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Abstract. This paper presents a novel approach to localize a robot
equipped with an omnidirectional camera within a given 3D map. The
pose estimate builds upon the synthesis of panoramic depth images,
which are compared to the current view of the camera. We present
an algorithmic approach to compute the similarity between these syn-
thetic depth images and visual images, and show how to utilize this
image matching for mobile robot navigation tasks, i.e. heading estima-
tion, global localization, and navigation towards a target position. The
presented method requires neither additional colour nor laser intensity
information in the map. We provide a first evaluation of the involved
image processing pipeline and a set of proof-of-concept experiments on
a mobile robot. The presented approach supports different use cases like
map sharing for heterogeneous robotics teams, or the usage of external
sources of 3D maps like extruded floor plans.
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1 Introduction

In this paper, we present a novel approach to combine the advantages of powerful
sensors that create 3D maps and cheap and lightweight cameras for mobile robot
localization. Prerequisite is a 3D map of the world which has to be given or built
in advance, and a camera which is moving around in this world/map (in our
experiments, we use a panoramic camera). The map could be built by a 3D
laserscanner, which makes this world representation very accurate, and gives
metric information for an exact and global localization, however, the map could
also be given by other sources like computer models, etc.. Once the map is
available, a camera which is cheap, light, and with potentially high frame rate
moves around in this world. The 3D map is used as a world model which enables
the system to synthesize images at arbitrary positions. Subsequently, in order to
determine the current position in the world, the synthesized images are compared
to the current visual camera view. We want to emphasize that our approach does
not require additional information in the 3D map, i.e., there is no need to add
colour or intensity information to the 3D points.

Our proposed system borrows a biological inspiration from a theory about
the navigation mechanisms of the dessert ant [1]. Since the heat in the dessert
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Fig. 1. We present an approach to localize a robot with a panoramic camera in a known
3D point cloud map based on synthesized depth images.

prevents the ant from leaving a pheromone trace, desert ants developed an alter-
native method to find back to their nest: Before they leave their nest’s location,
they first take a 360◦ snapshot of their surroundings as a home view. Then, they
walk around for foraging. When they want to find back to their nest, they start
to acquire new 360◦ views of their current position. Such current views are then
compared to their home view which they still remember. By relating both im-
ages’ content, they can then finally determine a rough home direction. Details
on a technical realization of the ant algorithm on mobile robots are provided
by Möller [2]. His algorithm can be used to implement, e.g., a visual compass,
visual homing, visual teach & repeat, or exploration.

Fig. 1 illustrates our key idea to adapt this biologically plausible theory of
visual navigation for cross sensor modality localization. We replace the ant’s
home views with depth images that are synthesized from a 3D map. We further
provide an image processing pipeline, that can match these depth images to the
current visual camera view of the robot. Based on this, we are able to solve
navigation tasks, e.g., to determine the motion direction (“home direction”) to
arbitrary positions in the 3D map. In contrast to the dessert ant’s approach,
there is no need that we visited this place beforehand - all we need is the 3D
information.

There are several use-cases for such a system: For instance, a heterogeneous
robotics team consisting of one big robot equipped with a heavy (and expensive)
3D laserscanner, and one or more small robots (solely) equipped with cameras.
The big robot maps the world and thus defines a reference frame for all small
robots which can then manoeuvre afterwards or in parallel to the big robot.
Moreover, if the scan rate of the big robot is low (i.e., if the robot has to stop
to acquire a new scan [3]), the proposed system can be used to localize the
robot between consecutive scans. In contrast to visual odometry, our approach
is anchored to the previous laserscan which prevents drift. Another use-case
of the proposed system is to preset the 3D map from other sources like CAD
models, floor plans, or even from an extruded hand-drawn sketch.

In this paper, we

– present a novel approach for a camera-based localization in 3D maps that
might be useful for a variety of navigation problems. As the approach builds
upon synthesized depth images, an additional data augmentation with colour
or intensity is not necessary.



– show a proof-of-concept implementation for a set of robot navigation tasks.
– provide preliminary experiments which first evaluate the visual pipeline for

the comparison of colour and depth images, and second shows its potential
for navigation tasks.

In the next section, we give an overview over the related work. The subsequent
section 3 gives then a detailed explanation about how to realize our proposed
approach from an algorithmic point of view. Then, proof-of-concept experiments
are shown in section 4 which prove the applicability of our proposed approach.
Finally, a conclusion and a discussion of future work are given in section 5.

2 Related Work
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Fig. 2. Taxonomy of the camera-based localization approach in 3D maps including the
corresponding related work.

Fig. 2 provides a coarse taxonomy of approaches to camera based localization
in 3D maps. A prerequisite for the presented problem is a given or previously
built map. In [4] the map is given as a textured model, however, in most cases
this map is rather generated in advance by active depth sensors like laserscanners
or RGB-D cameras [5–13]. Furthermore, this geometrical data can be enhanced
either by intensity or colour information. For the most common case of using a
laserscanner for map generation, intensity data can be acquired directly with the
range measurements as reflectance information [12–14], whereas colour informa-
tion has to be added by additional sensors like mono- or omni-cameras [4,9–11].
It should be mentioned that RGB-D or stereo-camera could also be used as they
measure the range and colour of an obstacle concurrently, however, this approach
is less suited due to their low range and bad accuracy compared to laserscanners.

As soon as an initial map is present, the goal is to localize a system equipped
with a camera within this 3D map. Basically, there are two ways to achieve a
localization: either the geometrical information of the map is used directly, or
the map is used to generate synthetic views in the world with a suited projec-
tion/camera model. In the first case, the vision information is used to reconstruct
the environment’s geometrical structure. Therefore, [5] and [8] are using the Vi-
sual SLAM system ORB-SLAM [15] to build a semi-dense point cloud of their



environment, whereas [7] builds a dense reconstruction. With both 3D repre-
sentations given by the map and the visual reconstruction, the position of the
camera can be determined either directly with a point cloud registration ap-
proach like ICP (Iterative Closest Point) [5–7], or with a 3D feature matching
approach like in [8].

The second approach uses the map information to synthesize views close to
the actual camera. Subsequently, the synthetic and the real images can be used
to compute a transformation between both images. In [4, 9–11], they synthesize
the images with colour information, which requires a more expensive map gen-
eration in advance. In contrast, [12, 14] showed that the intensity information
of a laserscanner is sufficient to determine the current camera pose in the map.
Finally, a transformation between both images has to be computed. The most
common approach to compute this transformation is a Mutual Information Max-
imization based approach (e.g. see [4]) which maximizes the Shannon entropy
between both images.

Napier et al. [13] presented a system which is similar to our approach but
requires additionally intensity data. They first compute edges in both images
with a subsequent patch normalization. Then as a brute force search, they simply
sample synthetic images around an initial pose guess of the actual camera pose
in order to find a best match which corresponds to the actual camera pose.

3 Algorithmic Approach

We aim at solving navigation tasks using an RGB or grey level camera and
a given 3D map that is used for synthesizing depth images. Due to the chal-
lenges that raise when comparing images across such different modalities (vi-
sual and depth images), we focus on a holistic image comparison in contrast
to feature-based methods (e.g., building on local keypoints). The following sec-
tion 3.1 presents our applied depth image synthesis followed by an explanation
of the image processing part of our approach in section 3.2 and a description of
how this can be applied to mobile robot navigation tasks in section 3.3.

3.1 Synthesizing depth images

Since we focus on the comparison between depth and visual image, we imple-
mented a straightforward approach to generate a synthetic spherical depth image
at an requested camera pose in the map. Given the map as point cloud and a
requested pose, each point’s distance is projected onto a unit sphere centred
at this pose. The azimuthal and polar angles are discretised to the target im-
age resolution. By keeping only the minimal distance values for each direction,
this spherical grid corresponds to the depth image. Pixels without projected 3D
points are set to NaN values. This preliminary approach is easy to implement
but its runtime is linear in the number of 3D points. Presumably, the runtime
could be improved by the usage of computer graphics techniques including ray
tracing algorithms and efficient data structures like k-d trees or octrees.
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Fig. 3. Overview of the image processing pipeline to compute the similarity between
depth and visual images. See text for details.

3.2 Comparing visual and depth images

A key component of the proposed system is the ability to compare visual grey
level or colour images with depth images. Fig. 3 provides an overview of the
algorithmic steps. The input depth and visual images are first processed inde-
pendently to obtain gradient based image features for both modalities which
are combined in the final stage of the algorithm. The processing of the depth
image involves the following steps:

1. Interpolate not-a-number (NaN) values Our synthesized depth images,
and also depth images from other sources like RGB-D cameras, include a con-
siderable number of NaN pixels for which no depth information is provided.
In the input depth image in Fig. 3, they are shown in red. To reduce their
influence on subsequent processing steps, they are interpolated from their
surrounding non-NaN values.



2. Local contrast normalization The underlying thesis for matching depth
and visual images is that those parts in the scene that create depth changes
are also likely to create visual features. However, this likelihood is not directly
proportional to the magnitude of the depth change: E.g., think of the depth
change between a door frame and the wall where it is mounted. Although
the absolute change in depth is rather small, it might be as clearly visible
in the camera image as the depth edge from the frame to the room behind
the door when the door is open. Both sides of the door frame might provide
useful features in both modalities.
To utilize small and large depth steps in an image, we perform a local contrast
normalization. The goal is to scale depth changes dependent on the amount
of change in their local surrounding. The first step is to smooth the image
with a Gaussian kernel (e.g., with standard deviation 2). Then, for each
depth pixel D(i, j), we collect the depth information in a [(2k+1)×(2k+1)]
image neighbourhood centralized at this pixel (e.g., k being 2.5% of the
image width). Finally, we compute mean µ and standard deviation σ of this
data and modify the initial central pixel by

D(i, j)← D(i, j)− µ
σ

(1)

To avoid spurious edges at patch boundaries, we do not apply a patch nor-
malization to zero mean and unit standard deviation to the whole [(2k+1)×
(2k + 1)] neighbourhood in one step, but process each pixel independently
with its own neighbourhood. To keep this computational feasible, we utilize
integral images and the Steiner translation theorem to compute the means
and standard deviations.

3. Gradients To detect depth changes, we compute image gradients on the
output of the local contrast normalization. Vertical and horizontal central
differences are computed by convolving with Sobel filters. The resulting ori-

ented gradients
−→
Gdepth are additionally normalized to have a total magnitude

sum of one for the whole image.

For the visual image, we directly compute the gradients
−→
Gvisual by smooth-

ing and central difference computation using Sobel filters and also normalize to
a total gradient magnitude sum of one.

To obtain the similarity s between visual and depth images, we evaluate the
mutual projections of these gradients by

s =
∑
pixels

∥∥∥∥∥
−→
Gvisual ·

−→
Gdepth

‖
−→
Gdepth‖2

·
−→
Gdepth

∥∥∥∥∥+
∑
pixels

∥∥∥∥∥
−→
Gdepth ·

−→
Gvisual

‖
−→
Gvisual‖2

·
−→
Gvisual

∥∥∥∥∥ (2)

The later section 4.1 will provide experimental results on this similarity com-
putation including an evaluation of the influence of individual parts of the pro-
cessing pipeline. While this pipeline can be used with standard cameras (as is
done in section 4.1), the following section applies this approach to panoramic
images from an omnidirectional camera to solve navigation tasks.



3.3 How to apply this approach to navigation tasks?

The application to navigation tasks is inspired by the theory of the dessert
ant’s navigation mechanisms [2] outlined in the introduction. Since we are not
able to estimate the underlying camera motion directly from the comparison of
depth and visual images, we require to sample possible transformations to find
reasonable transformations. In the following, we want to discuss how this can be
feasibly applied to three mobile robotics navigation tasks: visual compass, global
localization, and navigation towards a goal location.

Visual compass Given a local 3D map (e.g., a single 3D laserscan from a nearby
location) or a global 3D map and a rough estimate of the current position of the
robot, we want to estimate the heading direction of the robot relative to this
map based on a panoramic image from the current position.

Based on the comparison of visual and depth images from the previous sec-
tion, we propose the following approach:

1. Inputs are a panoramic image I and a 3D map.

2. Synthesize a depth imageD from the 3D map at the given estimated position.
The orientation for synthesis is aligned to the coordinate system (i.e., yaw
equals zero).

3. For a discrete set of possible orientations α (e.g., each 10 degrees), create
the rotated panoramic image Iα. This can be efficiently done by circularly
shifting the columns.

4. Compute the similarity between each rotated image Iα and D using equa-
tion 2. For an efficient implementation, equation 2 allows to precompute the
image gradients and then rotate this feature image instead of computing
features for each rotated input image.

5. The estimated robot orientation corresponds to the rotation α∗ of the most
similar image Iα∗ .

The evaluation in section 4.2 will show that the quality of the heading esti-
mation is robust to errors in the initial pose estimate.

Global localization Given a global 3D map, we want to estimate the absolute
pose of the robot in the map. The image similarity computation of section 3.2
seamlessly integrates into Monte Carlo localization. For each sample robot po-
sition, a depth image is synthesized and compared to the current panoramic
image based on the above described scheme for heading estimation. If only a
single panoramic image is given, we can sample all possible robot locations and
estimate their likelihood directly from the image similarities (example results
are given in Fig. 6). If a sequence of images is available, the similarity from
equation 2 can be used for computing the resampling weights in a particle filter
for successive pose estimation.



Navigating towards a goal location Given a global 3D map, a rough initial
guess of the current robot pose and a nearby target location X, we want to esti-
mate the motion direction towards X. If the rough estimate of the current pose is
far away from the target location, it may be sufficient to compute a (accordingly
rough estimated) motion direction directly from the geometric relation between
the initial guess for the current pose and the target. However, the closer we are
to the target location, the higher is the relative error due to the only roughly
known current robot pose.

In such cases, we can estimate the motion direction towards the target based
on similarities between the current visual panoramic image of the robot and
synthesized depth images around the target location. Therefore, we sample pos-
sible motion directions ψ and motion distances d. The sample values for ψ and
d should be selected based on the geometric relation of the robot pose estimate
and the target location. The more uncertain the pose estimate is, the more sam-
ples are required. In the results presented in section 4.2, we sample ψ each 10
degrees and use d ∈ {0.5m, 1m}.

Each sample is used to create a transformed target location Xψ,d and to
synthesize a depth image from the 3D map at this pose. Again, the above scheme
for heading estimation can be used to evaluate the accordance of this sample
pose with the current image. The best motion direction can be obtained from
the sample motion direction ψ∗ that created the most similar synthetic depth
image.

4 Experimental Results

This section is divided into two parts: an evaluation of the image processing
pipeline and a proof-of-concept experiment on a navigation task with our mobile
robot depicted in Fig. 5.

4.1 Image processing pipeline evaluation

Experimental setup To answer the question whether we are able to compute
a reasonable similarity measure between depth and visual images at all, we first
evaluate the image processing pipeline of section 3.2 on an RGB-D dataset. We
collected a sequence of 300 image pairs with a hand held Asus Xtion sensor. This
RGB-D camera provides pairs of visual and depth images that are (almost) pixel
aligned. The sequence was captured in several rooms, a staircase and a hallway
of our university building. A typical distance between consecutive images is one
meter walking distance and/or 25 degree rotation mainly around vertical axis.
Example images can be seen in Fig. 4.

Based on this dataset, we pose the following place recognition problem: Given
a visual image from this dataset, decide which depth images show the same place.
This experiment is evaluated by computing precision-recall curves. We use the
algorithm of section 3.2 to compute similarities between all possible pairs of
visual and depth images, and apply a threshold t to this similarity to obtain
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Fig. 4. (left) Evaluation results of the image processing pipeline on the RGB-D dataset.
See text for details. (right) Two example sequence parts of the RGB-D dataset.

binary decisions about matchings. A true-positive (TP ) matching is a visual
image that is matched to the single correct depth image. A false-positive (FP )
is every matching between non corresponding images. There can be one TP
and multiple FP matchings for each image. All pairs of corresponding images
that are not recognized as matchings are counted for false-negatives (FN). From
these values, we compute:

recall =
TP

TP + FN
precision =

TP

TP + FP
(3)

The threshold t is varied to compute curves in the precision-recall graph.

Results Fig. 4 provides results of the image processing pipeline of section 3.2
on this task. The similarities computed from the whole described pipeline (the
black curve D) showed to be well suited to approach this task. A simple image
evaluation, whether there are high gradients at the same parts of the images or
not (by element-wise multiplication of the gradient magnitude images), is not
sufficient to solve this task (the blue curve A). Normalizing the total sum of
gradients in each image before the element-wise multiplication yields the im-
proved red curve (B). Incorporating the direction of the gradients by mutually
projecting them on each other further improves the results (the green curve C).
Finally, the application of the described local contrast normalization results in
an additional significant improvement.

While the images from the RGB-D camera are reasonably well pixel-aligned,
for the target robotics application we want the similarity measure to be robust



Fig. 5. The used hardware for the proof-of-concept real-world experiment. Our robot
(see [3] for a system overview) is equipped with an omni-camera (middle), and a custom-
made 3D laserscanner [16] (right).

against small deviations. The second graph in Fig. 4 shows an evaluation of
the influence of a misalignment between pixels in the visual and depth images.
Therefore, we artificially applied a horizontal offset on the depth images before
computation of the similarity (we shift the image columns and refill with NaNs).
The resulting precision-recall curves show that the performance gradually de-
creases with increasing amount of misalignment. This behaviour is well suited
for application in the navigation approaches described in section 3.3: We don’t
want the similarity measure to be invariant against such misalignments since this
would, e.g., prevent from determining the motion direction close to a target or
even the application for a visual compass at all. On the other hand, robustness
to reasonable misalignments reduces the required number of pose samples and
increases robustness to small errors in the 3D map or the camera calibration.

Although there are significant differences between these RGB-D image pairs
and the comparison of panoramic images and synthesized depth image, the good
performance of the image processing pipeline on this experiment encourages its
application for the navigation task of section 3.3.

4.2 Proof-of-concept real-world experiment

Experimental setup This proof-of-concept real-world experiment is conducted
for an investigation of the performance of our proposed algorithm for a camera-
based localization in a 3D world. As experimental environment we choose a lab
(see Fig. 6) in which we mark eight points A-H in a 3× 1 metres grid for which
our robot captures omnidirectional camera snapshots.

We use a skid-steering mobile robot1 which is equipped with both a 3D laser-
scanner and an omni-camera (see Fig. 5). Our custom-made 3D laserscanner
[16] consists of a spinning Hokuyo UTM-30LX 2D laserscanner, which achieves
higher resolutions than typical ready-to-use 3D laserscanners. It provides 0.25◦

1 A full description of the robot including hardware and software setup can be found
in [3].
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Fig. 6. Visualization of the result of our proof-of-concept real-world experiment. The
left side shows heat maps (top view of the room) representing the similarity of depth
images synthesized all over the room to the eight omni-camera images at the positions
A-H (darker colour corresponds to higher similarity). The right 3D map is the model of
the room (shown above), and was used to generate depth images at arbitrary positions.

vertical resolution which enables us to acquire dense laserscans of an environ-
ment. For the navigation task, we create a 3D Point Cloud map of our room by
matching multiple 360◦ laserscans with the point cloud registration algorithm
ICP (Iterative Closest Point). Fig. 6 shows the resulting 3D map; note that the
ceiling was removed for visualization.

The used omnidirectional camera consists of a wide-angle camera which
points at a curved concentric mirror. The omni-camera has an aperture an-
gle of approx. 185◦, and acquires images with a resolution of 480 × 752 pixels.
The returned images are rectified with the OCamCalib Toolbox by Scaramuzza
et al. [17] in order to get 360◦ panoramic images.

Given the full 3D map of our experimental environment, our robot performs
a run along the points A-H (see Fig. 6). Meanwhile, it records omnidirectional
images at the locations A to H for the subsequent evaluation (see results below).

Results To evaluate the localization performance of our proposed approach
we synthesize depth images in a regular grid all over the room, and use the
algorithmic approach of section 3 to compute their similarity to all eight real
omni-images at the positions A-H separately.

Fig. 6 shows the result of this evaluation: Our algorithm performs quite well
as it shows the highest similarities for positions which are close to the actual
positions. All maxima approximately correspond to the actual positions of the
respective omni-image; this illustrates that our algorithm is able to perform a
global localization, this is to estimate global positions in the world. As can be
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Fig. 7. (left) Evaluation of the heading estimation error between omni-image and syn-
thesized depth image as a function of the distance between both images. (right) Eval-
uation of the image feature distance 1

1+s
between omni-image and synthesized depth

images as a function of the distance between both images.

seen, positions close to the maximum show also higher values, and their similarity
decreases with higher range. Such a continuous decrease with higher distance to
the actual position is advantageous for tasks in which we want to navigate to a
target position, as we could simply follow close high-similarity values until we
reach our actual target position.

Fig. 7 shows the result of a performance measure which investigates the
heading estimation error as well as the image feature distance as a function
of the range to the actual position. The heading estimation error (Fig. 7, left)
represents the difference between the actual orientation of the omni-image and
the estimated orientation of the synthesized depth images in the room. An ideal
curve would be a horizontal line which remains at zero, however, such a behaviour
is impossible since the amount of occlusions and perspective differences increases
with a higher range. Therefore, the behaviour of the heading estimation error
with increasing range is reasonable: for the first part, it remains relatively flat;
this indicates the heading estimation works fine even for a difference to the
actual position. The continuous increase for higher ranges is also desirable; it
shows that the heading estimation performance does not rapidly drop for small
occlusions.

The interpretation of the behaviour of the image distance with respect to
the actual position distance in the world (Fig. 7, right) depends on the use
case: A very rapid increase of the error value, even for small distances to the
ground-truth location, might be advantageous for global localization tasks as we
could determine the actual position more exactly, whereas a gradual increase
might be more desirable for navigation tasks as we could follow the gradient to
reach a target position. Since the curve shows a higher increase for lower values
and a more continuous increase for medium distances, it seems to be a good
combination for both a global localization and navigation.

Fig. 8 shows a vector field which is intended to investigate the performance
of an actual navigation task. Here, we use a localization approach as described in
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Fig. 8. Estimation of motion direction from the current pose to each of the target
locations shown as red circles. For each of the targets, we sample depth images from
the local neighbourhood at angles ψ on two circles with radius d of 0.5 and 1.0 metres
that are centred at the target. For one example target, these circles are shown in black.
The red lines indicate the estimated motion direction between the current pose and
target. The short blue lines show the estimated orientation of the current view (this
should point parallel to the short dimension of the room).

section 3 which compares synthesized depth images with the actual omni-image
in order to estimate the camera’s orientation in the world, and the required
movement direction to get to the target position. Given a current panoramic
view, we illustrate the estimated motion direction (red lines) for a set of possible
target locations (red circles; in a practical application, we would expect only a
single target at a time). Each target is evaluated by sampling and evaluating
synthetic depth images at angle ψ and motion distance d. The two concentric
black circles illustrate the two resulting circles for one of the targets. As can be
seen, for most of the target locations, the resulting motion directions connect the
target pose and the current view location. In particular, for many target locations
whose distance is larger than d from the current image (i.e., the current image
location is not on the the black circles), there are reasonable motion direction
estimates as well.

5 Conclusion and Future Work

In this paper, we dealt with the problem of camera-based localization in a given
3D map. Our presented approach builds upon synthesized depth images which
are compared to real omnidirectional images in order to determine the current
pose of the camera. We discussed how this image matching can be applied for
navigation tasks like visual compass, global localization, or navigation towards



a target position. The evaluation of the image processing part on an RGB-
D dataset showed that the algorithm is able to provide reasonable similarity
measures between visual and depth images. The final set of proof-of-concept
experiments on mobile robot navigation tasks also showed promising results and
revealed plenty of open questions for future work.

Our aim is to investigate the applicability of this algorithm for real-world
indoor scenes like office environments, but also for outdoor scenarios like in
the SpaceBot Cup; a German national contest on a moon-like surface which
we attended in 2013 and 2015 (see [3] for details). For this outdoor navigation
task, we intend to use a heterogeneous robot team which consists of a bigger
robot, like in our real-world experiment in this work, and a smaller robot, which
is not equipped with an on-board 3D laserscanner, so that it has to use the
camera to localize itself in the bigger robot’s 3D map which is acquired with a
3D laserscanner.

During our experiments we encountered problems with the calibration of
our omni-camera. The camera-mirror alignment and consequently our intrinsic
calibration is sensitive to mechanical strains. Hence, the applicability of our
approach has to be investigated for fish-eye cameras, or even standard field-of-
view cameras, which are less sensitive for mechanical strain. Furthermore, the
system is also sensitive to its extrinsic calibration, i.e. the orientation of the
vertical camera axis in the map has to be known. In uneven outdoor terrain,
this could be addressed by combination with an IMU.

The current system is not runtime optimized and completely implemented in
Matlab, which slows down the computation time. Beside a more efficient compu-
tational implementation, algorithmic improvements can particularly address the
number of required depth-image samplings. This could be achieved by different
techniques: First, a particle filter could be applied which reduces the number
of possible locations in the world. Second, more sophisticated techniques for
a reduction of depth-image sampling could be developed like the usage of im-
age warping techniques which are applied in the mentioned ant algorithm by
Möller [2].

Currently, the features of our synthesized depth images are computed in
the 2D image space. In our future work, we want to compare this approach to
a projection of 3D features onto our synthesized images. Our current colour-
depth-image comparison is a hand-designed approach; we believe that the usage
of learning techniques could contribute to a performance improvement of our
approach as it could learn more sophisticated features.

In future work, we will also evaluate the benefit from enhancing the syn-
thesized depth images with intensity and/or colour information and include a
a comparisons of our system to other existing approaches which encounter the
problem of a camera-based localization in 3D maps.

References
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