗

1 ∈ C∗. So one

may say that C∗ is the cone of positive elements in X∗.

The Primal Problem

Let X and Y be linear normed spaces, D ⊂ X closed, convex, D 6= ∅, f :

D → R convex weak-lower semicontinuous, C closed convex cone in Y defining a

partial ordering relation ” ≤ ”, B : D → Y a mapping (Possibly nonlinear) such

that B is convex with respect to the relation ” ≤ ”, i.e.

B(λx1 + (1 − λ)x2) ≤ λB(x1) + (1 − λ)B(x2) ∀x1, x2 ∈ D ∀λ ∈ (0, 1).

Let further for each y∗ ∈ Y ∗, y∗ ≥ 0 the mapping x → 〈y∗, Bx〉 of D into R

be lower semicontinuous. Finally, let {x ∈ D : Bx ≤ 0} 6= ∅. This set is convex.

Consider x1, x2 ∈ D such that Bx1 ≤ 0 and Bx2 ≤ 0. We have for λ ∈ (0, 1)

λBx1 ≤ 0 and (1 − λ)Bx2 ≤ 0 thus λx1 + (1 − λ)x2 ∈ D. Then

B(λx1 + (1 − λ)x2) ≤ λBx1 + (1 − λ)Bx2 ≤ 0.
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Consider the optimization problem

(P) inf
x∈D,
Bx≤0

f(x).

We can rewrite this as

inf
x∈X

F (x),

setting

F : X → R, F (x) =

{
f(x), if x ∈ D and Bx ≤ 0,

+∞, otherwise.

Define a perturbation function

Φ(x, y) =

{
f(x), if x ∈ D and Bx ≤ y,

+∞, otherwise,

that proves to be proper. We observe that Φ can be written as

Φ : X → R, Φ(x, y) = f̃(x) + χEy
(x),

where

f̃ : X → R, f̃(x) =

{
f(x), if x ∈ D,

+∞, otherwise,

and χEy
is the indicator functional of the set Ey = {x ∈ X : x ∈ D,Bx ≤ y}.

To specify the properties of Φ we consider the following additional results.

Lemma 8.1.

(i) Ey is closed and convex in X ∀y ∈ Y (and also weakly (sequentially) closed

because we have that in topologocal Hausdorff space X if E ⊂ X is convex

and closed then E is weakly (sequentially) closed).

(ii) E = {(x, y) ∈ X × Y : x ∈ D,Bx ≤ y} is closed and convex in X × Y .

Proof.

(i) Let be x ∈ Ey. Then Bx − y ≤ 0 and using Proposition 8.1 we obtain

〈y∗, Bx − y〉 ≤ 0 ∀y∗ ∈ C∗, i.e. ∀y∗ ≥ 0.
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The function x 7→ 〈y∗, Bx − y〉, x ∈ D is convex (since B is convex) for

y∗ ≥ 0 fixed. Because for each λ ∈ (0, 1)

λB(x1) + (1 − λ)B(x2) − B(λx1 + (1 − λ)B(x2)) ∈ C,

follows for y∗ ∈ C∗(y∗ ≥ 0)

〈y∗, λb(x1) + (1 − λ)B(x2) − B(λx1 + (1 − λ)B(x2))〉 ≥ 0,

equivalent to

〈y∗, B(λx1 +(1−λ)B(x2))− y〉 ≤ λ〈y∗, B(x1)− y〉+(1−λ)〈y∗, B(x2)− y〉,

which proves the convexity of the function.

Moreover, by assumption, this function x 7→ 〈y∗, Bx − y〉, x ∈ D is weak-

lower semicontinuous (even lower semicontinuous if X is a Banach space)

and therefore the set {x ∈ D : 〈y∗, Bx − y〉 ≤ 0} is closed (cf. Theorem

3.1) and convex for fixed y∗ ≥ 0. Then same holds for the intersection of

all such sets which correspond to all y∗ ≥ 0.

(ii) Note that the function (x, y) 7→ 〈Bx − y, y∗〉 is lower semicontinuous and

convex on D × Y → R ∀y∗ ≥ 0 fixed. Using analogous arguments as for

(i) yields the statement. �

Lemma 8.2. The function Φ : X × Y → R is convex and lower semicontin-

uous if f is lower semicontinuous (weak-lower semicontinuous if f is weak-lower

semicontinuous) and also Φ 6= ±∞.

Proof. Write Φ in the form Φ(x, y) = f̃(x)+χE(x, y), where f̃ is convex and

lower semicontinuous (weak-lower semicontinuous if f is weak-lower semicontin-

uous).

Moreover, χE(x, y) is convex and lower semicontinuous since E is a closed

convex set in X ×Y then {(x, y) : χE(x, y) ≤ k} is closed for all constants k ∈ R.

The dual problem
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We compute for y∗ ∈ Y ∗

Φ∗(0, y∗) = sup
x∈X,
y∈Y

{〈y∗, y〉 − Φ(x, y)}

= sup
x∈D,y∈Y,

Bx≤y

{〈y∗, y〉 − f(x)}.

Setting p := y − Bx with p ≥ 0 we obtain

Φ∗(0, y∗) = sup
x∈D

sup
p∈Y,
p≥0

{〈y∗, Bx〉 + 〈y∗, p〉 − f(x)}

= sup
p∈Y,
p≥0

〈y∗, p〉 + sup
x∈D

{〈y∗, Bx〉 − f(x)}.

Because

sup
p∈Y,p≥0

〈y∗, p〉 =

{
0, if y∗ ≤ 0,

+∞, otherwise,

}
= χ∗

C(−y∗)

we can write

−Φ∗(0, y∗) = −χ∗
C(−y∗) + inf

x∈D
{〈−y∗, Bx〉 + f(x)}.

Therefore the dual problem is

(P∗) sup
y∗≤0

inf
x∈D

{〈−y∗, Bx〉 + f(x)},

equivalent to

(P∗) sup
y∗≥0

inf
x∈D

{〈y∗, Bx〉 + f(x)},

but we prefer to use further the first formulation.

Theorem 8.3. In addition to the above assumptions (concerning D, f and

B (in particular convexity, closedness and {x ∈ D : Bx ≤ 0} 6= ∅)), assume that

inf(P) is finite and moreover let the following regularity condition (Slater condi-

tion) be satisfied, i.e. there exists x0 ∈ D such that Bx0 < 0, i.e. −Bx0 ∈ intC.

Then (P) is stable.

Proof. From the regularity condition follows the existence of a neighborhood

U(0) of 0 in Y such that −Bx0 + y ∈ C ∀y ∈ U(0), followed by −Bx0 + y ≥ 0

and even Bx0 ≤ y ∀y ∈ U(0).
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Hence Φ(x0, y) = f(x0) ∀y ∈ U(0) and the functional y 7→ Φ(x0, y) is finite

and continuous at 0 ∈ Y . Therefore the assumption of Theorem 6.3 (stability

criterion) is fulfilled and (P) is stable. �

Now we can apply Theorem 6.1 (strong duality).

Theorem 8.4. (strong duality) Under the assumptions of Theorem 8.3

(P∗) has a solution and strong duality is fulfilled

inf(P) = inf
x∈D,
Bx≤0

= max
y∗≤0

inf
x∈D

{f(x) + 〈−y∗, Bx〉}.

Remarks:

(i) We may also apply the other strong duality assertions, like Theorem 6.2 and

Corollary 6.1 where we need weak-lower semicontinuity of Φ which follows

from that of f .

(ii) Moreover, by Theorem 6.4 (optimality conditions) one can infer optimality

conditions for our present problem (P) and (P∗).

If x0 solves (P) and y0∗ solves (P∗) then Φ(x∗, 0)+Φ∗(0, y0∗) = 0 (optimality

condition). In our case we have

0 = f(x0) + χ∗
C(−y0∗) − inf

x∈D

{
〈−y0∗, Bx〉 + f(x)

}
.

Because y0∗ ≤ 0 follows

f(x0) = inf
x∈D

{〈−y0∗, Bx〉 + f(x)}

≤ 〈−y0∗, Bx0〉 + f(x0)

and we obtain

〈y0∗, Bx0〉 = 0

as an optimality condition.

Computation of the Lagrangian
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By the definition of the Lagrangian we have

−L(x, y∗) = sup
y∈Y

{〈y∗, y〉 − Φ(x, y)}

=





sup
y∈Y,Bx≤y

{〈y∗, y〉 − f(x)}, if x ∈ D,

−∞, otherwise.

Setting p = y − Bx with p ≥ 0 for Bx ≤ y gives us

−L(x, y∗) = sup
p∈Y,p≥0

{〈y∗, p〉 + 〈y∗, Bx〉 − f(x)}

= sup
p∈Y,p≥0

{〈y∗, p〉} + 〈y∗, Bx〉 − f(x).

The case x /∈ D can be included by replacing f(x) by

f̃ : X → R, f̃ =

{
f(x), if x ∈ D,

+∞, otherwise,

With

sup
p∈Y,p≥0

〈y∗, p〉 =

{
0, if y∗ ≤ 0,

+∞, otherwise,

}
= χ∗

C(−y∗)

the Lagrangian is

L(x, y∗) = f̃(x) − 〈y∗, Bx〉 − χ∗
C(−y∗).

From the definition of a saddle point we see that (x̄, ȳ∗) is a saddle point of

L(x, y∗) if and only if x̄ ∈ D and ȳ∗ ≤ 0. For all x ∈ D and all y∗ ≤ 0 we have

L(x, y∗) = f(x̄) − 〈y∗, Bx̄〉
≤ f(x̄) − 〈ȳ∗, Bx̄〉 = L(x̄, ȳ∗)

≤ f(x) − 〈ȳ∗, Bx〉 = L(x, ȳ∗).

Remark: If ȳ∗ ≤ 0, x ∈ D, then also for x not in D we get L(x, ȳ∗) = +∞
and for y∗ > 0 we have L(x̄, y∗) = −∞. Thus the saddle point property for (x̄, ȳ∗)

is also fulfilled.

Therefore we obtain from Theorem 7.2 the saddle point assertion (we replace

y∗ by −y∗ and we have y∗ ≥ 0 as usual in convex programming).

Theorem 8.4. Consider X and Y normed linear spaces and
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• f : D → R is a convex and weak-lower semicontinuous functional, where D

is a non-empty closed convex subset of X,

• C is a closed convex cone in Y (defining ”≤”),

• B : D → Y is convex with respect to ”≤”,

• for each y∗ ∈ Y ∗, y∗ ≥ 0 the mapping x 7→ 〈y∗, Bx〉 of D into R is lower

semicontinuous,

• {x ∈ D : Bx ≤ 0} 6= ∅,

• regularity condition from Theorem 8.3 is fulfilled,

• inf
x∈D,
Bx≤0

f(x) is finite.

(i) Then x̄ is a solution to (P) if and only if there exists ȳ∗ ∈ Y ∗, ȳ∗ ≥ 0 such

that (x̄, ȳ∗) is a saddle point for the Lagrangian L(xy∗) = f̃(x)+ 〈y∗, Bx〉+
χ∗

C(y∗), i.e. for all x ∈ D and for all y∗ ≥ 0 one has

f(x̄) + 〈y∗, Bx̄〉 ≤ f(x̄) + 〈ȳ∗, Bx̄〉 ≤ f(x) + 〈ȳ∗, Bx〉.

In this case holds

〈ȳ∗, Bx̄〉 = 0.

(ii) ȳ∗ solves

(P∗) max
y∗≥0

inf
x∈D

{f(x) + 〈y∗, Bx〉}.

Proof. From Theorem 8.3 we know that (P) is stable. Thus Theorem 7.2

proves the claimed saddle point property. Setting y∗ = 0 in the saddle point

inequality follows

f(x̄) + 〈y∗, Bx̄〉 = f(x̄) ≤ f(x̄) + 〈ȳ∗, Bx̄〉 ≤ f(x) + 〈ȳ∗, Bx〉,

that implies

〈ȳ∗, Bx̄〉 = 0.

The fact that ȳ∗ solves (P∗) follows immediately from Theorem 7.1 (saddle

point theorem). �
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Finite dimensional convex programming

Set X = R
n = X∗, Y = R

m = Y ∗, x = (x1, ..., xn), y = (y1, ..., ym), C =

{y = (y1, ..., ym) : yi ≥ 0, i = 1, ...,m}, D ⊆ R
n convex and closed and By =

(B1y, ..., Bmy) with Bi : D → R convex and lower semicontinuous, i = 1, ...,m.

The problem (P) is

(P) inf
x∈D,Bi(x)≤0,i=1,...,m

f(x),

where f is a lower semicontinuous convex function of D into R. Let be given the

regularity condition: there exists x0 ∈ D such that B1x0 < 0, i = 1, ...,m. For

yi ≥ 0, i = 1, ...,m, and x ∈ D the Lagrangian is L(x, y) = f(x) +
n∑

i=1

yiBix.

Theorem 8.4 turns then into the following statement.

Theorem 8.5. (Kuhn-Tucker). Let be fulfilled the above introduced hy-

potheses. Then x̄ ∈ D is a solution to (P) if and only if there exists ȳ ∈ R
m,

ȳ ≥ 0 such that

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) ∀x ∈ D ∀yi ≥ 0, i = 1, ...,m.

Then holds also

〈ȳ, Bx̄〉 =
m∑

i=1

ȳiBix̄ = 0.

For all i, 1 ≤ i ≤ m, applies either Bix̄ < 0 and yi = 0 or Bix̄ = 0 and yi ≥ 0.
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9 Anexa

This section is dedicated to solutions for some exercises given in the lecture.

Examples 1.1.(i) Let X be a real normed space. Then f : X → R, f(x) =

‖x‖n, n > 1 is a convex function.

Solution. Let be x, y ∈ X and λ ∈ (0, 1). From the properties of the norms

we have

f(λx + (1 − λ)y) = ‖λx + (1 − λ)y‖n ≤
(
λ‖x‖ + (1 − λ)‖y‖

)n
. (9. 1)

Consider now the function g : (0, +∞) → R, g(t) = tn. Because g′′(t) ≥ 0 ∀t > 0,

g is convex, so for all a, b > 0 and λ ∈ (0, 1) one has

(
λa + (1 − λ)b

)n ≤ λan + (1 − λ)bn. (9. 2)

If a = 0 or b = 0 or both a and b are equal to 0 the inequality (9.2) is also true.

From (9.1) and (9.2) we may conclude, taking a = ‖y‖ and b = ‖y‖,

f(λx + (1 − λ)y) ≤
(
λ‖x‖ + (1 − λ)‖y‖

)n ≤ λ‖x‖n + (1 − λ)‖y‖n

= λf(x) + (1 − λ)f(y),

so f is convex. �

Exercise 1.1.

(i) Let X be a reflexive real Banach space and X∗ its dual. Then the function

f : X → R, f(x) = 〈Bx, x〉, where B : X → X∗ is a linear bounded (con-

tinuous)(i.e. B ∈ L(X,X∗)) non-negative self-adjoint operator, is convex.

(ii) If we consider X = R
n, B = (bij)i,j=1,...,n a n × n symmetric positive semi-

definite matrix and the quadratic function f(x) = 〈Bx, x〉 = 〈x,Bx〉 =
n∑

i,j=1

bijxixj ≥ 0, x = (x1, ..., xn)T , then f is convex.

Solution.
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(i) Let be y, z ∈ X. Then

〈By, y〉 − 〈Bz, z〉 − 2〈Bz, y − z〉 = 〈B(y − z), y − z〉 ≥ 0 (9. 3)

because

〈B(y − z), y − z〉 = 〈By, y − z〉 − 〈Bz, y − z〉
= 〈By, y〉 − 〈By, z〉 − 〈Bz, y〉 + 〈Bz, z〉
= 〈By, y〉 − 2〈Bz, y〉 + 〈Bz, z〉
= 〈By, y〉 − 2〈Bz, y〉 + 2〈Bz, z〉 − 2〈Bz, z〉 +

+〈Bz, z〉
= 〈By, y〉 − 〈Bz, z〉 − 2〈Bz, y − z〉.

We have used here 〈By, z〉 = 〈y,B∗z〉 = 〈y,Bz〉 = 〈Bz, y〉. Further, by

(9.3) follows f(y) ≥ f(z) + 2〈Bz, y − z〉.

We substitute y by x1 ∈ X, then by x2 ∈ X and we get

f(x1) ≥ f(z) + 2〈Bz, x1 − z〉

and

f(x2) ≥ f(z) + 2〈Bz, x2 − z〉.

After multiplying the first inequality by λ ∈ (0, 1), the second one by 1−λ,

summing them and setting z := λx1 + (1 − λ)x2, we obtain

λf(x1) + (1 − λ)f(x2) ≥ f(z) + 〈Bz, λx1 + (1 − λ)x2〉
= f(z) = f(λx1 + (1 − λ)x2),

which implies that f is convex.

(ii) Consider x and y in R
n and λ ∈ (0, 1). We have

f(λx + (1 − λ)y) = [λx + (1 − λ)y]T C[λx + (1 − λ)y]

= λ2xT Cx + λ(1 − λ)xT Cy + (1 − λ)λyT Cx + (1 − λ)2yT Cy

= λf(x) + (1 − λ)f(y) + λ(1 − λ)[yT Cx + xT Cy − xT Cx − yT Cy]

= λf(x) + (1 − λ)f(y) + λ(1 − λ)[yT (Cx − Cy) − xT (Cx − Cy)]

= λf(x) + (1 − λ)f(y) + λ(1 − λ)(y − x)T C(x − y).
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Because (y − x)T C(y − x) < 0 the last term in the right-hand side above is

less than or equal to 0, so the convexity of f follows, i.e.

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).�

Exercise 1.2. Show that the infimal convolution of the proper convex func-

tions fi : X → R, i = 1, ...,m, is convex.

Solution. Take x, y ∈ X and λ ∈ (0, 1). It follows

f(λx + (1 − λ)y) = inf
{

f1(λx1 + (1 − λ)y1) + ... + fm(xm + (1 − λ)ym) :

x =
m∑

i=1

xi, y =
m∑

i=1

yi, xi ∈ X, yi ∈ X, i = 1, ...,m
}

≤
m∑

i=1

fi(λxi + (1 − λ)yi) ≤ λ
m∑

i=1

fi(xi) + (1 − λ)
m∑

i=1

fi(yi)

≤ λ inf
m
P

i=1

xi=x

( m∑

i=1

fi(xi)

)
+ (1 − λ) inf

m
P

i=1

yi=y

( m∑

i=1

fi(yi)

)

= λf(x) + (1 − λ)f(y).�

Exercise 1.3. If C is convex, then its gauge functional γC(x) is convex, too.

Solution. Let x, y ∈ X and α ∈ (0, 1). We have

γC(αx + (1 − α)y) = inf{λ ≥ 0 : (αx + (1 − α)y) ∈ λC}.

If γC(αx + (1 − α)y) = +∞, then if one of γC(x) and γC(y) is also equal to +∞
Jensen’s inequality is fulfilled. Otherwise, there would exist some λ1 = γC(x) ∈ R

and λ2 = γC(y) ∈ R, such that

αx + (1 − α)y ∈ αλ1C + (1 − α)λ2C = (αλ1 + (1 − α)λ2)C,

so the assumption above is denied.

More interesting is the second case, i.e. when γC(αx + (1 − α)y) = λ ∈ R.

Provided that γC(x) = +∞ or γC(y) = +∞, Jensen’s inequality is fulfilled.

Otherwise denote λ1 := γC(x) ∈ R and λ2 := γC(y) ∈ R. If λ1 = 0, then

(αx+(1−α)y) ∈ 0C +λ2C = λ2C, so λ = λ2. Analogously λ1 = 0 yields λ = λ1.
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In both cases Jensen’s inequality is fulfilled as equality. Now we may consider

λ1 > 0 and λ2 > 0. We have αx ∈ αλ1C and (1 − α)y ∈ (1 − α)λ2C, so

(αx + (1 − α)y) ∈ (αλ1 + (1 − α)λ2)C.

From the definition of λ follows λ ≤ αλ1 + (1 − α)λ2, i.e.

γC(αx + (1 − α)y) ≤ αγC(x) + (1 − α)γC(y).�

Remark: According to a remark in the lecture any sublinear function is con-

vex and because the next exercise guarantees the sublinearity of the gauge of a

convex set, one may conclude easier that the gauge of a convex set is convex.

Exercise 1.4. For a convex set C, prove that its gauge functional γC is sub-

linear.

Solution. Proof. Let be given x1, x2 ∈ X and let the infimum be attained

(in case that infimum is not attained one has to modify the considerations a little

bit: consider ”infimum sequences” )

γC(xi) = min{λ : λ ≥ 0, xi ∈ λC} = λi < ∞, i = 1, 2.

From here we deduce that there exist c1, c2 ∈ C such that x1 = λ1c1 , x2 = λ2c2

and there exist c ∈ C and λ ≥ 0 such that x1 +x2 = λc. Namely λ = λ1 +λ2 and

c = λ1

λ1+λ2
c1+ λ2

λ1+λ2
c2 ∈ C because λ1

λ1+λ2
+ λ2

λ1+λ2
= 1 (convex linear combination).

Indeed, x1 + x2 = λ1c1 + λ2c2 and, on the other side λc = (λ1 + λ2)
λ1

λ1+λ2
c1 +

λ2

λ1+λ2
c2 = λ1c1 + λ2c2. Therefore x1 + x2 = λc.

By definition

γC(x1 + x2) = inf{λ : λ ≥ 0, x1 + x2 ∈ λC}.

Because x1 + x2 = λc where c ∈ C and λ = λ1 + λ2 it follows that

γC(x1 + x2) ≤ λ = λ1 + λ2 = γC(x1) + γC(x2)

and hence the subadditivity is fulfilled.
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Furthermore for µ > 0

γC(µx) = inf{λ : λ ≥ 0, µx ∈ λC}

= inf{µλ

µ
: λ ≥ 0, x ∈ λ

µ
C}

= µ inf{λ̃ : λ̃ ≥ 0, x ∈ λ̃C}
= µγC(x),

where we have denoted λ̃ := λ
µ
.

For µ = 0 we have γC(0 · x) = γC(0) = inf{λ : λ ≥ 0, 0 ∈ λC} = 0 = 0 · γC(x).

If γC(x1) or γC(x2) is equal +∞ then sublinearity is trivially fulfilled. �

Exercise 1.5. If f is a positively homogeneous proper convex function, then

the following statements are true.

(a) f(λ1x1+ ...+λmxm) ≤ λ1f(x1)+ ...+λmf(xm), whenever λ1 > 0, ..., λm > 0

and for all xi ∈ X, i = 1, ...,m.

(b) f(−x) ≥ −f(x) for every x ∈ X.

Solution.

(a) Let λi > 0, i = 1, ...,m. Consider also some alternative parameters λi by

αi := λi
m
P

i=1

λi

, i = 1, ...,m. It is easy to notice that αi > 0, i = 1, ...,m, and

m∑
i=1

αi = 1.

As f is convex, we may write

f


(1 − αm)

m−1∑
i=1

αixi

1 − αm

+ αmxm


 ≤ (1 − αm)f




m−1∑
i=1

αixi

1 − αm


+ αmf(xm),

that becomes using that f is positively homogeneous

f

( m∑

i=1

αixi

)
≤ (1 − αm)

m−1∑

i=1

αi

1 − αm

f(xi) + αmf(xm) =
m∑

i=1

αif(xi).

Multiplying the inequality above by
m∑

i=1

λi we obtain exactly the require-

ment.
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(b) We have f(x)+ f(−x) ≥ f(x−x) = f(0) = 0, so f(−x) ≥ −f(x) for every

x ∈ X. �

Exercise 1.6. Any positively homogeneous, subadditive (i.e. sublinear),

non-negative and continuous function p on X is a gauge of a convex function.

Solution. Consider C := {x ∈ X : p(x) ≤ 1}. We will show that p = γC .

First we need to prove that C is convex. Let x, y ∈ C and α ∈ (0, 1). Because of

its properties, p is convex due to a remark in the lecture. We have

p(αx + (1 − α)y) ≤ αp(x) + (1 − α)p(y) ≤ α + (1 − α) = 1,

so C is a convex set.

Further, using the definition of the gauge corresponding to C we can conclude

that ∀x ∈ X either γC(x) = +∞ or γC(x) = λ ∈ [0, +∞). Let x ∈ X. If the first

case applies, there is no λ ≥ 0 such that x ∈ λC, so x
λ

/∈ C ∀λ > 0, i.e. p(x
λ
) > 1,

followed by p(x) > λ ∀λ > 0. Consequently, p(x) = +∞, so γC(x) = p(x).

If there is a λ ∈ (0, +∞) such that γC(x) = λ, then x ∈ λC. If λ = 0,

then x = 0 and because p(0) = 0, we have γC(x) = p(x). Otherwise, x
λ
∈ C,

so p(x
λ
) ≤ 1, followed by p(x) ≤ λ. Supposing that p(x) < λ we obtain that

x ∈ p(x)C, that contradicts the definition of λ. Consequently, p ≡ γC . �

Exercise 1.7. Prove that a sublinear functional p is linear if and only if for

all x ∈ X it holds p(−x) = −p(x).

Solution. Necessity. p linear implies p(−x) = p(−1 · x) = (−1)p(x) =

−p(x) ∀x ∈ X.

Sufficiency. For all λ ≥ 0 and all x ∈ X we have p(λx) = λp(x) due to the

sublinearity of p. Consider now a λ < 0. It is clear that p(−λx) = −p(−λx) =

−(−λ)p(x) = λp(x). So for any real λ it is true that p(λx) = λp(x).

Further, consider x and y ∈ X. We have

−p(x + y) = p(−x − y) ≤ p(−x) + p(−y) = −p(x) − p(y) = −[p(x) + p(y)],
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so p(x + y) ≥ p(x) + p(y). As p is sublinear it follows that it is also linear. �

Exercise 3.1. Let X be a Banach space and x0 ∈ X. The function f : X → R

is lower semicontinuous at x0 if and only if

lim
x→x0

f(x) ≥ f(x0).

Solution. Necessity. Assume that lim
x→x0

f(x) < f(x0). Then there is an

ε > 0 less than f(x0) − lim
x→x0

f(x). As f is lower semicontinuous at x0, there is

a neighborhood U of x0 where any point x satisfies −ε < f(x) − f(x0). As U is

a neighborhood of x0, there is a ball B(x0, δ) included in U or equal to it. For

each x ∈ B(x0, δ) it is sure that f(x) > f(x0) − ε, so

inf
x∈B(x0,δ)

≥ f(x0) − ε > lim
x→x0

f(x).

Further follows

inf
x∈B(x0,δ)

> sup
δ>0

inf
x∈B(x0,δ)

,

that is false, so the initial assumption fails.

Sufficiency. Let be ε > 0. We have lim
x→x0

f(x) ≥ f(x0) > f(x0) − ε, so

sup
δ>0

inf
x∈B(x0,δ)

> f(x0)−ε. Consequently, there is a δ > 0 such that inf
x∈B(x0,δ)

f(x) >

f(x0) − ε, so for all x ∈ B(x0, δ) we have f(x) ≥ inf
x∈B(x0,δ)

f(x) > f(x0) − ε,

followed by −ε < f(x) − f(x0), so f is lower semicontinuous at x0. �

Exercise 3.2. Let X be a reflexive Banach space, B : X → X∗ a linear,

bounded, non-negative operator (i.e. 〈Bx, x〉 ≥ 0 ∀x ∈ X), B∗ : X → X∗

its adjoint operator and the function f : X → R, f(x) = 〈Bx, x〉. Then

f ′(x) = Bx + B∗x ∀x ∈ X.

Solution. We have for all x ∈ X and all h ∈ X

lim
t→0

f(x + th) − f(x)

t
= lim

t→0

〈B(x + th), x + th〉 − 〈Bx, x〉
t

= lim
t→0

〈Bx, x〉 + 〈Bx, th〉 + 〈Bth, x〉 + 〈Bth, th〉 − 〈Bx, x〉
t
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= lim
t→0

t〈Bx, h〉 + t〈Bh, x〉 + t2〈Bh, h〉
t

= lim
t→0

t〈Bx, h〉 + t〈B∗x, h〉 + t2〈Bh, h〉
t

= 〈Bx + B∗x, h〉 = 〈(B + B∗)x, h〉,

i.e. f ′ ≡ Bx + B∗x. �

Exercise 3.3. Let be X a Hilbert space and consider the function f : X → R,

f(x) = ‖x‖ = 〈x, x〉 1

2 . Then

f ′(x) =
x

‖x‖ , x 6= 0.

Solution. For some x, h ∈ X we have

lim
t→0

f(x0 + th) − f(x0)

t
= lim

t→0

〈x + th, x + th〉1/2 − 〈x, x〉1/2

t

= lim
t→0

(〈x, x〉 + 2t〈x, h〉 + t2‖h‖2)1/2 − 〈x, x〉1/2

t

= lim
t→0

‖x‖2 + 2t〈x, h〉 + t2‖h‖2 − ‖x‖2

t[(〈x, x〉 + 2t〈x, h〉 + t2‖h‖2)1/2 + 〈x, x〉1/2]

= lim
t→0

2t〈x, h〉
t[(〈x, x〉 + 2t〈x, h〉 + t2‖h‖2)1/2 + 〈x, x〉1/2]

+ lim
t→0

t2‖h‖2

t[(〈x, x〉 + 2t〈x, h〉 + t2‖h‖2)1/2 + 〈x, x〉1/2]

= lim
t→0

2〈x, h〉
(〈x, x〉 + 2t〈x, h〉 + t2‖h‖2)1/2 + 〈x, x〉1/2

=
2〈x, h〉

(〈x, x〉)1/2 + 〈x, x〉1/2

=

〈
x

‖x‖ , h

〉
,

so the assertion holds. �

Exercise 8.1. Consider the problem

(P) inf
x∈X

{
f(x) +

m∑

i=1

gi(Aix)

}
,
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where A ∈ L(X,Yi), X and Yi, i = 1, ...,m, are normed spaces and f : X → R,

gi : Yi → R, i = 1, ...,m, functions. Determine its dual problem and calculate the

corresponding optimality conditions.

Solution. Consider the following perturbation function Φ : X×Y1×...×Ym →
R,

Φ(x, y1, ..., ym) = f(x) +
m∑

i=1

gi(Aix − yi).

To deduce the dual problem to (P) we calculate the conjugate of the perturbation

function, Φ : X∗ × Y ∗
1 × ... × Y ∗

m → R,

Φ∗(x∗, y∗
1, ..., y

∗
m) = sup

x∈X,yi∈Yi,
i=1,...,m

{
〈x∗, x〉 +

m∑

i=1

〈y∗
i , yi〉 − f(x) −

m∑

i=1

gi(Aix − yi)
}

,

where by ”∗” we denote the duals of the corresponding spaces.

Introducing the new variables pi := Aix − yi, i = 1, ...,m, and considering

x∗ = 0, we get after separating the terms in the expression above,

Φ∗(0, y∗
1, ..., y

∗
m) = sup

x∈X

{ m∑

i=1

〈y∗
i , Aix〉 − f(x)

}
+

m∑

i=1

sup
pi∈Yi

{−〈y∗
i , pi〉 − gi(pi)}

= f ∗

(
m∑

i=1

AT
i y∗

i

)
+

m∑

i=1

g∗
i (−y∗

i ).

The dual problem to (P) is

(D) sup
yi∈Y ∗

i ,
i=1,...,m

{
− f ∗

(
m∑

i=1

AT
i y∗

i

)
−

m∑

i=1

g∗
i (−y∗

i )

}
.

The optimality conditions arise easily. Considering x̄ a solution to the primal

problem and (ȳ∗
1, ..., ȳ

∗
m) one to the dual, we have strong duality, i.e.

f(x̄) +
m∑

i=1

gi(Aix̄) = −f ∗

(
m∑

i=1

AT
i ȳ∗

i

)
−

m∑

i=1

g∗
i (−ȳ∗

i ). (9. 4)

Young’s inequality yields

f(x̄) + f ∗

(
m∑

i=1

AT
i ȳ∗

i

)
≥ 〈

m∑

i=1

AT
i ȳ∗

i , x̄〉

and

gi(Aix̄) + g∗
i (−ȳ∗

i ) ≥ 〈−ȳ∗
i , Aix̄〉, i = 1, ...,m.
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Summing them we obtain

f(x̄) +
m∑

i=1

gi(Aix̄) + f ∗

(
m∑

i=1

AT
i ȳ∗

i

)
+

m∑

i=1

g∗
i (−ȳ∗

i ) ≥ 0,

where (9.4) yields equality. So the inequalities obtained from Young’s one must

be also fulfilled as equalities, i.e. the optimality conditions are

f(x̄) + f ∗

(
m∑

i=1

AT
i ȳ∗

i

)
=

〈 m∑

i=1

AT
i ȳ∗

i , x̄

〉

and

gi(Aix̄) + g∗
i (−ȳ∗

i ) = 〈−ȳ∗
i , Aix̄〉, i = 1, ...,m.�
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