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Abstract

Controlling and coordinating a heterogeneous
and autonomous multi-robot system is still a chal-
lenging task. To reduce the required implemen-
tation effort, the middleware concept has been
introduced recently. This software layer defines
unified interfaces and communication services ac-
cording to the individual robot capabilities. We
were faced with the problem of identifying an
appropriate middleware software architecture for
our heterogeneous multi-robot system designated
for outdoor search-and-rescue missions. After
comparing different alternatives, we chose Miro
as a basic architecture. This article describes our
experiences with using and adapting Miro for our
purposes. Special attention is payed to the open
problem of communication security.

1. Introduction

One of the key research areas at the Institute for Au-
tomation at Chemnitz University of Technology are mo-
bile autonomous outdoor robots. Our robots are desig-
nated for search-and-rescue (SAR) missions in dangerous
environments or inaccessible terrain. This requires the
cooperation of several heterogeneous robots with differ-
ent capabilities, e.g. by dividing up the search space and
sharing sensor information or local maps. To improve
the fault-tolerance of the multi-robot system, a grace-
ful performance degradation must be ensured by a task
reallocation in case of a partial or total robot failure.
Missions are planned and coordinated by human oper-
ators who can interact with the robots but do not teleop-
erate them. Instead, the robots act as autonomously as
possible and the operators only intervene in exceptional
situations. Figure 1 gives an impression of the robots
currently being used. All robots are equipped with the
typical range of sensors for outdoor applications (laser

scanner, mono and stereo cameras, infrared camera, dif-
ferential GPS, tilt sensor etc.). One robot has an arm
for manipulating objects and moving a camera.

The very heterogeneous and distributed architecture
consisting of multiple processing units on every robot, a
central control computer and several workstations used
by the human operators imposes a major challenge.
Thus, the main design objective is to ensure a flexible,
fault-tolerant communication infrastructure between all
active system components. The amount of communi-
cation data varies considerably depending on the cur-
rent situation. Individual failures of system components,
temporal overload conditions and stress-induced errors
in human decision-making must be considered and prop-
erly handled. On every processing node real-time and
off-line activities co-exist.

The rest of the paper is structured as follows. In sec-
tion 2 we support the selection of a middleware architec-
ture. Additionally, we describe the underlying hardware
very briefly. Our experiences with using and extending
the chosen middleware Miro are discussed in section 3.
Section 4 contains a short analysis of relevant aspects
of robot communication security. Finally, the main con-
tributions of the paper are summarized and the next
project stages are sketched in section 5.

2. Platform Considerations

2.1 Middleware

A central term in this paper is ‘middleware’. In general,
a middleware is a software layer that provides services for
the communication of distributed applications by trans-
parently defining standardized interfaces and protocols.
It provides an infrastructure for integration of applica-
tions and data in a heterogeneous and distributed do-
main. In our domain of mobile robotics the middleware
layer should provide interfaces to the different kinds of
actuators and sensors that are used on the robots and



Figure 1: Impression of our heterogeneous Multi-Robot Sys-

tem for Outdoor Applications

encapsulate them in a way that high-level software can
be easily ported from one hardware (robot) to another.
In this way, middleware ensures that high-level code
is reusable and can be deployed on different hardware
architectures. The middleware layer should also pro-
vide communication methods between software modules
within one robot or computer but also between modules
running on different robots or computers and thus enable
a distributed control architecture, inter-robot communi-
cation and collaboration.

2.2 Selecting a Suitable Software Architecture

Previous work in our group was based on the ARIA robot
APT (ActivMedia, 2005). It is released under the GNU
Public License (GPL) and well-documented. Unfortu-
nately, ARIA has some limitations, e.g. it is especially
designed for the robots offered by ActivMedia with dif-
ferential drive and a near-zero turn radius. Aria does
not provide suitable mechanisms for inter-module com-
munication or even inter-robot communication. As we
were heading for a team of heterogeneous robots (includ-
ing robots with Ackermann steering) and a distributed
control architecture, we had to look for an alternative
software architecture. Further, the ARTA API changed
several times. The resulting porting overhead for our
software components was significant.

Several middleware and software architectures and
frameworks for the robotics domain had been developed
by the community during the past years and many of
them would meet our needs. We had to identify the one
that would suit our needs best, considering a number of
criteria:

What kind of hardware platform is required? Is the
software compatible to the existing hardware? Could it
be ported to future hardware easily? What language is

it written in? What languages can be used in the higher
level software modules that have to call the middleware
routines? How long will it take new users to familiarize
with the middleware? How flexible, in terms of the used
actuators and sensors, is it? Does it already support the
existing sensors, actuators and robot platforms? How
easy is it to extend the support for new sensors or ac-
tuators or changing their and the robot’s configuration?
What license conditions have to be respected? Is the
software in use by other groups and well supported by
the developers? Could it be maintained locally in case
the developers stop working on it? How much effort
would it take to switch to the new software?

Developing our own middleware would give us full con-
trol and full flexibility, but would require a great effort
and would take a long time to define all interfaces from
scratch and to implement the support for our heteroge-
neous robot hardware. So implementing a complete new
middleware on our own was never a real option.

Instead, we looked at the available middleware
and identified two good candidates that could
be wused: Player (Gerkey et al., 2003) and Miro
(Utz et al., 2002). ORCA 1 (Brooks et al., 2005) and
ORCA 2 (Orebéck, 2005) which both emerged from the
ORCOS (Orebéck, 2004) project were no real alterna-
tives at this time, as ORCA 1 uses a mixture of inter-
module communication mechanisms (CORBA, CRUD
and a self-made socket based approach) that seemed too
complex to us. ORCA 2 had just started its develop-
ment and the process of porting the old ORCOSQKTH
framework from CORBA to ICE was not finished and
we could not foresee whether the outcome would fit our
needs. However, if we were faced with the decision to-
day, ORCA 2 would be a good candidate to consider.
Some other middleware from the robotics domain came
to our attention later on, namely MCA2 (Scholl, 2003)
and MARIE (Cote et al., 2006). But these were not con-
sidered during the decision process.

Player is maybe the best known middleware architec-
ture available. It is in use by many research groups
worldwide and supports a vast variety of sensors and
robot platforms including our Pioneer2AT robot. Player
is designed in a client-server structure where the robot
is represented as a collection of devices that can be con-
trolled via plain TCP sockets. The clients (i.e. the
controllers) can be written in any language that can
control a socket. Player defines its own message proto-
col that is used during the communication between the
clients and the server (devices). However, the commu-
nication between the different clients is completely up
to the clients themselves, Player does not provide any
methods for inter-client communication. A huge collec-
tion of software is available for Player, e.g the client li-
brary that offers many standard algorithms used in the
robotics community and two simulators, Stage (2D) and



Gazebo (3D).

Miro (the Middleware for Robots) is developed at the
University of Ulm, Germany. Unlike Player, which leaves
much of the communication between the clients them-
selves and clients and servers to be implemented by the
user, Miro uses CORBA as a powerful communication
tool between the different modules on the robot and be-
tween several robots. CORBA is widely used in industry
and fulfills our needs of flexible inter-module and inter-
robot communication. Due to the CORBA interface,
it is possible to exchange data and commands between
modules written in different languages easily. Miro it-
self was written in C++ and already supported many
sensors that were in use in our group as well as the Pi-
oneerl platform. Miro is used by the RoboCup team of
the University of Ulm and at several other universities
in Europe and beyond, but it is not really well known in
the community.

The stability of the API was a major concern for our
work. We felt a well-established standard as CORBA
would be a clear advantage in comparison to a rapidly-
evolving project as Player. From a software architect’s
point of view the CORBA-based middleware is much
more elegant and powerful as the more rudimentary
Player functionality. Of course, it remains to be ana-
lyzed how much overhead is introduced by CORBA but
that is beyond the scope of this paper.

The code-base and user community of Miro are not
as big as for Player, but Miro provides an interface to
Player, so that it is possible to test software written with
Miro in the simulators Stage and Gazebo which would
otherwise be a clear advantage to Player.

After carefully evaluating the pros and cons of each
alternative we selected Miro. This decision was made
somewhat arbitrarily, because we did not have any prior
experience with Miro or Player. It was decided to add
support for all not yet integrated sensors and actuators of
our Pioneer 2-AT robot. A second task was the integra-
tion of all features of our self-developed mobile platform
into the Miro framework.

2.8 Robot Hardware

So far Miro has been adapted to two different robots.
The first one is a Pioneer 2 AT from ActivMedia
Robotics. The robot has a differential drive with four
wheels. It is equipped with sonar range finders, one LI-
DAR scanner, a pantilt camera, differential GPS sensor,
a compass and an inclination sensor. A gripper can be
installed as an actuator.

The second robot is self-developed and based on a
four wheel electro-scooter that can transport one per-
son. In contrast to the Pioneer 2 AT, this robot has a
car steering also known as Ackermann steering. The sen-
sor equipment is comparable to the Pioneer robot, but
we use an additional stereo camera system, an accelera-

tion sensor and two LIDAR scanner with one mounted
on a tilt unit to provide three-dimensional scans. For
maximum flexibility in terms of processing capacity, ad-
ditional computer modules are very easy to integrate into
the system.

3. Experiences with Miro

3.1 Porting Miro

Miro is a CORBA-based framework for programming
mobile robots. Its development started in 1999 at the
computer science department of the university of Ulm,
Germany, and it is being used extensively by the univer-
sity’s RoboCup team ”Ulm Sparrows”. Its basic struc-
ture is depicted in figure 2.

The prospective effort of integrating new hardware de-
vices depends heavily on the type of device. Four basic
cases can be distinguished:

1. The hardware is already fully supported by Miro. In
this case the associated service can be used with little
or no additional effort.

2. Miro already provides support for devices with equal
functionality. Then, it is probably possible to reuse
the existing interfaces and base classes, leaving only
the hardware-specific parts to be implemented.

3. Miro provides support for similar devices. In this
case the programmer must derive his own interfaces
and implementation classes from the existing ones,
adding the missing functionality.

4. There is simply no support of the device or similar
ones in Miro. This means that new services must be
implemented more or less from scratch.

Examples for all four cases were encountered during
the port of Miro to our Pioneer 2-AT robot: Miro did
already include support for the robot’s predecessor, the
ActivMedia Pioneer 1 platform, the Sick laser scanner
and the video4linux interface which is used to access the
camera image. Apart from creating a Miro service con-
figuration file, which among other things defines the se-
rial interface devices to use, describes the robot’s sensor
configuration and contains a few constants for the differ-
ential drive, there was hardly anything to do to use all
these parts of the robot.

Getting the camera controls for panning, tilting and
zooming to work proved more difficult: Miro did already
define interfaces for PTZ cameras and the Pioneer base
service did even implement those interfaces, but the ser-
vice unfortunately required a Canon camera model to
communicate with while our robot was equipped with
a Sony camera. There were several changes necessary
in order to make our camera work with Miro without
breaking the existing implementation:
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Figure 2: Basic Miro Architecture

e Two new parameters, “Vendor” and “Model” were
added to the service’s configuration file. This added
the required flexibility to the service and even pre-
pared it for future integration of further camera mod-
els.

e A handler for the Sony camera’s serial protocol had
to be implemented.

e The existing “PanTilt” interface met our require-
ments pretty well, it could be reused, including the
basic implementation.

e The existing “CanonCamera” interface on the other
hand was, as the name suggests, pretty closely tai-
lored to the Canon camera’s set of functions. Apart
from that the interface had a few more deficiencies,
e.g. the zoom factor was specified as a percentage in-
stead of a device-independent physical size. As a con-
sequence, a generic “CameraControl” interface was
designed that combines the (presumed) shared func-
tionality of all PTZ cameras. Specialized interfaces
for the Canon and Sony camera models were derived
from this generic interface, adding some more meth-
ods for each particular model.

The interface redesign described above required some
serious changes in the existing Miro service (and exist-
ing clients as well). The Miro developer team was very
helpful and did a lot of work to support the task.

The remaining sensors (a compass module and a GPS
receiver) were completely new to Miro, mainly because
most supported robot models were designed for indoor
use only. All interfaces had to be designed from scratch.
Implementing the services was greatly eased by exist-
ing Miro classes for certain tasks, e.g. for serial device
communication.

Analyzing the existing Miro source code and imple-
menting all extensions described above were achieved in
the course of a six-month diploma project. Not counting

comments, the patches sent back to the developer team
amount to about 6,000 to 7,000 lines of C++ source
code. All changes were accepted by the developers and
integrated into the official Miro source tree.

To port Miro to our second, self-constructed mobile
platform, which was not supported in any way by Miro,
it was necessary to create a new interface for the Acker-
mann steering. This interface was derived from the ex-
isting “Motion” interface. The “Motion” interface only
provides operations to set the translational and the rota-
tional velocity which is generic enough to convert these
to a steering angle. The second part of porting Miro to
the mobile platform was the “Odometry” interface. The
user or robot control algorithm can query through this
interface the current velocity and position in a virtual
world coordinate system. The readings from the incre-
mental position encoders in each front wheel and the
actual steering angel are used to calculate the current
position in the coordinate system.

3.2 pyMiro - A Python Binding for Miro

pyMiro is a Python binding for Miro that is developed
in our group. It enables us to use Python for rapid-
prototyping algorithms for our robots. Code develop-
ment in Python is faster, more bug-free (Prechelt, 2000)
and simply more fun and less exhausting than imple-
menting everything in C+4. In the current version it
offers simple calls to get references to all Miro-objects
like sensors, actuators and motion control and can han-
dle the events created by the different modules. pyMiro
can be seen as a Python wrapper around the Miro func-
tionality written in C4++. Wrapping this functionality is
very easy due to the integrated CORBA communication
mechanisms in Miro. In our experience, it is much easier
(especially for students from other fields than computer
science) to start programming the robots in an interac-
tive way, as it is offered by the Python shell. pyMiro es-
pecially hides much of the internal workflow that would
otherwise be needed to take care of when writing clients
to control the robots. So with pyMiro our students get a
good start into robotics and are not discouraged by writ-
ing complicated C++ code. A simple example should
demonstrate the ease of rapid-prototyping algorithms
with Miro and pyMiro:

import pyMiro

sonar=pyMiro.getSonar ()
loko=pyMiro.getMotion()

while(1):
scan=sonar.getFullScan()
front_scan=scan.range[0]

if min(front_scan)<300:
loko.limp()



else:
loko.setLRVelocity(50,50)

This simple script just moves the robot forward until the
closest obstacle detected by the sonar sensors is closer
than 300mm, in which case the robot would simply stop.
We only need these few lines of code in pyMiro. The
same functionality written in C+-+ takes many more
lines of code.

4. Security Aspects

The robots and operators communicate via an IEEE
801.11 b/g wireless network which is part of the uni-
versity campus network. Strictly using secure services
(e.g. SSH for remote access to computers) ensures pri-
vacy and the integrity of user data. The usage of insecure
services as telnet or ftp is strongly discouraged but not
forbidden.

Unfortunately, client-server communication via
CORBA is not encrypted nor protected in any way.
CORBA is an open standard, the interface specifications
(IDL files) for Miro and even binary client programs are
freely available.

As a consequence, all Miro services are accessible from
within the university campus network. Thus, everyone
in the university network could send a request to get the
sensor readings (e.g. ranges, GPS coordinates, camera
images). This is not a problem as long as the robots are
used solely in research contexts. However, a potential
risk arises when access to actuators (e.g. the robot arm,
gripper or drive motor) is granted to unauthorized users.
Attackers familiar with the system could damage equip-
ment and even harm people. One of the robots weighs
more than 100kg and reaches a velocity of 20 km/h.

Therefore, mechanisms are required to restrict ac-
cess to the system internals (at least the actuators) to
trusted persons. Users communicating with the robot
must be authenticated. Further, the integrity of trans-
mitted commands has to be guaranteed. Confidentiality
is not necessary, because the transmitted information is
not secret. Therefore, access control for sensors is not
required.

4.1 Virtual Private Network

A simple solution could be to setup a virtual private net-
work (VPN) and connect all robots, workstation com-
puters and the master computer to it. Access to that
VPN is granted to authorized persons and robots only.
All network traffic is encrypted, which assures also con-
fidentiality. Software for VPNs is available and sta-
ble. Apart from client and server software installation
and configuration, no additional maintenance efforts are
needed. Furthermore, this approach prevents man-in-
the-middle attacks.

One potential disadvantage is the need for a so-called

VPN access concentrator node when more than two
nodes constitute the VPN. This effectively reduces the
available communication bandwidth by a factor of two in
shared media as WLANs. Considering the huge amount,
different nature (sensor data, communication between
robots, robot control) and potential real-time require-
ments of communication data in critical situations, this
reduction seems somewhat problematic.

Another potential drawback is the significant process-
ing power required for data encryption and decryption.
The computing capacity of robots is limited and must be
preserved for robot control algorithms. Encrypting all
network traffic would impose a significant load onto the
robot’s CPUs (Ravi et al., 2004). A potential solution
could be offloading security processing to a dedicated
processor (e.g. a DSP) or to a security processing unit
within the CPU (e.g. the VIA Eden’s padlock engine).

4.2 Use of Credentials

Because Miro is based on CORBA, another viable ap-
proach is to add an additional parameter to all security-
relevant functions. This parameter contains a creden-
tial, e.g. a password. This credential from the client
needs to be validated at each function call. Further-
more a database to manage the credentials must be im-
plemented. The credential must be transmitted in en-
crypted form. Additionally, the integrity of the remain-
ing function parameters must be kept intact.

This approach requires much more implementation ef-
fort, but imposes justifiable extra cost at run time in
terms of processing power and memory space.

4.8 CORBA Security Service

A third interesting possibility is the usage of the CORBA
Security Service. Miro uses "The ACE ORB” (TAO) as
CORBA implementation (Gokhale and Schmidt, 1999).
Unfortunately, TAO only provides basic security ser-
vices so far. We consider it an easy task to replace the
commonly used Internet Inter ORB Protocol (IIOP) by
the IIOP over SSL implementation (SSLIOP). This en-
sures confidentiality for all remote method invocations
between two ORBs. Also authentication is done via
client and server X.509 certificates but this is an all-
or-nothing approach; all or no services in a process are
secured. There is no simple way yet to distinguish be-
tween several levels of security, or to encrypt only se-
lected services. This results in the same drawback as
for VPNs: encrypting and decrypting all data requires
significant processing power which is precious in mo-
bile environments. However, CORBA defines the con-
cept of Portable Interceptors which solves this problem
(Group, 2001). This could be implemented in a way that
is totally transparent to the clients and servers. Only the
base class of clients and servers from Miro would have



to be modified. This approach is currently under inves-
tigation.

5. Summary & Outlook

Integrating new hardware into Miro did not impose ma-
jor problems so far. Miro proved to be a flexible and
extensible architecture. Newly-developed sensors and
actuators can be very rapidly integrated into the frame-
work.

The only drawback from our point of view is the weak
security support of Miro. Either significant processing
overhead or a major programming effort is inevitable.
The use of Portable Interceptors could be a possible so-
lution.

In the near future we will concentrate on porting al-
gorithms for sensor fusion to Miro and the design of an
appropriate robot control architecture. One possible ap-
proach could be the use of the behaviour engine already
available in Miro.
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