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Beyond Holistic Descriptors, Keypoints and Fixed

Patches: Multi-scale Superpixel Grids for Place

Recognition in Changing Environments
Peer Neubert and Peter Protzel

Abstract—Vision-based place recognition in environments sub-
ject to severe appearance changes due to day-night cycles,
changing weather or seasons is a challenging task. Existing
methods typically exploit image sequences, holistic descriptors
and/or training data. Each of these approaches limits the
practical applicability, e.g. to constant viewpoints for usage of
holistic image descriptors. Recently, the combination of local
region detectors and descriptors based on Convolutional Neural
Networks showed to be a promising approach to overcome these
limitations. However, established region detectors, for example
keypoint detectors, showed severe problems to provide repetitive
landmarks despite dramatically changed appearance of the
environment. Thus, they are typically replaced by holistic image
descriptors or fixedly arranged patches - both known to be
sensitive towards viewpoint changes. In this paper, we present a
novel local region detector, SP-Grid, that is particularly suited for
the combination of severe appearance and viewpoint changes. It is
based on multi-scale image oversegmentations and is designed to
combine the advantages of keypoints and fixed image patches by
starting from an initial grid-like arrangement and subsequently
adapting to the image content. The grid-like arrangement showed
to be beneficial in the presence of severe appearance changes
and the adaptation to the image content increases the robustness
towards viewpoint changes. The experimental evaluation will
show the benefit compared to existing local region detectors and
holistic image descriptors.

Index Terms—Localization, Visual-Based Navigation

I. INTRODUCTION

ROBOTS operating autonomously over the course of days,

weeks, and months have to cope with significant changes

in the appearance of an environment. A single place can look

extremely different dependent on the current season, weather

conditions or time of day. Since state of the art algorithms

for autonomous navigation are often based on vision and rely

on the system’s capability to recognize known places, such

changes in the appearance pose a severe challenge for any

robotic system aiming at autonomous long-term operation.

Fig. 1 shows a coarse taxonomy of existing approaches to

visual place recognition in changing environments and how

the proposed multiscale superpixel grid, SP-Grid, is related to

them. Holistic image matching approaches compute a single

descriptor for the whole image and showed to be very useful
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Fig. 1. A coarse taxonomy of approaches to visual place recognition in
changing environments. The proposed multi-scale superpixel Grid, SP-Grid,
is a local feature based approach combining the advantages of keypoints and
fixed patches. Its regions cover the whole image and adapt to the image
content.

in combination with image sequences [1] and for single image

matching [2]. However, these holistic approaches are known

to fail in the presence of viewpoint changes [3], [4].

Local feature based methods are known to be more robust

to viewpoint changes [5]. The overview of place recognition

approaches in Fig. 1 distinguishes in the field of Local feature

based methods between Keypoints or Fixed patches.

Keypoints like SIFT, SURF or ORB are established com-

ponents of successful localization systems, e.g. FAB-MAP

[6]. Typically, a keypoint combines a local region detector

and a descriptor. For example, SIFT uses a Difference-of-

Gaussians approach to detect scale space extrema and gradient

histograms for description. Appearance changes, as they hap-

pen, e.g., between day and nightfall, pose severe challenges for

the detection and the description step of the keypoint features.

Therefore, their application in the presence of environmental

changes is known to be limited [7].

Recently, systems using descriptors based on Convolutional

Neural Networks showed impressive performance for match-

ing whole images [2] and local regions [4] despite severe

appearance changes. Thus, they are a reasonable choice for

a descriptor in changing environments - however, the question

for suitable local region detectors remains open.

For place recognition in changing environments, patch- (or

grid-) based methods showed impressive performance in the

presence of severe appearance changes as they appear for

example between “sunny summer days and stormy winter

nights” [1], [8], [9]. The potential benefit is obvious: If no

local region detector is involved in the place recognition, it

cannot fail to detect corresponding regions.

However, the decoupling of the region detection from

the image content by using a fixed grid of image patches,

comes at the cost of reduced robustness to viewpoint changes.

Dependent on the arrangement of the grid there are critical
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cases, e.g. if the image content shifts horizontally for half the

distance of two neighbouring patch centres. In this case, both

neighbouring patches are maximally different from the new

patch position.

In this paper, we propose a novel local region detector,

the multiscale superpixel grid, SP-Grid. It is located between

keypoints and fixed patches and tries to mitigate the disad-

vantages of both: keypoint detectors fail at detecting repetitive

landmarks in the presence of severe appearance changes and

fixed patches are sensitive to viewpoint changes. The proposed

SP-Grid starts from an initial grid arrangement of image

patches and adapts them to the image content using image

oversegmentations, i.e. compact superpixel segmentations at

multiple scales. The experimental results show that the pro-

posed SP-Grid is more robust to viewpoint changes than a

fixed grid and improves place recognition performance in case

of severe appearance changes compared to available local

image feature detectors (e.g. the scale space extrema used

in SIFT). An open source implementation of the proposed

approach will be available from our website1.

II. RELATED WORK

The number of approaches to place recognition in changing

environments grows rapidly. So far, no congruent solution

for the practically relevant combination of severe appearance

changes and changing viewpoints has been presented.

In terms of holistic approaches, SeqSLAM [1] combines

sequence matching with a light weight image comparison

front-end that builds on heavy image normalization and sums

of absolute differences on a down sampled image (e.g. 64×32

pixels). These two components, using sequence and the image

normalization, have also been used in other work. Continu-

ous Appearance-based Trajectory SLAM (CAT-SLAM) [10]

uses a particle filter with particle weighting based on local

appearance and odometric similarity. Lowry et al. [11] use a

combination of the underlying CAT-graph and a probabilistic

whole image matching framework for place recognition in

changing environments.

Badino et al. [12] implement the idea of visual sequence

matching using a single SURF descriptor per image (WI-

SURF) and Bayesian filtering on a topometric map. They

show real-time localization on several 8 km tracks recorded at

different seasons, times of day and illumination conditions.

Sequence Matching Across Route Traversals (SMART) [13]

is another approach to extend the robustness of holistic image

comparison based sequence matching towards varying view

points and differences of the speed along the camera trajecto-

ries. It comprises a variable offset image matching to increase

robustness against viewpoint changes and sample images at

constant trajectory intervals, in contrast to constant time in-

tervals, to handle varying speed between the two traversals of

the same route. Therefore, a source of translational velocity

is necessary. In [13], they used wheel encoders of the cars on

which the cameras were mounted.

Johns and Yang [14] propose to quantise local features in

both feature and image space to obtain discriminative statistics

1https://www.tu-chemnitz.de/etit/proaut/forschung/cv/landmarks.html.en

on the co-occurrences of features at different times of the day.

They combine their approach with a sequence matching that

can also handle non-zero acceleration and use local features to

improve the robustness towards viewpoint changes. However,

established solutions for non-changing environments based on

local feature detection and local descriptors (e.g. the SURF

keypoints of FAB-MAP) are known to reveal severe problems

in changing environments [7], [13], [15].

An existing approach to overcome the problems of detecting

repetitive features despite severe appearance changes is the

usage of fixed patches. Naseer et al. [9] use a graph theoretical

approach and formulate image matching as minimum cost

flow problem in a data association graph. For computation

of image similarities, they use a dense, regular grid of HOG

descriptors and generate multiple route matching hypotheses

by optimizing network flows. They show competitive results to

SeqSLAM. In [8], Milford et al. combine a candidate selection

based on whole image matching with a patch verification step

based on local image regions. Since the candidates are selected

based on the holistic approach, the local region matching can

only mitigate the amount of false positive matchings, but not

increase the number of matchings in the presence of viewpoint

changes.

Another approach to dealing with severe appearance

changes are learning-based methods, e.g. [15], [14], [16],

[11]. While the idea to reason about environmental changes

is appealing, the requirements on the necessary training data

and/or knowledge about the environmental changes limit the

generalisation capabilities and thus the practical applicability.

McManus et al. [17] propose scene signatures for localiza-

tion. They represent each place in the database by a set of

SVM classifiers that were trained to identify locally distinct

rectangular image patches that are stable across different

environmental conditions. In combination with a stereo camera

they can estimate the relative pose between query and database

images. Their system requires multiple images (e.g. 31) of

the places that should be recognized and an initial coarse

localization to select the set of scene signatures for which

is searched in the query image.

Recently, holistic descriptors based on Convolutional Neural

Networks (CNN) have been used for place recognition in

changing environments [2], [18]. Sünderhauf et al. obtained

image descriptors from the stacked output of a single CNN

layer in [2]. They evaluated different layers and found the

first convolutional layers to be the most robust against image

changes, but sensitive to viewpoint changes. These descrip-

tors showed impressive performance on a set of challenging

datasets, including the cross-seasonal Nordland dataset.

Very recently, the CNN descriptors have been combined

with local region detectors to increase the robustness towards

viewpoint changes. In [3], an object proposal method, Edge-

Boxes [19], is used to obtain the local regions. In our previous

work [4], we combined several local region detectors with

CNN-based descriptors, including the scale space extrema

of SIFT [5], two object proposal methods [20], [21] and a

segment soup [22]. The presented preliminary results indicate

that the combination of local region detectors and CNN-based

descriptors is promising - however, there is plenty of space
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for improvements on the repeated detection of local image

regions in the presence of severe environmental changes. This

work is continued in this paper by presenting a local region

detector that outperforms the existing detectors in changing

environments.

III. A NOVEL LOCAL REGION DETECTOR:

SP-GRID

A. The underlying superpixel segmentations

The SP-Grid uses compact superpixel segmentations to

create a set of overlapping regions at multiple scales. A

superpixel segmentation is an oversegmentation of an image -

or seen the other way around, a perceptual grouping of pixels.

There exist various approaches to create superpixels with very

different properties, please refer to [23], [24] for comparisons.

Particularly compact superpixel segmentations create grid-like

segments of regular sizes, shapes and distribution in the image.

They are similar to fixed patches, but better aligned to the

image content - and can thus increase the robustness towards

viewpoint changes.

The SP-Grid region detector requires a compact superpixel

algorithm that creates superpixels in a grid like arrangement,

in particular with a defined 4-neighbourhood. Some of the

available compact superpixel algorithms provide uniformly

shaped segments but lack this neighbourhood. For example,

SLIC [25] and Compact Watershed [26] are good superpixel

choices for a SP-Grid. In the experiments presented here we

use SLIC since it showed to provide slightly better segments

than Compact Watershed. However, Compact Watershed is

about twice as fast (∼100 Hz @ (481×321) pixels, desktop

CPU) as the fastest available SLIC implementation [26].

B. Generating overlapping regions at multiple scales

For a non-overlapping grid layout, a compact superpixel

segmentation can be used directly. To generate (k×k) regions,

the image can be segmented into (k×k) superpixels and each

superpixel becomes an output region. To allow for overlapping

regions, a higher resolution of superpixels is computed and

superpixels are subsequently grouped into regions. This is

illustrated in Fig. 2. Starting from a (4 × 4) segmentation,

all (2 × 2) groups of neighbouring superpixels are combined

to obtain (3× 3) regions.

To create SP-Grid regions at multiple scales, we compute

an individual superpixel segmentation for each scale. It would

also be possible to create regions at different scales from a

single fine grained superpixel segmentation and group different

numbers of superpixels (e.g. (2 × 2), (3 × 3) and so on)

subsequently. Fig. 3 shows example images together with the

(3 × 3), (4 × 4), (5 × 5), and (6 × 6) segmentations used to

create the overlapping regions as is illustrated in Fig. 2.

C. The algorithmic implementation

Although the algorithmic concept is quite intuitive, details

on the necessary algorithmic steps for extracting a set of

SP-Grid regions from an image are given in Algorithm 1.

The first step in line 1 is an initial rescaling of the image.

Preliminary results (that are not shown here) indicate that to

create segmentations of as few as (6×6) superpixels, reducing

the image resolution by factor two is a reasonable choice for

Fig. 2. (left) Illustration of the superpixel groupings to obtain the SP-Grid
regions for the (3× 3) layer. All (2× 2) groups of neighbouring superpixels
are combined and result in 9 regions. (right) Visualization of the overlap.

Fig. 3. Example Nordland images and resulting SP-Grid superpixel layers.

the datasets used here. The main loop in line 3 iterates over

all scales of the grid. For each scale, the required number

of superpixels is computed from the width and height of a

region and the overlap of regions, both measured in number

of superpixels (lines 5 and 6). For the example regions in

Fig. 2, the width and height of a region is 2 superpixels and

the overlap is 1 superpixel. Changing these numbers can be

used to vary the amount of overlap and to generate regions of

different sizes from a single superpixel segmentation.

In line 7 the superpixel segmentation is computed. The

remaining lines 8-20 of the main loop are dedicated to the

computation of the regions using the superpixel label image.

For the conducted index arithmetic, it is assumed that the

superpixels are arranged grid-like and the labels are in column

major order. For each region (x, y), the superpixel label index

at the top left corner is computed (lines 10 and 11) and

subsequently all (nSpPerRegion × nSpPerRegion) labels

are collected (lines 12-17). Line 18 collects the resulting

regions. They can be obtained from a merging of the assigned

superpixel areas or by any other combination (e.g. simply the

bounding box containing all assigned superpixels).

This algorithmic description can create different arrange-

ments of regions at different scales and amounts of overlap.

While an extensive evaluation of all degrees of freedom is

beyond the scope of this paper, section V-A will provide a set

of experiments to find a reasonable configuration.

IV. EXPERIMENTAL SETUP

A. The compared approaches

In section V-C we will compare the novel SP-Grid with

other types of local region detectors that showed promising
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Algorithm 1: Outline of the SP-Grid algorithm.

Data: Image
Grid resolution for each scale: Grid
Width and height of a region in superpixels: nSpPerRegion
Overlap of regions in superpixels: spOverlap

Result: Set of regions: R

1 (Optionally) Resize the image;
2 Initialize empty set of regions R=∅;

3 foreach Scale level s of the grid configuration do

// Get grid resolution for the current scale

level

4 (nx, ny) = getGridSize(Grid, s);

// Get size of the superpixel segmentation

5 nSpX = nx · nSpPerRegion - (nx-1) · spOverlap;
6 nSpY = ny · nSpPerRegion - (ny-1) · spOverlap;

// Compute the superpixel label image,

superpixel labels

// have to be arranged column major order

7 L = performSuperpixelSegmentation(I, nSpX, nSpY);

// Create regions by collecting (nSpPerRegion

× nSpPerRegion)

// groups of segments

8 for y=1:ny do

9 for x=1:nx do

// Get superpixel label coordinates of

top left corner

10 xTL = (x-1) · (nSPperRegion-spOverlap)+1;
11 yTL = (y-1) · (nSPperRegion-spOverlap))+1;

// Collect all superpixel labels for

this region

12 labels = ∅;
13 for yy=yTL:yTL+nSpPerRegion-1 do

14 for xx=xTL:xTL+nSpPerRegion-1 do

15 labels = labels ∪ {(xx-1) · nSpY + yy};
16 end

17 end

// Compute region from superpixel

labels and include in R

18 R = R ∪ {getRegionFromSuperpixels(L,labels)};
19 end

20 end

21 end

results in [4] and [3]:

• The scale space extrema detector based on differences of

Gaussians as it is used for SIFT (with the typical scale

factor six), named SIFT-DoG-6 in the experiments.

• A segment soup SP-Soup [4], based on multiple segmen-

tations using the segmentation algorithm from [27].

• Object proposal algorithms: EdgeBoxes [19], was used

in combination with CNN descriptors in [3]. Multiscale

Combinatorial Grouping (MCG) [28] is another recently

presented, promising object proposal algorithm.

• Finally, we also include the holistic CNN descriptor that

is computed according to [2] but using the same CNN

network as for the local regions.

B. The image matching procedure: CNN and Star-Hough

To apply the SP-Grid and the other local region descrip-

tors for place recognition, they have to be combined with

a descriptor and an image matching scheme that computes

image similarities from the local regions and their descriptors.

We use the same methodology introduced in [4]: A conv3-

layer descriptor is computed for the bounding box of each

Fig. 4. Example matchings of SP-Grid regions. Each row shows two
images of the same place from Nordland Spring-Winter, Fall-Winter, Summer-
Fall, GardensPoint dayLeft-nightRight and Alderley datsets. The three best
matching regions are visualized with the same colour, the bounding boxes
show the image patch that is described by the the CNN.

local region using the VGG-M network.2 The descriptors

are compared using the cosine distance metric. The pairwise

region comparisons of the landmark sets from two images are

combined using the Star-Hough image matching procedure.

Star-Hough incorporates the spatial arrangement of the land-

marks in the image by evaluating votes for a shift of the

centre of the Star Graph Model created by the landmarks

in each image. It accomplishes a similar task like outlier

rejection based on epipolar geometry, but is particularly suited

for landmarks with low precision of their spatial position and

high rates of outlier matchings - both issues typically occur

in changing environments and both are known to challenge

epipolar geometry estimation [5]. Example SP-Grid region

matchings can be seen in Fig. 4. Please refer to [4] for details

on the image matching procedure.

C. The evaluation methodology: Precision-recall curves

We present experimental results on place recognition using

precision recall curves. While this is an often used perfor-

mance measure, details on the particular evaluation methodol-

ogy have a large influence on the resulting curves. This has to

be considered when comparing results from different papers

as will be demonstrated in Fig. 9 and 11 and discuss in section

VI.

2We use the implementation from http://www.vlfeat.org/
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TABLE I
DEFAULT PARAMETERS FOR THE SP-GRID

Parameter Value

Multi-scale grid resolutions (1× 1), (2× 2), (3× 3), (4× 4),
(5× 5)

Resulting number of regions 55
Superpixel algorithm SLIC implementation from VLFeat

(compactness=30k)
Width and height of a region 2 superpixels
Region overlap 1 superpixel
Image rescaling factor 0.5

TABLE II
EXAMPLE CONFIGURATIONS TO OBTAIN A CERTAIN OVERLAP.

nSPperRegion spOverlap Resulting Overlap

2 0 no overlap
2 1 50 %

10 9 90 %

Given the image similarities between all possible image

pairings, they are divided into matchings and non-matchings

by applying a threshold t on this similarity. All image match-

ings that correspond to a ground truth place correspondence

are counted as true positives, all matchings that do not show

the same place according to the ground truth are considered

false positives, and false negatives are all image pairings of the

ground truth that are not in the set of matchings. From these

three values, a point on the precision-recall curve is computed.

To obtain the curve, the threshold t is varied.

D. The datasets: Nordland, GardensPoint and Alderley

The experiments are conducted using three datasets: The

Nordland dataset comprises images of all seasons from four

journeys on a 728 km train route across Norway [15]. We

evaluate on the complete journey of the test dataset [15] and

a unique place is assumed each 10 frames. The images are

synchronized and aligned: the pixel (i,j) of the n-th frame of

the summer sequence approximately corresponds to the pixel

(i,j) in the n-th frame of the winter sequence. For parameter

evaluation, a smaller set of 186 uniformly sampled places from

the Spring-Winter validation dataset [15] is used.

The GardensPoint dataset3 provides images captured from

a hand held camera at three traversals of an mixed indoor

and outdoor route. There are two traversals at day and one at

night. The first daytime traversal and the night traversal are

on the right side of the path, the second daytime run is on

the left side of the path. The most challenging dataset is the

Alderley dataset [1], comprising images from a summer day

and a rainy night captured from a driving car. We took every

100th frame of this dataset (on average that corresponds to a

few ten meters). Example images of all datasets will be shown

together with the resulting curves of the place recognition

experiments.

The datasets provide different types of environmental

changes and they are also quite different in terms of the

amount of contained viewpoint change. The Nordland images

are pixel aligned. They will be used directly and with addi-

tional synthetic lateral image shifts. The effect of a 10% shift

can roughly be compared to the rotation of the used camera

3Recorded by Arren Glover, https://wiki.qut.edu.au/display/cyphy/Day+and+

Night+with+Lateral+Pose+Change+Datasets
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Fig. 7. Parameters III: Same as Fig. 6 but on different variants of the
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Fig. 8. Parameters IV: Contribution of different SP-Grid region levels. For
(roughly) aligned images (left), all regions at all scale levels perform similar.
In case of additional viewpoint change (right), smaller scales perform better.

of about 5 degrees. The lateral distance between the camera

trajectories on the GardensPoint dataset depends on the actual

width of the path and varies between 1-4 meters. The Alderley

images provide real world viewpoint changes as they happen

during two traversals of the same route with a car in real

traffic.

V. EXPERIMENTAL RESULTS

A. Parameter selection

While an extensive evaluation of all parameters is beyond

the scope of this paper, we want to find a reasonable config-

uration that can be used for comparing SP-Grid to existing

approaches. Besides the choice of the superpixel algorithm

(cf. section III-A), the arrangement of the SP-Grid regions is
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important. It results from three decisions: the used scales, the

number of regions per scale and their overlap.

To evaluate the arrangement independent from the super-

pixel algorithm and the subsequent comparison to existing

approaches, we conduct an initial set of experiments using

a fixed grid (Grid) on the Berlin Halenseestrasse dataset

[3]. The fixed grid is obtained by replacing the superpixels

with static rectangular patches in algorithm 1. At the Berlin

Halenseestrasse dataset, the viewpoint changes between the

camera mounted behind the windscreen of a car driving on a

street and a camera on a bicycle on the cycle lane alongside the

road. Additionally, the illumination changes due to different

position of the sun (cf. Fig. 5).

In accordance with the experiments using CNN-based land-

marks in [4] and [3], the total number of local regions should

be about 50. Fig. 5 shows evaluation results using single-

scale (7 × 7 regions) and multi-scale ((5 × 5) + (4 × 4) +
(3 × 3) + (2 × 2) + (1 × 1) regions) setups with different

amounts of overlap given in % of the region width. Since the

used CNN descriptors are not scale invariant, using regions

at multiple scales performs better for these severe viewpoint

changes including scale changes. The combination with 50%

overlap between regions provides the best results.

Table I lists the default parameters that will be used in the

following. An extensive evaluation of these degrees of freedom

is beyond the scope of this paper, however, we want to present

some insights on the most important parameters.

For the SP-Grid as described in algorithm 1, the number

of regions on a layer is given by (nx, ny) and the overlap

is controlled by the number of superpixels per regions (nSP-

perRegion) and the number of common superpixels between

neighbouring regions (spOverlap). Different settings of these

parameters and the resulting overlaps are listed in table II. Fig.

6 and 7 show place recognition results using these settings

for the Nordland validation dataset with different amounts of

synthetic viewpoint change and the GardensPoint dataset (with

and without lateral shift).

It can be seen that overlapping regions are preferable

and 50% and 90% overlap are reasonable choices. While

90%-overlapping regions show the better performance on the

synthetic viewpoint changes of the Nordland dataset, the 50%-

overlapping regions are better at the real world viewpoint

changes of the Halenseestrasse (Fig. 5) and GardensPoint (Fig.

7) datasets.

Fig. 8 compares the contribution of the regions at different

scale levels. For (roughly) aligned images the performance of

all scale levels is comparable. In case of additional viewpoint

changes the larger (1×1) and (2×2) regions are more affected

by the changing image boundaries and thus perform worse.

Dependent on the knowledge about motion constraints or

properties of the environment, a different parameter set may be

preferable. However, the setup shown in table I is a reasonable

configuration that can deal with the viewpoint changes that

typically occur in the available datasets.

B. Is the superpixel grid better than a fixed grid?

From a theoretical point of view, the SP-Grid regions are

better aligned to the image content and should thus be more
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Fig. 9. Comparison of Grid (dashed) and SP-Grid (solid) on the Gardens
Point datasets (with and without lateral shift). The different colours indicate
how restrictively image matchings are accepted, the maximum image distance
is: blue=̂1, red=̂3, and green=̂10. Please see section VI for details.
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Fig. 10. Comparison of the robustness of Grid and SP-Grid towards different
amounts of horizontal shifts in corresponding images. For shifts > 0% SP-
Grid performs better than Grid in this place recognition experiment. A shift
of 5% is the most critical case from this comparison.

robust to viewpoint changes than the patches of a fixedly

arranged grid. To evaluate whether there is a real existing

benefit when using the SP-Grid instead of the fixed Grid, Fig.

9 shows the results of both algorithms on place recognition on

the GardensPoint datasets. An example image triple showing

the appearance change and the lateral shift can be seen on

the right part of Fig. 9. The resulting curves for the DayLeft-

NightRight comparison show an improvement in F-score and

recall at 100% precision when using the SP-Grid. The overall

place recognition performance (of course) increases with less

restrictive distances. SP-Grid always outperforms Grid in the

presence of viewpoint changes. The right plot shows the results

on the GardensPoint dataset without viewpoint change - there,

the fixedly arranged Grid performs better.

To more precisely evaluate the influence of viewpoint

changes, we can use the aligned Nordland validation dataset

in combination with artificial viewpoint changes (similar to

Fig. 6). The place recognition results for different amounts of

horizontal shift can be seen in Fig. 10. The SP-Grid clearly

outperforms the fixed Grid for all non zero amounts of shift

in terms of F-score and recall at 100% precision. For the

chosen (and presumably not optimal) choice of the initial

grid arrangement described in section V-A, a shift of 5% of

the image width constitutes a critical case. The regions of

the fixedly arranged Grid show only small overlap for this

shift. For larger shifts, the overlap increases since regions now

overlap with the regions corresponding to their neighbours in

the grid. This is a periodic behaviour with different frequency

for each layer of the grid. The SP-Grid smooths the average

overlap compared to the fixed Grid since the superpixels

adapt the initial grid to the image content. While this may

decrease the performance for perfectly aligned images, place

recognition based on the SP-Grid shows to be more robust

against viewpoint changes - in particular for the critical shifts.
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Fig. 11. Results on Nordland Spring-Winter. To allow a comparison with
results from the literature (in particular [3]), the plot in the middle shows the
same results with a different method to compute the precision recall curves,
see section VI for details.

C. Comparison of SP-Grid to other local region detectors

We compare the place recognition performance of SP-Grid

with the existing approaches presented in sec. IV. Fig. 11-12

show results on different seasonal combinations on the full

journey of the Nordland test dataset. The SP-Grid provides

higher F-score and better recall at 100% precision than the

compared approaches. According to [29], fall-winter is the

hardest and summer-fall the easiest seasonal combination. The

benefit for using SP-Grid increases with increasing severity of

the appearance change due to seasonal change.

Fig. 13 demonstrates the influence of an artificial viewpoint

change by shifting the images 5% of the image width - this

showed to be the most critical case for SP-Grid in the previous

experiments shown in Fig. 10. The performance of SP-Grid

clearly drops but is significantly more stable than the holistic

approach even in this particular challenging configuration for

SP-Grid. The performance of the other region detectors drops

slightly while keeping the order from the aligned setup. SIFT-

DoG-6 is almost not affected by this shift and performs better

than SP-Grid in this setup.

Fig. 14 shows results on the GardensPoint dataset. The

appearance changes from day to night challenge all region

detectors. SP-Grid provides the best results in the setup

including the lateral shift but is outperformed by EdgeBoxes

on the roughly aligned dataset. The results of both object-

proposal algorithms (EdgeBoxes and MCG) vary between both

setups of this dataset. They are intended to find regions that are

likely to contain an object in an image, they are not designed to

find repetitive landmarks. The example image triple shown on

the right side of this figure shows that due to the viewpoint

change, salient objects like the bench and the table on the

very right can disappear. This might also remove false positive

matchings of MCG and thus cause an improved precision.

Moreover, the route of the GardensPoint dataset is rather small

compared to the other datasets, which makes it sensitive to

individual effects on few images.

A significantly larger track is provided by the Alderley

dataset. This dataset comprises two drives through a suburb,

one at a sunny day and the other during a rainy night with

low visibility. Example images of these severe appearance

changes can be seen in the right part of Fig. 15. This is the

most challenging dataset in this evaluation. The benefit from

using the SP-Grid regions further increases, but the absolute

performance in terms of F-score and recall at 100% precision

is worse than for the other datasets.
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Fig. 12. Results on the Nordland fall-winter and summer-fall combinations.
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5% of the image width.
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Fig. 14. Results on GardensPoint day-night datasets (max. distance = 3).
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Fig. 15. Results on Alderley - the most challenging dataset.

For these low visibility conditions, the SP-Grid regions

converge to a regular grid in the absence of considerable

image gradients due to the compactness constraints of the used

superpixel algorithm - this constitutes a reasonable default set

of regions. In particular, this is in contrast to the SP-Soup that

adapts to even very small image gradients due to the absence

of compactness constraints.

VI. TWO NOTES ON THE COMPARABILITY OF PLACE

RECOGNITION RESULTS

The different colours in Fig. 9 indicate the maximum

distance of matched frames in the sequence that are accepted

as showing the same place. GardensPoint and the other used

datasets comprise image sequences, not images of disjunct

places. Typically this is handled by subsampling a set of

disjunct places or by allowing matching images up to a certain

distance in the original sequence - the effect of this distance

can be seen by the differently coloured curves in Fig. 9.

Such variations in the evaluation have to be considered when

comparing results from different papers.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2016.2517824

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2015

A second potential problem is illustrated in Fig. 11: The plot

in the middle shows a second set of precision recall curves

using the same image similarities as the left plot. However,

these curves indicate a significantly better performance of

EdgeBoxes (while the proposed SP-Grid still performs signifi-

cantly better). This second plot is generated with the evaluation

method used in [3] and similar to the there presented results of

EdgeBoxes and CNN on this dataset. The difference between

the two evaluation methods is not in the computation of image

similarities - but how true and false matchings obtained from

the image similarities are computed. In [3], only a single

matching for each query image is allowed and the decision

threshold (to classify matchings and non-matchings) is not

applied on the image similarity but on the ratio of the simi-

larities of the best to the second best matching. While neither

of the two evaluation methods can be considered generally

better or worse (however, our method allows multiple revisits

of a place and the method from [3] does not), they produce

fundamentally different curves. Thus, the results can not be

compared between different papers directly.

VII. CONCLUSIONS

This paper started from a discussion of the need for place

recognition approaches that can deal with severe appearance

and viewpoint changes. The combination of local region de-

tectors and CNN-based descriptors showed promising results

in previous work by us and others. However, in the presence

of severe appearance changes (e.g. between day and night)

existing local region detectors reveal severe problems. We

proposed a novel region detector, SP-Grid, that is located

somewhere between keypoints and fixedly arranged patches

and is designed to combine advantages of both. The experi-

mental evaluation showed that the SP-Grid can mitigate the

negative influence of critical viewpoint changes compared

to fixedly arranged patches and provides considerably better

performance than the compared methods (e.g. SIFT-DoG-6) in

case of severe appearance changes. The presented implemen-

tation of the concept of a SP-Grid includes some components

and parameters for which a reasonable setup was chosen,

but presumably not an optimal. Particularly an adaptation of

the initial grid arrangement based on knowledge about the

expected viewpoint changes and a superpixel algorithm, that

is particularly designed for this system, may further improve

the results.
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