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Abstract

Stereo odometry is the process of estimating the
movement of a stereo camera through its environ-
ment by matching point features between pairs of
consecutive image frames. No prior knowledge of
the scene nor the motion is necessary. In this
work, we present a stereo odometry approach us-
ing a specialized method of Sparse Bundle Adjust-
ment. We show experimental results with simu-
lated and real-world data that prove our approach
to be a feasible method for estimating motion in
unstructured outdoor environments.

1. Introduction

Estimating the motion of a mobile robot is one of the
crucial issues in the SLAM problem. Besides odome-
try, inertia sensors, DGPS, laser range finders and so
on, vision based algorithms can contribute a lot of infor-
mation. In general, vision based motion estimation al-
gorithms track certain feature points (sometimes called
interest points or simply landmarks) through a series of
consecutive images and estimate the motion of the cam-
era by evaluating these tracks, making use of the known
camera parameters.
With monocular vision, a single observation does not
give enough information to calculate the full state of
the mentioned features or landmarks in the world, be-
cause we can not determine the depth or distance of
a landmark from a monocular image. Bearing-Only
SLAM approaches developed methods that allow the use
of monocular vision for motion estimation nonetheless.
(Lemaire and Lacroix, 2006) and (Solà et al., 2005) de-
scribe how to initialize the state of the landmarks using a
set of Gaussians and pruning these Gaussians after sev-
eral observations until a single Gaussian which estimates
the true state of the landmark remains.
Stereo vision in contrast is able to determine the full
state of each visible landmark with a single observation,
making things easier in this sense. Stereo vision based

approaches for visual odometry have recently been used
in different ways, even on Mars (Cheng et al., 2006).
However, the basic algorithm behind these approaches
is always the same: The first step is detecting the land-
marks or feature points in the images. This is usually
done using the Harris Corner Detector (C. Harris, 1988)
which has proven to be a very stable operator in the
sense of robustness and invariance against image noise
(Schmid et al., 2000). The second step is to match in-
terest points between the left and right images of a single
stereo frame and between two consecutive frames. This
matching can be done using a simple correlation based
method as in (Nister et al., 2004).
We will not go into the details of interest point detection
and matching here. In our implementation Harris is used
to find the interest points in the images. A fairly sim-
ple Sum-Of-Absolute-Differences approach is used dur-
ing the matching. After interest point detection and
successful matching we have two sets of corresponding
3D-points: One set with the coordinates before the mo-
tion and another set with coordinates after the motion.
Now we can go on and determine the movement of the
camera between the two sets of observations.

2. The Motion Between Two Frames

The problem of determining the relative motion that
transforms a set of 3D-points into another is well known
in the computer vision community and has been solved
in several ways.
Suppose we are given two sets of rigid 3D-points X =
{X1,X2, . . . ,Xn} and Y = {Y1,Y2, . . . ,Yn} where Xi

and Yi are the 3D-coordinates of the i-th interest point
before and after the motion. What is the translation t
and rotation R that transforms X into Y so that the
mean squared error ε2 becomes minimal? The mean
squared error is then given by

ε2(R,t) =
1
n

n∑

i=1

‖Yi − (RXi + t)‖2 (1)



This problem is sometimes called the absolute orienta-
tion problem. The literature knows several solutions, like
(Horn, 1987a), (Arun et al., 1987), (Horn, 1987b) (us-
ing quaternions) or (Huang et al., 1986) (iterative solu-
tion). The method described in this section was pub-
lished in (Umeyama, 1991) and bases on (Horn, 1987a)
and (Arun et al., 1987) but corrects a mistake which led
to wrong results in some degenerated cases.
The idea behind the algorithm is to decouple translation
and rotation. The coordinates of the points Xi and Yi

relative to their centroid µx and µy will be equal before
and after the transformation. This is simply because the
transformation by R and t is an euclidean transformation
and does not affect the relative position of the points to
each other. They are moved like one rigid body. Given
this information. we can split the original problem into
two parts:

1. Find R to minimize

ε2 =
1
n

n∑

i=1

‖Yi −RXi‖2 (2)

2. Then the translation t is given by t = µy −Rµx.

The minimization problem in (2) can be solved using the
singular value decomposition SVD:

1. Calculate the centroids

µx =
1
n

n∑

i=1

Xi (3)

µy =
1
n

n∑

i=1

Yi (4)

2.

Σxy =
1
n

n∑

i=1

(Yi − µy)(Xi − µx)T (5)

3. Let UDV T be the singular value decomposition of
Σxy, SVD(Σxy).

4.

S =

{
I, if det(U) · det(V ) = 1
diag(1, 1, . . . ,−1), if det(U) · det(V ) = −1

(6)

5.
R = USV T (7)

6.
t = µy −Rµx (8)

The problem stated above is clearly a least squares op-
timization problem, as we want to minimize a squared
error measure. Least squares problems are prone to out-
liers which will lead to wrong results. What are outliers
in the terms of our motion estimation problem? Remem-
ber that we work with pairs of matched image points
(xi, yj). If all matches are correct, or only affected by
Gaussian noise, the above algorithm will work well. But
if some of the matches are wrong, so that xi and yj are
not the projections of the same world point, the algo-
rithm will fail. We can call these false matches outliers.
However, there are robust methods that can cope with
outliers in the data. So obviously, the above algorithm
can not be used alone, without any sort of improvement,
as long as we have to expect outliers in our matching
data.

3. Robust Motion Estimation Using
RANSAC

As we have seen in the last section, the SVD-based
algorithm can not be used without any further im-
provement to make it robust against outliers in the
data. RANSAC (Fischler and Bolles, 1981) is a very
well known method for robust estimation. Inspired by
(Nister, 2003), we decided to combine the SVD-based al-
gorithm with RANSAC and use the above algorithm as
hypothesis generator during the RANSAC-loop.
It is worth to take a look at the scoring function: The
SVD-algorithm gives a certain hypothesis, which is a
transformation H defined by R and t. Now we can trans-
form every Xi ∈ X to X̂i = HXi. If H was right, ev-
ery X̂i should equal Yi if (Xi,Yi) was a matched point
pair. However due to small errors in the matching or
estimation process, there will always be a small error, a
difference between X̂i and Yi. We could now define an
error measure for our scoring function to be

ε2i = ‖X̂i −Yi‖2 (9)

However, we know that the coordinates of both Xi and
Yi are affected by the triangulation error (remember
that we retrieved both coordinates by triangulation dur-
ing the stereo process). So we better do not use the
3D-coordinates for determining the error of our motion
hypothesis H, as the triangulation error and the error
from the hypothesis would accumulate and make the
resulting error measure less significant. A better error
measure can be achieved when we go back to the image
space by projecting X̂i back into image coordinates and
comparing it to the expected image coordinates given by
yi. Then we can define the error measure to be

ε2i = ‖P X̂i − yi‖2 (10)
ε2i = ‖PHXi − yi‖2 (11)

where P is the camera projection matrix. ε will be an
error in pixel units, which makes the evaluation easy:



The point pair (Xi,Yi) is a supporter of hypothesis H
if and only if the error ε is below a certain threshold, e.g.
1 pixel. The algorithm now iterates as long as enough
supporters for one hypothesis are found or as long as
enough hypotheses have been tested.
With this implementation, we are able to estimate the
movement of the stereo camera between two image pairs
(stereo frames). We are able to cope with outliers that
result from false matches during the interest point de-
tection and matching process. Furthermore, due to the
least squares optimization the algorithm can cope with
the normal image noise that arises from errors in the tri-
angulation during stereo processing and from the small
instabilities from the interest point detection algorithms.
We will see how we can improve the results of this al-
gorithm and make it more robust during the rest of this
paper.

4. Bundle Adjustment

The motion estimation method introduced so far esti-
mated the motion between two consecutive frames. The
upcoming section shows another approach that can esti-
mate motion between more than two frames. How does
that make sense? Remember that we estimated the mo-
tion from a set of matched point pairs Xi and Yi. Now
consider that we move the camera again, so that Yi can
be matched with a point Zi after the second motion.
The approach we know so far would at first estimate
motion M1 from the point sets X and Y and then the
second motion M2 from Y and Z. Each of the two mo-
tions will be prone to small errors. Now, if we know that
Xi and Yi and Zi are the coordinates of one and the
same world point, why shouldn’t we use that informa-
tion? The algorithms we have seen so far are not able to
make use of this extra knowledge. But bundle adjustment
can. Bundle adjustment is able to estimate the motion
between an arbitrary large number of frames. In addi-
tion, it does not only optimize the motion estimate, but
can also reduce the errors that were introduced into the
3D-coordinates of our interest points during the stereo
matching step. Figure 1 illustrates how the different es-
timation approaches use the provided images.

So in bundle adjustment, we have a set of world points
Xj that is seen from a set of different cameras with cam-
era matrices Pi. Of course, in reality we have only one
camera that is moved through the environment, so that
Pi is the camera matrix of our camera after the i-th mo-
tion. However, in bundle adjustment we usually treat
the Pi as if they were different cameras. In fact, it does
not make any difference if we have one moving camera
or different rigid ones. The position and orientation of
each of these cameras is contained in the camera projec-
tion matrix Pi. Each camera projects Xj to xij = PiXj ,
so that xij are the image coordinates of the j-th world

Figure 1: Top: Two-frame motion estimation methods esti-

mate the motion between two consecutive frames or positions

only. Bottom: Bundle adjustment can process the informa-

tion from several successive stereo images. The links between

the images can be seen as constraints that have to be regarded

in the estimation step. The problem of bundle adjustment is

much more constrained than two-frame problems.

point (interest point) in the i-th image.
The problem we want so solve is this: What are the “op-
timal” projection matrices Pi and world coordinates Xj

so that the summed squared reprojection error is mini-
mal?
Thus we want to solve

min
Pi,Xj

∑

ij

d(PiXj , xij)2 (12)

where d(x,y) is the Euclidean distance between image
points x and y.
Equation (12) can be extended to a weighted least-
squares formulation, such as

min
Pi,Xj

∑

ij

wij d(PiXj , xij)2 (13)

where the weights wij may be chosen according to the
variances σ2

ij of the measured image coordinates xij .

As we see from the equations above, bundle adjust-
ment is a non-linear minimization problem providing
a maximum likelihood estimate for both camera
and structure parameters if the measurement noise
is considered to be zero-mean Gaussian. It can be
solved using iterative non-linear least squares methods
such as Levenberg-Marquardt. A very comprehensive
introduction to bundle adjustment in general can be
found in (Triggs et al., 2000). This paper covers the
whole spectrum of topics concerning BA, from basic
optimization to efficient implementations.
Bundle adjustment (BA) can be used as a final opti-
mization step after good initial estimates for Pi and
Xj have been obtained by other methods, e.g. the
approaches described earlier in this paper. Like other
optimization methods, bundle adjustment is dependent



of a good initial estimate, as a starting point for the
optimization routine. Therefore it is necessary to do
a kind of pre-estimation step in order to acquire these
initial estimates. As bundle adjustment is a nonlinear
least squares method, it is prone to errors arising from
outliers in the data to be optimized. So we also have
to remove outliers from the data before we start BA
in order to get valid results. In our implementation,
both is done using the combined RANSAC and SVD
algorithm approach already described.
A short reflection about the complexity and computa-
tional costs of bundle adjustment instantly reveals a
distinct problem of the approach: Each of the world
points Xj has 3 degrees of freedom that have to be
estimated. Each of the projection matrices Pi has 11
degrees of freedom in general and still 6 DOF when the
camera calibration is known. Thus, a reconstruction
over n world points and m cameras requires a mini-
mization over 3n + 6m parameters, which can become
practically intractable very quickly with growing n and
m.

5. Sparse Bundle Adjustment

However, an efficient solution to the problem has been
proposed by (Hartley and Zisserman, 2004) and imple-
mented by (Lourakis and Argyros, 2004).
Solving (12) with Levenberg-Marquardt involves itera-
tive solving of normal equations of the form

(JT J + µI)δ = JT ε (14)

where J is the Jacobian of the reprojection function
f(a,b) = x̂. f takes a = (aT

1 ,aT
2 , . . .aT

m)T and
b = (bT

1 ,bT
2 , . . .bT

n )T as parameters and returns x̂ =
(x̂T

11, x̂
T
12, . . . x̂

T
mn)T . Here ai is the 7-vector of the cur-

rently estimated parameters of the i-th camera. We use
a quaternion notation, so we have 4 parameters for the
rotation plus 3 for translation. bj is the 3-vector with
the parameters of the j-th world point respectively. The
projected image coordinates of world point j in the i-th
image (according to ai and bj) are given by x̂ij .
The Jacobian J of f is made up of entries ∂x̃ij/∂ak and
∂x̃ij/∂bk. One may notice, that ∂x̃ij/∂ak = 0 unless
i = k and similar ∂x̃ij/∂bk = 0 unless j = k. This is
simply because the projected coordinates of world point
j in the i-th image are not dependent on any camera’s
parameters but the i-th and they neither depend on any
other world point but the j-th.
Given this, one verifies that J contains large blocks with
0-entries (see figure 2). In other words, J has a sparse
structure. The Sparse Bundle Adjustment (SBA) imple-
mentation as presented by (Lourakis and Argyros, 2004)
takes advantage of that very structure and thus enables
SBA to solve huge minimization problems over many
thousands of variables within seconds on a standard PC.
The C source code is freely available (under the terms of

a1 a2 a3 b1b2b3b4

x11

x14

x24

x21

x34

x31

camera parameters feature 

parameters

Figure 2: Structure of a sparse Jacobian matrix for a bundle

adjustment problem consisting of 3 cameras and 4 feature

points. The grey entries are all zero.

the GNU General Public License) on the author’s web-
site http://www.ics.forth.gr/~lourakis/sba.

5.1 The Algorithm

Given the vectors a and b as defined above, we can
start solving the sparse bundle adjustment problem with
Levenberg-Marquardt. The procedure follows the stan-
dard LM-algorithm (see (Madsen et al., 2004) for a com-
prehensive introduction), until we reach the point where
we have to solve the equation (JT J + µI)δ = JT ε. This
is the point where we can make use of the sparseness of
J. First we compute the matrices Aij = [∂x̂ij/aj ] and
Bij = [∂x̂ij/bi]. The error vectors εij are computed by
εij = xij − x̂ij . Now we can compute some auxiliary
variables:

Uj =
∑

i

AT
ijΣ

−1
xij

Aij Vi =
∑

j BT
ijΣ

−1
xij

Bij

Wij =
∑

j

AT
ijΣ

−1
xij

Bij Yij = WijV
∗−1
i

εaj =
∑

i

AT
ijΣ

−1
xij

εij εbi =
∑

j BT
ijΣ

−1
xij

εij

Augment Uj and Vi by adding µ to their diagonal en-
tries to yield U∗

j and V ∗
i . µ is the dampening term from

Levenberg-Marquardt.
Compute

Yij = WijV
∗−1
i . (15)

Let S be a m×m block matrix with blocks Sjk defined
by

Sjj = −
∑

i

YijW
T
ij + U∗

j (16)



and
Sjk = −

∑

i

YijW
T
ik∀j 6= k (17)

Define
ej = εaj

−
∑

i

Yijεbi
(18)

Now we can compute δa = (δT
a1

, . . . , δT
am

)T from

Sδa = (eT
1 , . . . , eT

m)T (19)

Given δa, we can compute δb from

δbi = V ∗−1
i (εbi −

∑

j

WT
ij δaj ) (20)

The sought solution δ of (JT J + µI)δ = JT ε is now
formed by simply stacking δ = (δT

a , δT
b )T . This δ is

the Levenberg-Marquardt step in the optimization rou-
tine and is added to the parameter vector p we want
to optimize. Notice that δ contains the updates for
both the camera and the 3D-point structure parameters.
The above algorithm is the core part of the Levenberg-
Marquardt optimization process. It is executed itera-
tively as long as ‖δ‖ is above a threshold (so the changes
to the parameter vector are significant) or until a certain
number of iterations have been reached. The efficiency
of this approach lies in using the sparse structure: We
do not have a measurement for every xij , so some xij

simply do not exist. These missing terms are now sim-
ply omitted from the relevant summations above. This
includes all Aij , Bij , Σxij , Wij , and Yij . We do not waste
computation time by calculating meaningless (zero) val-
ues in the variables. At the same time, this strategy
helps to reduce memory consumption, as we can keep
the data structures containing the matrices small if we
use techniques like the Compressed Row Storage format
described in (Barrett et al., 1994). This technique has
been used to store the sparse matrices in the SBA im-
plementation.

5.2 Error-Modelling - Retrieving a Covariance
Matrix

In all the equations above, the term Σxij is the covari-
ance matrix of the measurement vector xij (which con-
tains the pre-estimated 3D-point coordinates and the
camera parameters). In case we do not know the co-
variance, we simply assume Σxij to be the identity ma-
trix. However, how can we retrieve a covariance ma-
trix for the estimated camera and structure parameters
from the sparse bundle adjustment algorithm? To do
so, we have to adapt the algorithm slightly, as proposed
in (Hartley and Zisserman, 2004). Above, we defined
Yij = WijV

∗−1
i . If we want to calculate the covariance of

SBA’s results, we have to redefine Ŷij = WijV
−1
i . Notice

that we replaced V ∗−1
i by V −1

i . So we use the unaug-
mented version of V . Now we define Ŝ using the same
formula as above, but using Ŷ instead of Y and adding
Uj instead of U∗

j . So again we use the unaugmented U
(Remember that we augmented U and V by adding µ to
the diagonal entries.).
Now the covariance for the estimated camera parame-
ters can be defined as Σa = Ŝ+ where Ŝ+ is the pseudo-
inverse of Ŝ.

6. Integrating Sparse Bundle Adjust-
ment

During the past sections of this paper we described
several algorithms that are used in our stereo odom-
etry implementation. We saw how we can use the
SVD-based algorithm of (Umeyama, 1991) for estimat-
ing the motion between two frames and how this al-
gorithm can be used as a hypothesis generator in
a robust estimation framework like RANSAC. Bun-
dle Adjustment and its efficient implementation from
(Lourakis and Argyros, 2004) (SBA) is then used to re-
fine the robust motion estimates. We did not, however,
explain how we integrate SBA into the rest of the al-
gorithms. In general, we can use SBA in two different
ways:

6.1 Sliding Window SBA

The simplest and fastest estimation method is estimating
structure and motion parameters between two consecu-
tive stereo frames only. The overall motion is obtained
by simple concatenation or ‘chaining’ of the single esti-
mates. Intuitively one will expect this to be fairly inac-
curate, as possible small errors will accumulate quickly.
To avoid the problems of simple chaining, we imple-
mented a sliding window SBA approach. Instead of op-
timizing for two consecutive images only, we choose a n-
window, e.g. a subset of n images which we perform SBA
upon. The pose and structure parameters estimated in
this way are used as initial estimates in the next run,
where we slide the window further one frame. With that
basic sliding window approach, we would bundle adjust
every consecutive n-window in the sequence of the ob-
tained images, even if the robot has not or only very
little moved while the images of the window were taken.
Therefore another idea is to only include an image into
the window, if its pose is more than a certain thresh-
old away from the pose of its predecessor in the window.
The final algorithm can be summarized as follows:

1. Starting from image Ii find the closest image Ii+k so
that the motion between Ii and Ii+k exceeds a certain
threshold. This can be determined by pairwise SBA
between Ii and Ii+k or, of course, using odometry
data.



2. Add Ii+k to the window

3. Set i = i + k and repeat from 1. until there are
sufficient many (n) images in the window

4. bundle adjust the window using the poses obtained
in step 1 as initial estimates

In this way a window size of two corresponds to the
simple chaining approach.

6.2 Full SBA

Full SBA optimizes the whole bundle of obtained im-
ages at once. It determines camera poses and structure
parameters for all recorded frames in one big optimiza-
tion loop. Although this should intuitively yield the best
results, it is, due to its complexity, an off line (batch)
method not usable to continuously update the robot’s
position as it moves along.

7. Our Algorithm at a Glance

Now that we laid out details of the several steps of
our stereo odometry algorithm, we want to summarize
things before we look at experimental results in the
next section.

1. Acquire stereo images and 3D information from the
stereo camera.

2. Find interest points in the left image by using the
Harris operator.

3. Move.

4. Again, get a stereo image and find interest points in
it.

5. Match the interest points that were found in steps 2
and 4.

6. Enter the RANSAC loop, using the SVD-based al-
gorithm for generating hyoptheses about the motion.
RANSAC will return a motion estimate and a set of
inliers. Outliers (mainly false matches) will be re-
moved.

7. Use sparse Bundle Adjustment over the last n frames
to refine the motion estimated by RANSAC

8. repeat

8. Experimental Results

We already showed that sparse bundle adjustment
is a feasible method for motion estimation on
mobile robots in outdoor terrain in earlier work
(Sünderhauf et al., 2005), but want to repeat the results
here for the sake of completeness.

8.1 Real-World Data

In this early work, we did not use RANSAC for remov-
ing outliers in the data, but a simple and naive iterative
method. However, only a little number of false matches
were contained in the data, because a very sophisticated
matching algorithm was used (Jung, 2004).
We tested our algorithms on a dataset of 80 images
acquired in an outdoor environment using a stereovision
bench made of two 640x480 greyscale cameras with
2.8mm lenses and a baseline of approximately 8cm.
Max Bajracharya from JPL provided us with the images
and data. Ground truth data was extracted from using
a Leica ”total station” surveying instrument. Between
18 and 308 feature points were visible in each image,
with 106 on average. Each point was visible in only 4
consecutive images on average.

Sliding Window SBA The dataset was tested with
several window sizes and motion thresholds. The results
for different parameters settings are shown in figure 8.1.
The average deviation from the ground truth position for
all tested methods was approximately 23 cm (2.3 % of
travelled distance). The error tends to increase slightly
with increasing motion threshold above 20 cm because
fewer feature points can be matched between two consec-
utive images and the quality of the matches drops with
increasing movement between the images. However, the
differences between the different parameter settings are
not significant. They are far below 1% of the traveled
distance. The camera was mounted very close to the
ground and was tilted down, so only few feature points
were identified (and successfully tracked) in a feasible
distance from the robot to compare the different win-
dow sizes and motion thresholds.

Full SBA The position estimated by full SBA was
20.48 cm away from the ground truth position which
is slightly better than the above results, as we expected.

8.2 Experimental Results from Simulation

The algorithm proposed in this work has not been tested
with real image data yet, so we have to rely on simulated
results.
The simulation maintains a world consisting of inter-
est points only. A freely parameterizable stereo camera
is moved through this point world following arbitrary
paths. The simulated images (i.e. the projections of the
world-points) can be disturbed by noise and then saved
to a file and used for processing in the stereo odometry
framework.
So by using simulated data, we skip the steps of find-
ing and matching interest points. We can still use the
simulated data to evaluate the functionality of motion



Figure 3: Several estimated trajectories for the outdoor dataset. The thick black line is the ground truth.

Figure 4: Simulated position and orientation error (in per-

cent) of RANSAC and SBA vs. increasing image noise.

estimation by the RANSAC-SVD-algorithm scheme and
sparse bundle adjustment. As these were the mainly fo-
cused parts during this work, using simulated data is not
such a big drawback at all. Of course, the whole process
will be tested and evaluated with real-world data during
future work.
The diagram in fig. 4 shows the relative errors in the
estimated position and orientation with rising noise in
the simulated images. What can be read from this?
The refinement by SBA clearly pays off, as the error of
the combined RANSAC + SBA approach is well below
the RANSAC-only error. So once there is some noise
present in the image data (which will always be the case
in practice), SBA is a clear improvement compared to
the RANSAC-only algorithm.
As usual, we have to consider how good reality can be
represented by the simulation. The standard deviation of
the simulated noise rises from 0 to 0.5 pixels. What value
can we expect in practice? This is mainly dependent on
the interest point detection and matching scheme we use.
We expect the standard deviation sigma of the interest
point detection process to be between 1/6 and 1/3 pixel.
The relative errors in percent at this noise level are ap-
proximately 4% for the position and 2% for the orienta-

tion. These results are good and in the order of magni-
tude of the results of other approaches and results cited
before. Still, these values have to be confirmed with real
data.
Our goal is to implement the stereo odometry process on
the robots and use it online, in real time. Most time is
spent with interest point matching and outlier removal
(RANSAC). The SBA estimation then runs relatively
quickly in approximately 100ms. So the biggest poten-
tial for optimization is clearly the interest point match-
ing step. If we can improve this part of the software, we
do not only accelerate the matching process itself, bet-
ter matches lead to better initial estimates and a quicker
outlier removal.

9. Conclusions and Further Work

We presented our approach towards a robust, efficient
and yet accurate stereo odometry algorithm that can
be used online on autonomous outdoor robots. Re-
sults from earlier work already proved sparse bundle
adjustment to be a feasible method for visual mo-
tion estimation. The robust estimation scheme using
RANSAC allows the use of a fast and simple interest
point matching algorithm.
In future work our approach will be tested with real
word data to further prove its use. Ideas for further
improvements include the use of other robust estimation
schemes like MSAC or MLESAC that may be superior
to RANSAC. A quantitative discussion about the trade-
off between quick (but dirty) interest points matching
and computationally rather expensive robust estimation
methods is for sure worth doing in the future.
Stereo odometry should also be fused with other
motion-estimating methods using an Extended Kalman
Filter. It is therefore necessary to acquire the covariance
matrix of SBA’s results. We showed how to do this and
will implement this approach as well.
Finally, the feature detection and selection process
itself could be modified. For instance the methods
presented in (Lowe, 2004) could improve feature quality
significantly. Again, the tradeoff between this more



expensive feature point finding and matching strategy
has to be discussed.
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