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Abstract — In this paper, we present an approach for aiding control
of an autonomous airship by the means of SLAM. We show how the
Unscented Kalman Filter can be applied in a SLAM context with
monocular vision. The recently published Inverse Depth Parametriza-
tion is used for undelayed single-hypothesis landmark initialization
and modelling. The novelty of the presented approach lies in the
combination of UKF, Inverse Depth Parametrization and bearing-only
SLAM and its application for autonomous airship control and UAV
control in general.
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I. INTRODUCTION
A. The Airship “Fritz”

The airship “Fritz” (see fig. 1 for an image) is a 9 meter
long blimp (i.e. it has no rigid skeleton) and is the main
part of our research project on rescue robotics. Our goal
is to provide an “eye in the sky” to fire brigades, police,
emergency response, civil protection and disaster control units.
An autonomous or semi-autonomous airship can be used to
provide valuable information about the situation during large
scale operations with many casualties, or large affected areas
like train accidents, flooding, major fire and the like.

Our airship “Fritz” is equipped with a IEEE1394 color
camera (Guppy F-046/C from Allied Vision Tech), an infrared
camera from FLIR, a Holux GPS receiver and an inertial mea-
surement unit from Crossbow. An Intel Core Duo PC system
running Linux does all the high-level work and commands
a microcontroller board based on an ATMEGA32 for low-
level and hardware related tasks. The airship can be remote
controlled if necessary or commanded via wireless connection
from the ground.

The very recent development of a novel and now patented
[1] propulsion system for “Fritz” is described in [2]. It
allows higher agility and maneuverability than with the usual
propulsion system where two engines are mounted rigidly
on a common joint. Current work comprises autonomous
navigation and control, a comparison between stereo and
monocular SLAM approaches for UAVs, enhancement of the
existing cascaded controller structure, autonomous infrared
vision based surveillance and object recognition.

Fig. 1.

Our airship Fritz during a flight above the university campus.

In past work [3], [4], a cascaded controller structure was
developed for the airship. It consists of three consecutive
levels, responsible for control of acceleration, velocity and
position. Figure 2 shows a block diagram of the two inner
levels. Optical flow was used as the only sensor input in the
past.

We now want to replace this fragile approach by a more
sophisticated method to provide more sound and meaningful
inputs to all three levels of the controller. These inputs shall be
generated by the means of short-term SLAM, by combining
inertial sensors and GPS with the information provided by a
monocular camera. Of course, the methods presented in this
paper can not only be applied to airships, but are applicable
for other UAV and autonomous vehicle in general.

B. Short-Term SLAM

With “short-term SLAM” we mean SLAM in situations
where GPS signals or other sources of global localization are
available. Short-term SLAM is used to estimate the vehicle
state, especially velocity and angular velocity, but also a more
precise vehicle position and orientation in order to aid the
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Fig. 2. The inner part of the cascaded control loop running on the airship
(Image reproduced from Krause & Protzel [3]). The box named “Vision”
on the right is a framework based on optical flow and estimates vehicle
acceleration, speed and position. We aim to replace it by a more robust and
sound state estimator.

cascaded control loop that runs on the airship [3] [4]. As loop-
closing is not necessary, landmarks that are not seen anymore
are removed from the filter. This ensures an upper bound to
the state vector size.

In contrast to this, if no sources of global localization are
available (because GPS signals are disturbed, jammed or not
available, like in planetary domains), loop-closing is necessary
to prevent localization errors grow without bounds. In this
case, however, the approach presented here can not be applied
without further adjustments because the number of landmarks
and with it the filter update complexity can grow without
bounds. Combinations with SLAM techniques that scale better
with the number of landmarks in the map may be applicable
in this situation. However, these are still open questions for
further research.

C. Related Work

The field of monocular SLAM has been very active during
the past two years. Among others, Andrew Davison con-
tributed a lot of work to the field [5] [6]. He was also involved
in the development of the Inverse Depth Parametrization [7]
[8]. The work of Eade & Drummond addresses monocular
SLAM with a particle filter approach [9]. Other recent work
that performs mono SLAM in an EKF framework are two
dissertations from LAAS/Toulouse [10] [11] and the accom-
panying publications. One of those [12] elaborates a technique
of how to combine the advantages of both mono and stereo
vision SLAM approaches.

Based on the Unscented Kalman Filter and the original
work of Julier & Uhlmann, van der Merve developed a
whole new class of filters, coined Sigma Point Kalman Filters,
and proved their feasibility for several applications, including
control of an autonomous helicopter. See his dissertation [13]
and accompanying papers like [14] for more interesting details.

Finally, interesting work has been done by Langelaan about
autonomous UAV flight in forests [15] [16]. His work uses
the UKF and a monocular camera. The key difference to our
approach is the feature initialization, where we use the Inverse
Depth Parametrization for undelayed initialization, while he
uses either delayed initialization or a rather simple way of
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Fig. 3. Comparing UT and EKF-linearization: A single set of polar
coordinates (modelled as Gaussian) is converted to cartesian coordinates.
The black particles sample the true resulting distribution. The true converted
Gaussian is shown in red. The green mean and covariance (from the Unscented
Transform) are almost identical with it. The red mean and covariance (from
the EKF-like linearization) are both inconsistent with the true Gaussian.

pre-estimating the true landmark position by intersecting the
landmark’s line of sight with the estimated ground plane.

D. Paper Outline

The next sections review the Unscented Kalman Filter,
Mono-SLAM techniques and the Inverse Depth Parametriza-
tion before illustrating how they can be combined to aid
autonomous airship navigation and control.

II. THE UNSCENTED KALMAN FILTER

The Unscented Kalman Filter (UKF) was first published by
Julier and Uhlmann [17]. It is a derivative-free recursive linear
estimator comparable but superior to the Extended Kalman
Filter. The authors showed that the core of the UKEF, the
Unscented Transform (UT) captures mean and covariance
precisely up to the second order, while the EKF captures
the mean only up to the first order. The underlying idea
is that “it is easier to approximate a Gaussian distribution,
than to approximate an arbitrary nonlinear function”. How
much better the Unscented Transform captures the mean and
covariance of a Gaussian distribution that was propagated
through a nonlinear function is shown in fig. 3. A simple
conversion from polar to cartesian coordinates reveals the
flaws of the EKF-like linearization.

By sampling a Gaussian distribution with a fixed number
of so called sigma-points, and passing these sigma-points
through the desired nonlinear function or transformation, the
UT (and with it the UKF) avoids linearization by taking ex-
plicit derivatives (Jacobians), which can be very hard in some
cases. Once the sigma-points are passed through the nonlinear
function, mean and covariance of the resulting transformed
distribution can be retrieved from them. The UT-sampling is a
deterministic sampling, in contrast to techniques like particle
filters, that sample randomly. This way, the number of samples
can be kept small, compared to particle filters: To sample an
n-dimensional distribution, 2n + 1 sigma-points are necessary.
Further improvements on the UT, like [18] reduce this number
to n + 2.



The reader is referred to the literature for further information
about the UKF, UT and its enhancements. Especially how the
sigma-points and their weights are calculated, and how mean
and covariance are restored from them is not explained any
further in this work.

III. MONO-SLAM AND THE INVERSE DEPTH
PARAMETRIZATION

A. Monocular SLAM

Many algorithms and approaches for vision-based SLAM,
localization or visual odometry have been published during
the past years. Many of them use stereovision where two
cameras are mounted in a known, calibrated configuration.
Stereo cameras provide bearing and range measurements, i.e.
the 3D-coordinates of observed landmarks are — to a certain
extend — known. However, the 3D range of a stereo camera
is limited and the immanent uncertainty of a landmark’s
estimated 3D-coordinates gets larger with its distance from
the camera. While this rising uncertainty can be taken into
account during the estimation process [19] [20], depending
on the camera parameters (base length, focal length, pixel
size) the range measurement of a stereo camera bears no
more viable information for landmarks from a certain distance.
This maximum observable range may be sufficiently large
for ground operating robots with acceptable baseline lengths
(like 10 cm). Flying robots however, especially airships that
operate in altitudes of 100 meter and beyond, need larger
baselines. The largest possible baseline length at our airship is
(at the moment) 120 cm. After calibration, even the slightest
change in the camera orientations leads to massive errors in
depth estimation, as stereo vision is very dependend on a
good and enduring calibration. Large baselines lead either to
more fragile and instable constructions (which are prone to
de-calibration) or heavier and massive constructions (meaning
higher weight and less payload on an airship). Both is not
desirable.

Due to these flaws of stereo approaches, several authors
addressed the problem with single or mono camera methods.
As a single camera can not provide range measurements, the
resulting algorithms are often called bearing-only SLAM or
simply monocular SLAM.

Sola [10] gives a vivid motivation for monocular ap-
proaches: Using stereo algorithms and having to discard
landmarks that are beyond the range of stereo observability
is like “walking in dense fog”, where you only see the close
surrounding, but nothing beyond it. It is intuitively clear that
orientation in dense fog is by far more complicated than in
clear sight, where landmarks may be too far away to estimate
their distance but still provide very usefull information about
orientation and course (e.g. the polar star or distinctive land-
marks on the horizon). Bearing-only SLAM aims to make use
of this information rather than to discard it.

B. Landmark Detection

Landmark detection and matching can be performed with
sophisticated and robust features like SURF [21] (we suc-

cessfully applied SURF features in a FastSLAM context very
recently [22] ) or with a more “quick and dirty”-like solution
with the Harris detector [23] paired with a correlation based
matching. Of course, many other feature detector and matching
schemes can be applied. However, depending on the desired
framerate one may be forced to prefer simple but quick
techniques over robust but slow ones.

C. The Inverse Depth Parametrization

With a single observation from a monocular camera, the
landmark’s position in the world can not be determined. The
Inverse Depth Parametrization introduced by Montiel et al. [7]
is a convenient way to completely initialize a landmark after it
has been observed for the first time and to express its unknown
depth. In this section we summarize the idea of Montiel et al.
but refer the reader to the original paper for further details and
considerations.

A single camera projects points from the 3D world coor-
dinate frame onto a 2D image frame. As one dimension is
lost during the projection, the process is not invertible. If a
landmark is observed with a single camera, only its bearing is
known: From the pixel coordinates (u U), two angles (9 (;5)
can be retrieved and transformed from camera into the world
coordinate frame. These two angles, combined with the camera
position (m Y z) form a ray in the world. The landmark has
to lie somewhere on that ray, however where on the ray is not
determined.

The landmark can be modeled as
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Here mg 4) is the ray directional vector and r is the unknown
depth. As the exact position of the landmark on the ray is not
known, r can range from 0 to co. Expressing this uncertainty
with a single Gaussian hypothesis is not very comfortable.
Other approaches use multi-hypothesis formulations were the
depth of the landmark is expressed using a series of Gaussians.
See for example [10] [11] [24] [S]. Montiel’s inverse depth
parametrization expresses the unknown depth using its inverse:
p = 1/r. This way, we can write

z
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For example, to express landmark ranges from oo to 1 meter, p
takes convenient values of 0...1 and can be easily expressed
with a single Gaussian distribution with mean 0.5 and std.
deviation 0.2.

To summarize the advantages of the Inverse Depth
Parametrization: it allows undelayed landmark initialization
using a single, Gaussian hypothesis. Montiel et al. [7] also
point out that the inverse parametrization bears less lineariza-
tion errors when used in an EKF SLAM framework. A yet to
be answered question is whether this effect also applies to the
UKF framework, which itself reduces linearization errors in
the first place.



IV. FILTER SETUP

The filter setup described next is responsible for generating
meaningful estimates of the airship’s state in the world. The
filter results are used as inputs to the two higher controller
levels that control linear and angular velocity as well as
position and orientation.

A. State Vector - Airship

Besides position and orientation of the system, we need to
keep track of its linear and angular velocity. The estimated
position and orientation serves as input for the position con-
troller, the speed controller uses the estimated velocities. The
vehicle state vector xy is therefore defined as

sz(zyzwﬁqﬁvwb)T 3)

The angles (z/J 0 ng) describe the airships orientation in
the world frame. We avoid using quaternions for reasons of
simplicity here. Gimbal lock situations should not occur in
our scenario as the pitch and roll angles of an airship are
going to remain relatively small during normal flight. However,
for aerial vehicles that are more agile and can conduct more
aggressive flight maneuvers, using the above Euler angles
notation can bear severe problems. Quaternions should be
preferred in this case. Van der Merwe addresses some arising
issues like how to keep the quaternion unit norm constraint
during state estimation in his thesis [13]. v and w describe
linear and rotational velocity in the world frame, b is a vector
containing the IMU biases.

B. State Vector - Landmarks

Each landmark is modeled using the inverse depth
parametrization as

T
pi=(zi vi z 6 ¢ pi) 4)
The landmarks form the map state vector xp;.

C. Control Input

The control input u is modeled as

u:(ax ay G Wy We w¢)T (®)]

It contains linear accelerations and rotations as measured by
an inertial measurement unit in the vehicle body frame.

The advantage of modelling u in the way described above
and not using the controller’s commands (which are linear
and rotational accelerations a and w) is that u automatically
captures effects caused by wind and squalls as their influence
on the airship is directly measured by the IMU.

D. State Prediction

The predicted updated vehicle state x‘t is given by the time-
discrete nonlinear function g:

(ac y z)T+VAt
¥ 6 ) +wAt
xy = g(xv,u) = (ve vy UZ)T—FaWAt (6)
oW
b

Here the upper-index "V denotes that the control input from
u (which was originally given in the vehicle body frame) is
transferred into the world coordinate frame. The nonlinearity
of g lies in this transformation.

As the landmarks are considered to be stationary, the map state
vector X, is not changed during the state prediction step of
the filter. Notice that it would, however, be possible to track
moving landmarks by adding their estimated speed to the state
vector.

E. Measurement Equation

Besides the monocular camera a GPS receiver and an
inertial measurement unit (measuring linear acceleration and
angular velocity) are available. The supplied measurements
are:

zaps = (¢ y Z)T (7N
zivu = (0o ay a. wy wp W¢)T (8)
Zcamera (uz Uz),fm (9)

The measurements z;p;y of linear acceleration and rotation
are already contained in the filter setup by using them in the
control vector u. They are therefore not considered a second
time in the filter loop and ignored in the measurement equation
below. The monocular camera projects the landmarks onto its
image plane and returns pixel coordinates (ul vi) for each
of the m observed landmarks.

@y )
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F. Combined & Augmented State Vector for SLAM

z = h(x) = (10)

The complete state-vector x is formed by stacking the ve-
hicle state vector and the map state vector: x = (xv X M)T.
With 6 parameters per landmark and 18 parameters for the
airship’s state, x has dimension 18 + 6 - m where m is the
number of tracked landmarks.

In order to correctly account the uncertainty in the control
input u and the measurements z we have to augment the state
vector x with a vector containing the control input noise, x,,
and the measurement noise x.. This was already proposed
by Julier and Uhlmann in their original paper [17]. The final
augmented vector is then formed by

x* = (XV XM Xu xz)T (11)
Its dimensionality is 184+ 6-m+64-2-m, as u has 6 entries. If
the control inputs are not biased, then x,, and x are initialized
with 0.
The state covariance matrix ¥ is augmented as well and
contains the covariances of the vehicle states, the landmarks,
the control inputs and the measurements.



V. UKF - FILTER LooP
A. Algorithm Description

From the current system state x* and the covariance matrix

3, a new set of sigma-points X; is generated. This is done
using the scaled unscented transform SUT [25]. The SUT
prevents problems with non-positive semidefinite covariance
matrices that can occur in the original unscented transform.
However, a pretty large number of sigma-points is needed
to correctly capture mean and covariance of x®. Using the
SUT, 2n + 1 sigma-points are generated, where n is the
dimensionality of the state vector. The Spherical Simplex
Unscented Transform [18] can be used instead to reduce the
number of needed sigma-points to n + 2.
The sigma-points &; are passed through a modified version
of the state estimation equation as given in (6). The function
g is modified in a way that it not only accounts the vehicle
state part of X, but the control and measurement noise part
in X; (arising from x,, and x.) as well. This way, the effect
of the control and measurement noise is accurately modelled
(better than in the standard EKF framework). We yield a set
of sigma-points that encode the predicted system state and
covariance:

X; = g(Xi,u) 12)

Given X; we can predict the measurements the sensors should
have provided if X; was the true system state. This is done
using a modified version of the measurement equation (10)
which will again provide a set of sigma-points Z that can be
decoded to the mean and covariance of a Gaussian distribution
describing the predicted measurements. From here, the rest of
the algorithm is straight forward and follows the standard UKF
scheme. The Kalman gain K is computed and the predicted
system state and covariance i and ¥ are corrected accordingly.
The algorithm returns a new estimated system state vector x+
and its covariance XV,

The entries of xT serve as input to the cascaded control
loop that controls the airships position, orientation, velocity
and acceleration. Details can be found in [3], [2]. and [4].

B. Some Thoughts about Runtime Complexity

Clearly, runtime complexity is directly dependend on the
state vector dimension n. Using the Unscented Transform,
2n + 1 sigma-points are generated. Both state-update and
measurement function are evaluated for each sigma-point. The
UT further involves a calculation of a matrix square root
from the covariance matrix ¥ which has runtime complexity
O(n?/6). A special implementation that avoids the calculation
of the matrix square root is described in [26]. The overall
complexity remains O(n?), but this square root form of the
filter is 20% faster than the conventional implementation.

Keeping the state vector small is essential to achieve high
framerates. As we already pointed out in the beginning, we
perform short-term SLAM, i.e. we do not have to keep a large
number of landmarks in the map. Landmarks that are not seen
anymore can be discarded, as no loop-closing is necessary due
to the global localization information via GPS.
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Fig. 4. Absolute position errors of the unfiltered (blue) and filtered (red)

estimates of the vehicle position in = and z direction. The lower errors from
the filtered estimates clearly prove that UAV navigation can be successfully
improved by monocular short-term SLAM. Notice that no GPS measurements
were simulated here.

VI. SIMULATION

We set up a Matlab framework and implemented the pro-
posed algorithm (using its square root form) to show the
feasibility of the approach and to identify possible pitfalls.

In the simulation, the camera moves along a curved planar
path towards 5 3D landmarks (fig. 6). We did not simulate GPS
measurements in order to show the cababilities of the proposed
algorithm and to prove that short-term UAV navigation is
possible during GPS outages. Figure 4 shows the absolute
errors of the predicted vehicle world position using only IMU
measurements (blue) and the corrected estimates from the filter
(red) along with the respective standard deviations (dashed).
The filter bears a clear improvement over the unfiltered esti-
mates. This is especially obvious with the standard deviation of
sz (perpendicular to the landmarks) that grows without bounds
for the unfiltered case but converges for the filtered estimates.
The improvements of the orientation estimates are smaller but
also visible as can be seen in fig. 5.

A major problem that occurred during the simulation runs is
that some of the generated sigma-points happen to lie behind
the camera. In this case, the measurement function A is unde-
fined. A possible method of avoiding this effect is described
in [27]. However, the proposed strategy of adapting the a-
parameter in the unscented transformation is not optimal. A
better method for constraining the sigma-points to meaningful
coordinates should be developed in future research.

VII. RESULTS & CONCLUSION

In this paper, we illustrated the concept of our approach to
aid the autonomous control of airships by the means of SLAM.
We motivated the use of monocular short-term SLAM and
the Inverse Depth Parametrization and justified the use of the
UKEF instead of the EKF as state estimator scheme. The shown
results from the simulation proved the general feasibility of the
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Fig. 5. Absolute orientation errors for the unfiltered (blue) and filtered (red)
estimates. Again, the estimates generated by the filter are superior to the

unfiltered results, although the differences are smaller than for the position
estimates.
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Fig. 6. Top view of the simulated world with 5 landmarks (the real position
is marked by the stars, the predicted position by the circles) and the vehicle
along with the respective uncertainty ellipses. No GPS measurements were
used in the filter.

approach, so practical experiments will be conducted on our
airship in future work.

Besides developing a method for avoiding ill-conditioned
sigma-points behind the camera and an analysis on the reduc-
tion of linearization errors that arise from the use of the UKF
compared to the EKF technique in [7], practical experiments
with our airship should prove the algorithm’s feasibility in
reality in upcoming work. Other questions to be answered
include the achievable framerates in relation to the number of
observed landmarks and how the number of landmarks found
by the feature detector (like SURF) can be pruned in a sensible
way.
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