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Abstract— Circular Convolutional Neural Networks (CCNN)
are an easy to use alternative to CNNs for input data
with wrap-around structure like 360◦ images and multi-layer
laserscans. Although circular convolutions have been used in
neural networks before, a detailed description and analysis is
still missing. This paper closes this gap by defining circular
convolutional and circular transposed convolutional layers as
the replacement of their linear counterparts, and by identifying
pros and cons of applying CCNNs. We experimentally evaluate
their properties using a circular MNIST classification and a
Velodyne laserscanner segmentation dataset. For the latter, we
replace the convolutional layers in two state-of-the-art networks
with the proposed circular convolutional layers. Compared
to the standard CNNs, the resulting CCNNs show improved
recognition rates in image border areas. This is essential to
prevent blind spots in the environmental perception. Further,
we present and evaluate how weight transfer can be used
to obtain a CCNN from an available, readily trained CNN.
Compared to alternative approaches (e.g. input padding), our
experiments show benefits of CCNNs and transfered CCNNs
regarding simplicity of usage (once the layer implementations
are available), performance and runtime for training and infer-
ence. Implementations for Keras with Tensorflow are provided
online2.

I. INTRODUCTION

Convolutional Neural Networks (CNN) are a widely used
and powerful tool for processing and interpreting image-like
data in various domains like automotive, robotics or medicine.
Compared to layer-wise fully connected networks, CNNs
benefit from weight-sharing: Instead of learning a large set
of weights from all input pixels to an element of the next
layer, they learn few weights of a small set of convolutional
kernels that are applied all over the image. The goal is to
achieve shift equivariance: A trained pattern (e.g. to detect a
car in a camera image) should provide strong response at the
particular location of the car in the image, independent of
whether this location is, e.g., in the left or right part of the
image. However, this goal is missed at locations close to the
image borders, where the receptive field of the convolution
exceeds the input. Typically, these out-of-image regions are
filled with zero-padding. During the repeated convolutions
in a CNN, this zero-padding occurs at each layer and the
effect of distorted filter responses grows from the image
borders towards the interior. While this seems inevitable for
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imagery from pinhole-model cameras, this is not the case
for panoramic data. In panoramic data, there is at least one
dimension with wrap-around structure and without an inherent
image border. However, feeding panoramic data as 2D images
to a standard CNN artificially introduces such borders. Fig. 1
shows the example of object recognition using a car mounted
Velodyne - its 360◦ degree depth and reflectance images are
practically important examples for panoramic data. Ignoring
the wrap-around connections by using standard CNNs creates
blind spots near the image borders where we are unable to
interpret the environment.

This paper discusses an extension of CNNs for wrap-around
data: Circular Convolutional Neural Networks (CCNNs),
which replace convolutional layers with circular convolutional
layers. Each CCNN layer has a receptive field that is a
connected patch in the image interior, but wraps around the
appropriate image borders. Fig. 1 illustrates this concept as
convolution on a ring.

For panoramic data, modeling the circular path in the
convolutional NN is quite obvious and has been casually used
in several existing works (e.g. recently [1], [2]). However,
there are also many approaches that do not model the circular
path in the network, but use surrogate techniques like input
padding [3] (which increases computational time and memory
consumption) or training on multiple circular shifted versions
of the input data [4] (that increases the amount of training
data and time without additional information gain, and might
waste representational capacity for particular filters for border
areas). Sometimes, the wrap-around connections are even not
used at all [5].

Why are circular convolutions not used more frequently in
CNNs for panoramic data? We see two major reasons in (1)
missing literature with evidence and quantification of their
benefits and (2) a lack of knowledge about their systematic
design, particularly technical details on the implementation
for nontrivial CNNs (e.g. those with transposed convolutional
(deconvolutional) layers). This paper addresses these issues
with the following contributions:
• Sec. III explains how circular convolution can be im-

plemented in Circular Convolutional Layers and derives
the novel Circular Transposed Convolutional Layer that
extends the application of circular convolution to a wider
range of neural network architectures, in particular many
generative convolutional networks.

• Using these layers, Circular Convolutional Neural Net-
works (CCNN) can be as easily built and trained as CNNs
(Sec. III). This is also demonstrated in Sec. V-B where we
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Fig. 1: The example image on the top right shows a reflectance map of a car mounted Velodyne laser scanner. The street in front of the car is located in the
middle of the image, the street behind the car can be seen on the left and right borders. In this unwrapped panorama, it is hard to recognize the truck that is
directly behind the car and split by the image border, half of it is at the left and the right image border. A standard CNN would apply zero-padding and is
likely to miss the two halves of the truck. Even if the image is rotated to place the image border at a less important direction, there still remains a blind
spot somewhere in the visual field. In a Circular Convolutional Neural Network, there is no such horizontal border and no such blind spot.

create CCNNs for two existing state-of-the-art semantic
segmentation networks (DeconvNet [6] and Tiramisu [7]).

• Beside training from scratch, the proposed CCNN structure
allows weight transfer from an available, readily trained
CNN to create an according CCNN (sec. III-C). We
evaluate this novel approach in Sec. V-D.

• Input padding is the most common surrogate approach to
circular convolutions. Sec. IV discusses problems of this
approach and provides a theoretical bound on the amount
of required input padding to resemble the behavior of
CCNNs. The effects of input padding of various amounts
are experimentally evaluated and compared to CCNNs in
Sec. V-E. We also experimentally evaluate the benefit of
CCNNs over the above mentioned surrogate technique of
training on shifted input data [4] in Sec. V-A.

• Sec. V-B qualitatively evaluates the performance gain of
CCNNs compared to conventional CNNs on the important
automotive recognition task from Fig. 1 using panoramic
Velodyne laser data. We show that there is a blind spot for
conventional CNNs near the image border and that this can
be addressed by CCNNs. We further quantify the range
of the positive effects towards the image interior. These
experiments are done using the above mentioned CCNN
versions of the state-of-the-art DeconvNet and Tiramisu
networks.

• The implementation of CCNN layers for Keras with
Tensorflow backend is provided online2. Changing a model
from CNN to CCNN is as easy as changing the layer name
from Conv2D to CConv2D.

II. RELATED WORK

Although using a circular convolution in a CNN is not
new (e.g. [1], [2]), comprehensive presentation, analysis and
discussion of their advantages and drawbacks is still missing.
In particular, to the best of our knowledge, prior works
never introduced or applied circular transposed convolutional
(deconvolutional) layers or used weight transfer between
linear and circular convolutional layers.

In automotive applications and robotics, circular convolu-
tion is of particular practical interest for two types of data
sources: 360◦ imagery (panoramic or spherical images) and
depth data from rotating multi-layer LiDARs (e.g. Velodyne
laser scanners):

Panoramic images A straightforward way of dealing
with panoramic input images is to ignore the wrap-around
connections, e.g., by feeding the whole image or cropped
patches to a standard CNN [5]. A more advanced approach
is to rotate (circular shift) the image to bring less important
image content to the border or to align the views [8]. Lo
et al. [4] augments the training data with a set of circularly
shifted images to cope with circular data which caused a 36×
higher training effort. For object recognition, Shi et al. [3]
create panoramic views from a cylindric projection of a 3D
model around its principal axis. This cylindric projection is
unwrapped and fed to a CNN. Border effects at the unwrapped
cylinder image seam are addressed by padding the image
on one side with an appropriate patch. Furthermore, they
introduce a row-wise max-pooling layer to create rotation
invariance. Such an increased input size comes at the cost
of additional efforts for training and inference, e.g., in [3]
the image size is increased by 2/3 of the image width. A
multiplication in the frequency domain corresponds to a
circular convolution in the spatial domain, thus implementing
convolution using a Fourier transform could account for
wrap-around structures. This technique is quite common for
Correlation Filters [9] and occasionally also discussed in the
context of neural networks for image processing [10].

Spherical images A typical source of panoramic images
are projections of spherical images, e.g., from mirror-based
omnidirectional cameras or vertically directed fisheye cameras.
To avoid the projection, a straightforward approach is to
select patches directly from the spherical image and feed
them to a standard CNN [11]. Su et al. [12] reshape and
learn convolutional kernels at different polar angles to apply
them directly on the spherical image. In another direction,
Ran et al. [13] train CNNs to work on holistic uncalibrated



spherical images. Cheng et al. [1] project 360◦-images onto a
cube to generate six flat images; to address the wrap-around
structure of the images, they use the cube-neighbors for
padding to perform a circular convolution. However, in a
post-processing step to get a saliency map they upsample
an intermediate representation without any further circular
consideration. Cohen et al. [14] propose a class of CNNs for
spherical images that apply convolutions directly on the sphere
and rotation group. They omit planar projections that would
introduce space-varying distortions and achieve rotational
weight sharing as well as rotation equivariance.

3D representations The sensor output of rotating multi-
layer laser scanner, e.g., the popular Velodyne laser scanners,
is a cylindrical projection of the distances to the closest
obstacles. This can be processed in form of a panoramic
image (with a typical resolution of, e.g., 64 × 864 pixels)
or transfered into a 3D structure. Although there are deep
learning approaches based on these 3D structures, e.g., using
voxel grids [15], point clouds [16], or 3D voting [17], the
additional dimension increases computational complexity and
efficient ways to deal with the sparsity of 3D data (i.e. on
GPUs) are still subject of ongoing research. Boomsma et al.
[2] apply 3D kernels for spherical convolutions to molecular
structures in a discretized spherical region. In their provided
implementation, they use circular convolutions. However,
there is no investigation of the performance gain when using
circular convolutions.

III. CIRCULAR CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) [18] are a special
kind of Artificial Neural Networks (ANNs) for processing
grid-like data like, e.g., time-series data (1D), RGB or depth
images (2D), or Point Clouds (3D). The CNN’s architecture
concatenates at least one convolutional layer with other layer
types like fully-connected layers, batch normalization, or
activation layers. This architecture allows to compute complex
features of the input data for tasks like object classification,
detection, segmentation, or reinforcement learning. A CNN’s
convolutional layer computes a linear convolution between an
incoming feature map Fl of size (H×W×C) and a kernel K
of size ((2·M+1)×(2·N+1)×C) with H,W,C,M,N ∈ N
to return a feature map Fl+1. A stride s = [si, sj ] can be
used to downsample the input. With indexes starting at 0,
linear convolution can be computed as follows:

Fl+1(i, j) = (Fl ∗K)s(i, j)

=

C−1∑
c=0

M∑
m=−M

N∑
n=−N

Fl(si · i−m, sj · j − n, c)

·K(m+M,n+N, c) (1)

This can be repeated with different kernels to output Fl+1

with multiple channels. If the distance of (y, x) to the image
border is smaller than the kernel radius in the corresponding
direction, then the kernel’s receptive field reaches beyond the
image border. In this case either no output is generated and
the feature maps shrinks (usually called a valid convolution)
or a padding of the input image is conducted (usually called

a same convolution). Since shrinking feature maps would
limit the potential number of stacked convolutional layers,
typical convolutional layers pad the feature map borders of
Fl with just enough zeros to keep the size of the output
Fl+1 constant. Of course, this zero padding introduces a
distortion in the filter response. In the following, we present
the Circular Convolutional Layer and the Circular Transposed
Convolutional Layer (also Circular Deconvolutional Layer)
that can be used to overcome this distortion for panoramic
data. They are the building blocks of Circular Convolutional
Neural Networks (CCNN). CCNNs are identical to classi-
cal CNNs except for replacing linear convolutional layers
with their circular counterparts. In particular, the input and
output data formats are the same. Accordingly, existing
CNN-architectures can be applied to panoramic data by
simply replacing linear convolutional layers with circular
convolutional layers. CCNNs are designed to be equivariant
towards circular image shifts. To fully exploit this feature, a
classifier, for instance, should be built with a 1×1-convolution
with a subsequent Global Average Pooling [19] rather than
with fully-connected layers. The similarity to CNNs can be
used to generate CCNNs from readily trained CNNs, this is
discussed in the final paragraph of this section.

A. Circular Convolutional Layers

To handle data with wrap-around structure circular convo-
lution rather than linear convolution can be applied. Circular
Convolution keeps the input size constant and performs down-
sampling solely with stride s. It computes the convolution
from Equation 1 on periodic data using modulo division on
the indexes of circular dimensions. E.g., for an image with
two circular dimensions:

F circ
l+1 (i, j) = (F circ

l ∗K)s(i, j)

=

C−1∑
c=0

M∑
m=−M

N∑
n=−N

Fl(mod(si · i−m),mod(sj · j − n), c)

·K(m+M,n+N, c) (2)

For efficient implementation, the proposed Circular Convolu-
tional Layer avoids the computation of indexes using modulo
division. Instead, it pads the borders of feature maps with
just enough content from the opposite sides of this feature
map to avoid a feature map shrinking. Thus, it replaces the
zero-padding with the correct content from the image on
each individual layer. This is in contrast to one very large
padding at the input image (coined input padding), where
the same operations on redundant data would be applied.
The layer wise circular padding prevents a suppression of
kernel weights during convolution at the borders through
zero-padding and, accordingly, the kernels show the same
behavior at a feature map’s borders and interior.

The circular convolution can be applied to data of arbitrary
dimensionality and can be combined with linear convolution.
E.g., for typical panoramic images, a circular convolution can
be used in horizontal direction and a linear convolution with
zero padding in vertical direction. In the following, we list



the algorithmic steps to implement such a combined Circular
Convolutional Layer.

1) Given input I ∈ RhI×wI , determine padding widths
pleft, pright, ptop and pbottom: In case of stride s = 1, each
padding width equals the kernel radius N . For stride
s > 1, the padding widths can be different for distinct
frameworks. E.g., for Tensorflow3, the padding rules are:

ph =

{
max(kh − sh, 0), if hI mod sh = 0

max(kh − hI mod sh, 0), otherwise

pw =

{
max(kw − sw, 0), if wI mod sw = 0

max(kw − wI mod sw, 0), otherwise

ptop = bph/2c
pbottom = ph − ptop

pleft = bpw/2c
pright = pw − pleft

2) Cut a pad Pleft with width pleft from the right side of
the input and a pad Pright with width pright from the left
side of the input, and concatenate them with the input:

Pleft = I0:hI−1,(wI−pleft):wI−1

Pright = I0:hI−1,0:(pright−1)

Ipadded left-right =
[
Pleft I Pright

]
3) Zero-pad top and bottom of the concatenated image with

ptop at the top and pbottom at the bottom:

Ipadded =

 0top ∈ 0ptop×(pleft+wI+pright)

Ipadded left-right

0bottom ∈ 0pbottom×(pleft+wI+pright)


4) Run a valid linear convolution with stride s on the zero-

padded concatenated feature map Ipadded. This shrinks
the preprocessed input so that the output size matches a
same convolution on the input.

5) Return this convolved feature map.

B. Circular Transposed Convolutional Layers

The Circular Transposed Convolutional Layer (or Circular
Deconvolutional Layer) is the analogue to a Transposed
Convolutional (or Deconvolutional) Layer. It is designed for
generative purposes and upsamples its input by stride s > 1. A
transposed convolution can be computed as linear convolution:
In case of 2D input, upsampling can be done by adding s− 1
zero-lines in-between every row and column, and at one
border for each dimension. The upsampled input is linearly
convolved with a kernel K to receive a transposed convolution.
Again, to perform a same convolution, the upsampled input
has to be zero-padded. This zero-padding involves border
effects which can be avoided by circular convolution in
the Circular Transposed Convolutional Layer. The following
steps are required to implement a combined layer with
circular transposed convolution in horizontal direction and

3documentation: https://tensorflow.org/api_guides/python/nn#Convolution

standard linear transposed convolution in vertical direction
(in accordance with the above circular convolutional layer):

1) Given input I ∈ RhI×wI , run a (regular) valid transposed
convolution on the input. The output shape is

htconv × wtconv = (hI · sh + ph)× (wI · sw + pw)

with ph = max(kh − sh, 0)

pw = max(kw − sw, 0)

2) The result I tconv of the above valid transposed convo-
lution provides the correct values for the inner parts;
for the areas near the border, the corresponding circular
influence from the oposite borders is missing. Therefore,
add the first pw left columns to the last pw right columns,
and add the last pw right columns to the first pw left
columns:

I tconv
0:htconv−1,0:pw−1 ← I tconv

0:htconv−1,0:pw−1

+ I tconv
0:htconv−1,wtconv−pw−1:wtconv−1

I tconv
0:htconv−1,wtconv−pw−1:wtconv−1 ← I tconv

0:htconv−1,0:pw−1

3) To obtain the desired output size hI ·sh×wI ·sw, remove
bpw/2c columns from the left and pw−bpw/2c columns
from the right as well as bph/2c rows from the top and
ph − bph/2c rows from the bottom.

4) Return this cropped feature map.
The experiments in Sec. V use such combined 2D-

versions for panoramic images with horizontal wrap-around
connections. However, the extension to other 2D-, 1D-, and
3D-versions is straightforward.

C. Weight Transfer from CNN to CCNN

For each CNN, a corresponding CCNN can be created
by replacing all (transposed) convolutional layers with their
circular counterparts. The network architecture and all hyper-
paramters remain unchanged. This allows to directly reuse
all weights of an already trained CNN by copying them
to an accordingly created CCNN. In the interior of feature
maps, Circular Convolutional Layer and Circular Transposed
Convolutional Layer show the same behavior like their linear
convolution counterpart. At the image borders, the benefits of
the circular convolutions can be exploited. Both effects are
evaluated in the results section V. However, dedicated CCNN
training can additionally avoid wasting network capacity to
learn kernels particularly for border regions.

IV. WHY NOT SIMPLY PADDING THE INPUT?

Input padding is another way to avoid the negative effects of
zero-padding: wrap-around dimensions are padded once with
(a potentially large chunk of) their corresponding content
before processing. A CNN with input padding (coined
CNN-IP) is expected to achieve comparable results to CCNNs
and might even be beneficial for parallelization. However,
there are some important drawbacks:

(1) Runtime increases with increasing input padding. Sec. V-
C provides runtime measurements. The deeper the network,
the more padding is required; e.g., for a quite shallow network,
[3] padded the input image with 66.7% of the original image.



The accordingly increasing memory consumption on a GPU
could also reduce its parallelization capability.

(2) It is nontrivial to figure out the minimum required
amount of input padding to avoid zero padding; an upper
bound can be calculated with equation (3). It guarantees that
there is no influence of zero padding on the relevant output:

padwidth ≤ (k0 − 1) +

L∑
l=1

(kl − 1) ·
∏l−1

i=0 di∏l
i=0 ui

(3)

It includes strides (d... downsampling, u... upsampling,
defaults to 1 in the opposite case), kernel sizes k, and number
of layers L. The actual required padwidth also depends on
padding approaches of all the layers in the network and
on implementation details of the used learning framework.
E.g., convolutional and transposed convolutional layers do
not show inverse behavior for the same stride and kernel
size with valid-padding in backends like Tensorflow. As
a consequence, feature maps from different depths cannot
be concatenated without additional modification. A possible
workaround is to apply different kinds of upsampling layers
like sub-pixel convolution or NN-resize convolution (see [20]).
Moreover, in frameworks like Keras the padding method
cannot be chosen seperately for each dimension. Thus, for
non-wrapping dimensions, an additional zero-padding has to
be done manually which could further increase computation
time and memory consumption.

(3) In case of same-padding or deconvolutional layers, the
final output has to be cropped to achieve the original output
size. It is not obvious where to crop and the exact location
possibly depends on the used backend.

(4) In a CNN with input padding, feature maps of interme-
diate layers contain repeated content which might influence
the behavior of some layer types like Batch Normalization
or Dropout layers.

V. EXPERIMENTS

In this section, we evaluate some properties of circular
convolutional neural networks and compare their performance
to standard CNNs (with layer-wise zero padding), and the
surrogate techniques for panoramic date (standard CNNs
trained on circularly shifted images and CNNs with input
padding). In all experiments the 2D circular convolutional lay-
ers and 2D circular transposed convolutional layers perform
a circular convolution solely in the horizontal direction; in
the vertical direction, a linear convolution is employed as in
regular convolutional layers. Circular and linear convolutions
in all used networks perform a same convolution (size remains
constant). For down- and upsampling, a stride s is applied.

We implemented the neural network training and evaluation
in the framework Keras with the Tensorflow backend. Our
circular convolution layers including the transposed convolu-
tional layer provide the same interface as the layers offered
by Keras, therefore, regular layers can be replaced easily with
their circular version.
A. Evaluation of shift invariance of CCNNs for circular data

This section serves two goals: First, we evaluate the
capability of the proposed CCNN to provide responses which

are invariant under circular image shifts. Therefore, we
define a circular MNIST [21] classification task of grayscale
handwritten digits. The dataset provides 60000 training and
10000 test images of size 28× 28, each with a ground truth
label of the shown digit 0 to 9. We assume the images to be
circular: If a digit is horizontally shifted within the image
across the image borders, it appears on the opposite side as
depicted in Fig. 3. We combine the CCNN with a subsequent
Global Average Pooling [19] classifier. Since the classifier
is invariant towards shift in the input data, the combination
with a CCNN should not be affected by circular shifts as
well. The second purpose of this section is the comparison
to the surrogate approach of extending the training data with
circular shifted versions of the training images.

For circular MNIST experiments, we use a shallow all
convolutional network [22] for both CNN and CCNN: We
concatenate four Convolutional layers, either regular for the
CNN or circular for the CCNN, with k kernels of size
3× 3 (identical in every layer); in addition, the second and
fourth layer perform a downsampling with stride s = 2. For
classification, 1 × 1-convolution kernels with a subsequent
Global Average Pooling and softmax activation are applied
as described by [19]. The training for both CNN and CCNN
is conducted for three runs with k = {4, 8, 32} kernels in
each of the four layers. The Adam optimizer with the Keras
default parameters is used for loss minimization. In order to
investigate the shift variance or invariance, the trained models
are evaluated over all possible circular shifts of the 10000
test images. We run two experiments:

1) The neural networks are trained for 28 epochs with the
60000 default training images and labels.

2) The neural networks are trained for 1 epoch with a
training dataset containing all 60000 training images
in every of the 28 possible circular shifts, resulting in
28 · 60000 = 1, 680, 000 images.

The results are depicted in Fig. 2. As expected, regular CNNs
show a test accuracy drop for higher shifts in all experiments.
However, the CNN with higher capacity (k = 32) learned
to generalize quite well using the shifted training dataset.
The maximum accuracy of both CNN and CCNN is almost
identical in all experiments. The most important result is the
consistency of the CCNN accuracy over the circular shifts.
For smaller models, especially for k = 4, CCNNs perform
slightly better and learn faster than CNNs on panoramic data
(cf. learning curves in Fig. 2). Presumably this is due to
the fact that the CCNN wastes no capacity to model border
effects. The slight oscillation of the CCNN-curves is caused
by strides s > 1 in the architecture (alternation of four values
due to two strides > 1).

The second row in Fig. 2 evaluates the surrogate CNN
approach with extended training data. All CNNs benefit from
the additional data (note the changed axis scales), but the
shift dependency is still visible. This holds particularly for
the smallest network with only 4 kernels - presumably, its
capacity is too small to fully exploit the extended training
data. The CCNN retains its superior properties.
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Fig. 2: Evaluation of the shift variance of CNNs and CCNNs trained on the circular MNIST dataset, and of weight transfer from trained CNNs to CCNNs
(see Sec. V-D). The top and mid rows show the test accuracy of classification as a function of horizontal circular shift applied to all test images. The
models are either trained on 1) the original 60000 training images (top row) or 2) on training images with all 28 possible circular shifts, i.e., 1, 680, 000
training images (mid row). The models use either 4, 8, or 32 kernels in each convolutional layer (left to right). The bottom row shows the accuracy on the
training set during training as a function of batch number. To address random initialization effects, all curves show the mean of the best 5 of 20 training
runs per architecture. Note the different y-axis scalings.

B. Performance gains with CCNNs near the image borders
This section evaluates the performance gains near image

borders when using a CCNN instead of a CNN. The following
experiments build upon a real world dataset of car drives on
highways recorded by a car equipped with a Velodyne HDL-
64 3D laserscanner. This sensor provides panoramic depth
and reflectivity images with 64 vertically aligned scanlines for
a maximum distance of 120m. The laserscanner spins with
20 Hz; we sample frames every 2 seconds, each consisting of
64× 864 depth and reflectivity images. The dataset consists
of 4093 training and 1164 test frames, each pixel is manually
labeled vehicle or background. Fig. 3 shows an example.

To perform a pixel-wise binary classification task we train
two different neural network architectures with regular and
circular convolutional layers:

1) DeconvNet: The DeconvNet from [6] is a Deconvolu-
tional Neural Network with three convolutional layers for
downsampling followed by three transposed convolutional
layers for upsampling with shortcuts between layers of the
same size. For training, the network is designed to output
a classification for every upsampling layer. The network is
implemented in Keras with Tensorflow backend. Except for
a 5% dropout layer after the input to mimic laserscanner
misclassifications, we copied the network’s architecture
including layers, filter number and size, and strides from
[6]. The loss for vehicle misclassifications is multiplied by
approx. 16, and the losses for the three outputs after each
upsampling layer are weighted with {1, 0.7, 0.5}. The network
is trained for 20 epochs with batch size 32 with the Adam

optimizer; we used a scheduled learning rate: {epoch 0− 7:
0.001, 8− 10: 0.0005, 11− 14: 0.00025, else: 0.00001}

2) TiramisuNet: The TiramisuNet from [7] is a quite deep
Deconvolutional Neural Network with multiple blocks of
downsampling and upsampling layers. A downsampling is
obtained by a 1×1 convolution with subsequent max-pooling,
an upsampling by a transposed convolution with stride 2.
Before every downsampling layer and after every upsampling
layer a densely-connected convolution [23] over multiple
layers is performed. We partially adapted the 103 layer
architecture described in the paper: Except for the bottleneck
with 15 layers, we always use 5 convolutional layers in
a densely-connected convolution block. Our TiramisuNet
consists of 77 convolutional layers. Again, the loss for a
vehicle misclassification is multiplied by approx. 16, and the
network was trained with Adam optimizer for 5 epochs with
batch size 2 and learning rate 0.001.

To evaluate the expected performance gain of CCNNs
especially close to the image borders, we investigate the
average precision for increasingly large areas around the
borders: First, the classes of all pixels in all test images are
predicted and stored. Next, average precisions are computed
by comparing predictions and ground truth for an increasing
area around the image border from the left and right side.
The results are shown in Figure 4: In both experiments, there
is a visible benefit of the CCNN over the CNN in areas
near the image borders. For the better performing Tiramisu
network, the gain is more than 20% (0.16 absolute) for a
small area close to the border. When the area is increased



Fig. 3: (left) Visualization of a circular MNIST digit and all possible circular shifts. (right) An example frame from the dataset recorded with a Velodyne
HDL-64 3D laserscanner on highways. Top: depth image; mid: reflectance image; bottom: label image with classes {vehicle, background}.

towards the image interior, the results converge to the CNN’s
performance. For the DeconvNet the difference is smaller
than for the TiramisuNet which is much deeper; presumably,
the benefit of circular convolutional layers is higher in deeper
architectures since the influence of zero-padding spreads
out more with increasing depth. Following equation (3), the
maximum influence of zero-padding for DeconvNet is ≤ 60
pixel around the seam or ≤ 1706 pixel for TiramisuNet,
respectively. In a defined setting with uniform weights and
zero-bias, we could measure an actual impact of zero-padding
of 46 pixel for DeconvNet and 864 pixel (full image width) for
TiramisuNet. This can be observed for DeconvNet in Fig. 4
where CNN and the transfered CCNN perform equal from
approximately 48 pixel. Note that this area is independent of
the actual image width - the arbitrarily large interior of the
image is not affected.

C. Runtime considerations
Circular convolutional layers require more copy operations

than linear convolutional layers to replace the zero-padding
with padding of the opposite input content. This results
in longer training and inference times. We implemented
our neural network models in the Keras framework with
Tensorflow backend, and trained and tested all models with
a Nvidia GTX 1080 Ti GPU. The deepest model from the
experiments (TiramisuNet (see Sec. V-B)) requires for training
with batch size 2 and 4093 images 655 seconds per epoch
for a CNN (160ms/image) and 756 seconds per epoch for a
CCNN (185ms/image); an increase of 16% in training time.
For inference (to classify images pixel-wise), the TiramisuNet
requires for 1164 images 59.1 seconds on a CNN-version
(51ms/image) and 65.6 seconds on a CCNN (56ms/image); an
increase of about 11%. According to Table I this corresponds
to the runtime caused by input padding (CNN-IP) of about
15%. The required input padding to avoid the negative effect
of zero padding is typically much larger (e.g. [3] increase the
number of pixels by 66.7%, also see experiments in Fig. 5).

D. Transfer from trained CNN to CCNN
All experiments include results for weight transfer, i.e.

training a CNN and copying the weights to CCNN without
retraining. This could be reasonable for applying readily
trained CNNs on circular data or to save the 16% additional
training time for training a CCNN instead of a CNN. In
the shift invariance experiments on MNIST in Fig. 2, the
CNN’s test accuracy drops for higher circular shifts whereas
the transfered CCNNs show the same maximal accuracy and
retain it across shifts. In the Velodyne data experiment, the
transfered CCNNs show a performance gain next to the image
border and converge to their parent CNN’s average precision
for higher distance to the border. In conclusion, the transfer

improved the CNN’s performance in every presented task
without any additional training.

E. Comparison of CCNN and CNN-IP (with Input Padding)
Fig. 5 shows the achieved average precision in the area

near the unfolded image border for the different network
types including CNNs with varying input padding widths.
Table I shows the corresponding input widths, training
and testing times, and the average precision next to the
border. The increasing input padding widths are chosen
to fit the Tiramisu network architecture which halves the
input five-times before upsampling; accordingly the input
is a multiple of 25. We chose the different widths to cover
the range from the default input width to an empirically
determined reasonable maximum. In general, wider padding
improves the performance. However, the pitfalls of using
input padding described in Sec. IV can considerably degrade
the performance. For example, CNN-IP with width 1504
performs worse than smaller input paddings. The increased
CNN-IP input requires a cropping of the also increased output.
In our experiments, we use the accordingly sized central
part of the image. This is a reasonable but presumably not
correct choice for this particular image width, caused by
implementation details of the underlying learning framework
and resulting in degraded performance. This example and
their general better performance promote the usage of the
described CCNN instead of input padding.

VI. CONCLUSION

In this work, we discussed Circular Convolutional Neural
Networks as an extension of standard Convolutional Neural
Networks. The described circular convolutional and circular
transposed convolutional layers can be used to replace their
linear counterparts in CNN-architectures for panoramic input
images and laser data. On a circular MNIST dataset, we
could show the CCNN’s shift invariance: the trained CCNNs
performed always equal or better than the CNN-counterpart,
even if the CNN was additionally trained on shifted images;
for models with less kernels the CCNN even outperformed
the CNN for unshifted images which indicates more efficient
exploitation of convolution kernels. On the practically more
relevant multi-layer LiDAR dataset, we could show and
quantify the performance gain of CCNNs in the area near
the image border of panoramic images. The application to
Velodyne scans from driving cars demonstrated the practical
relevance to prevent blind spots. CCNNs perform better and
are faster to train than approaches based on input padding or
augmented training sets with circular shifts. However, they are
slightly slower (training 16%, inference 11%) than standard
CNNs with blind spots. For training, we demonstrated how
weight transfer between CNN and CCNN can eliminate the



0 50 100 150 200

area width in pixel

0.75

0.8

0.85

0.9

0.95

a
v
e

ra
g

e
 p

re
c
is

io
n

DeconvNet

ccnn

transfer cnn->ccnn

cnn

0 50 100 150 200

area width in pixel

-2

0

2

4

6

8

10

12

14

a
v
g

. 
p

re
c
. 

im
p

ro
v
e

m
e

n
t 

in
 %

DeconvNet

ccnn vs. cnn

cnn->ccnn vs. cnn

0 50 100 150 200

area width in pixel

0.75

0.8

0.85

0.9

0.95

a
v
e

ra
g

e
 p

re
c
is

io
n

TiramisuNet

ccnn

transfer cnn->ccnn

cnn

0 50 100 150 200

area width in pixel

-5

0

5

10

15

20

25

a
v
g

. 
p

re
c
. 

im
p

ro
v
e

m
e

n
t 

in
 %

TiramisuNet

ccnn vs. cnn

cnn->ccnn vs. cnn

Fig. 4: Evaluation of the DeconvNet (top) and TiramisuNet (bottom) trained on the Velodyne
dataset with linear or circular convolutional layers, and of trained CNNs transfered to
CCNNs. (left) Average precision between model prediction and ground truth as a function
of the area around the image border of the unfolded panoramic classification images. (right)
Relative improvement of average precision of the trained or transfered CCNN over the CNN.
Again, all curves show the mean of the best 5 of 20 trained models to address effects of
random weight initializations. Presumably, the local minima at ~25 pixels are caused by the
characteristics of the dataset (spatial distribution and appearance of objects around the seam);
in not shown experiments we validated that this can be shifted by moving the image seam.

TABLE I: Comparison of training and testing time, and the
average precision (AP) next to the image border. Each value
represents the mean of five models to address random weight
initialization. CNN* marks the same neural networks.

Network
Type

Input
Width

Training
Time

Testing
Time

Border
AP

CCNN 864 185ms 56.4ms 0.917
CNN* 864 160ms 50.8ms 0.708

CNN*→CCNN 864 160ms 56.4ms 0.890
CNN-IP 928 (+7.4%) 64ms 52.7ms 0.845
CNN-IP 992 (+14.8%) 174ms 55.6ms 0.838
CNN-IP 1184 (+37%) 210ms 65.8ms 0.893
CNN-IP 1504 (+74%) 264ms 84.5ms 0.853
CNN-IP 1632 (+88.9%) 287ms 90.6ms 0.891
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Fig. 5: Average precision as a function of the area around the
image border of the unfolded panoramic classification images
for different network types and CNNs with input padding
(CNN-IP). All curves are mean of best 5 of 9 trained models.

runtime increase. It can also be used to convert available,
readily trained CNNs for which retraining is not possible (e.g.
due to unavailable training data or resources) into CCNNs.
If blind spots are not acceptable, there is no reason to stick
with techniques like input padding instead of using a Circular
Convolutional Neural Network.
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